JPH02222169A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02222169A
JPH02222169A JP1042710A JP4271089A JPH02222169A JP H02222169 A JPH02222169 A JP H02222169A JP 1042710 A JP1042710 A JP 1042710A JP 4271089 A JP4271089 A JP 4271089A JP H02222169 A JPH02222169 A JP H02222169A
Authority
JP
Japan
Prior art keywords
insulating film
silicon nitride
active element
semiconductor device
active elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1042710A
Other languages
Japanese (ja)
Inventor
Toshihiko Higuchi
俊彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1042710A priority Critical patent/JPH02222169A/en
Publication of JPH02222169A publication Critical patent/JPH02222169A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a semiconductor element having active elements having different threshold voltages by varying the threshold voltage of the active element of a lower layer according to whether an opening section is formed of an insulating film mainly comprising silicon nitride. CONSTITUTION:A plurality of active elements composed of sources and drains 207, into which an impurity is diffused, gate insulating films 208, gate electrodes 209, insulating films 210 as lower layers and leading-out wirings 211 are shaped onto a semiconductor substrate 201. An insulating film 202 mainly comprising SiO2 through a decompression CVD method and a film 203 using silicon nitride as a principal ingredient through a plasma CVD method are formed onto the substrate 201. An opening section 203' is shaped only onto the desired active element in one part of the insulating film 203 through a photolithographic technique, etc. The ions 214 of an OH group, etc., included in an insulating film 204 formed through an SOG method are transferred under a metal 205 in the active element under a section as the opening section 203' of the insulating film employing silicon nitride as the main component, and the threshold voltage of the channel section 212' of the active element is fluctuated. Accordingly, a semiconductor element with the active elements having different threshold voltage is acquired.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、閾値電圧が異なる複数の能動素子により形成
された半導体装置の構造に関し、特に製造過程において
データを書き込んだ読みだし専用のメモリー(以下マス
クROMと称す)において、能動素子の閾値電圧が異な
ることをデータとして用いたマスクROMを有する半導
体装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the structure of a semiconductor device formed by a plurality of active elements having different threshold voltages, and in particular to a read-only memory (read-only memory) into which data is written during the manufacturing process. The present invention relates to a semiconductor device having a mask ROM (hereinafter referred to as a mask ROM) in which different threshold voltages of active elements are used as data.

[従来の技術] 従来の半導体装置におけるマスクROMの構造としては
、能動素子のチャンネル部の不純物濃度を変えることに
より閾値電圧を変えた複数の能動素子をから成る構造や
、能動素子と金属配線を電気的に接続する開孔部(コン
タクトホール)の有無によりマスクROMのデータとす
る構造などからなり、閾値電圧の異なる能動素子やコン
タクトホールを形成した上に配線を形成した構造になっ
ていた。
[Prior Art] The structure of a mask ROM in a conventional semiconductor device includes a structure consisting of a plurality of active elements whose threshold voltages are changed by changing the impurity concentration of the channel portion of the active element, and a structure consisting of a plurality of active elements whose threshold voltages are changed by changing the impurity concentration of the channel portion of the active element, and a structure consisting of a structure in which the active elements and metal wiring are connected. It has a structure in which data is stored in a mask ROM depending on the presence or absence of electrically connected openings (contact holes), and has a structure in which active elements with different threshold voltages and contact holes are formed, and then wiring is formed.

[発明が解決しようとする課題] しかしながら、前述の従来技術では、マスクROMのデ
ータを書き込む工程の後、配線を形成し製品とするまで
多くの工程があり、マスクROMの納期がかかるという
問題を有していた。またデータを書き込む工程としてフ
ォトリソ工程とイオン注入工程あるいはエツチング工程
を必要とし全体としての製造工程が長くなるという問題
も有していた。
[Problems to be Solved by the Invention] However, with the above-mentioned conventional technology, there are many steps after the process of writing data in the mask ROM until wiring is formed and the product is manufactured, and the problem is that it takes a long time to deliver the mask ROM. had. Another problem is that a photolithography process and an ion implantation process or an etching process are required as a process for writing data, which lengthens the overall manufacturing process.

そこで、本発明はこのような課題を解決しようとするも
ので、その目的とするところは、マスクROMのデータ
を書き込む工程からマスクROMの完成までの工程を短
縮することと、データを書き込むための工程を簡単にす
ることのできる半導体装置を提供するところにある。
Therefore, the present invention attempts to solve such problems, and its purpose is to shorten the process from writing data in a mask ROM to completion of the mask ROM, and to shorten the process for writing data. It is an object of the present invention to provide a semiconductor device that can simplify the process.

[課題を解決するための手段] 本発明の半導体装置は、(1)複数からなるMOS型の
能動素子と、その能動素子上の酸化シリコンを主成分と
する絶縁膜と、窒化シリコンを主成分とする絶縁膜と、
ガラス溶液の塗布及び加熱により形成された絶縁膜と、
その絶縁膜上の金属膜からなる半導体装置に於いて、前
記窒化シリコンを主成分とする絶縁膜の一部で所望の能
動素子上について開孔部を有する構造を特徴とし、(2
)前記窒化シリコンを主成分とする絶縁膜の一部で所望
の能動素子上について開孔部を有した構造、および窒化
シリコンを主成分とする絶縁膜上にガラス溶液の塗布及
び加熱により形成された絶縁膜を有する構造による閾値
電圧の異なる能動素子を有することを特徴とし、 (3)前記能動素子上に形成する金属膜は複数の能動素
子のある領域全体を覆う構造であることを特徴とする。
[Means for Solving the Problems] A semiconductor device of the present invention includes (1) a plurality of MOS type active elements, an insulating film mainly composed of silicon oxide on the active elements, and a silicon nitride mainly composed of an insulating film,
An insulating film formed by applying and heating a glass solution;
A semiconductor device comprising a metal film on an insulating film is characterized in that a part of the insulating film mainly composed of silicon nitride has an opening over a desired active element, (2)
) A structure having an opening over a desired active element in a part of the insulating film mainly composed of silicon nitride, and a structure formed by coating and heating a glass solution on the insulating film mainly composed of silicon nitride. (3) The metal film formed on the active element has a structure that covers the entire area where the plurality of active elements are located. do.

[実施例コ 第1図は本発明の半導体装置の一例を実施例として示し
た図であり、半導体基板101表面に複数のMOS型の
能動素子を形成し、能動素子上に酸化シリコンを主成分
とする絶縁膜102と開孔部を有する窒化シリコンを主
成分とする絶縁膜103ガラス溶液の塗布及び加熱によ
り形成された絶縁膜104と絶縁膜上の金属膜105と
パッシベーション膜106からなる構造となっている。
[Example 1] FIG. 1 is a diagram showing an example of the semiconductor device of the present invention as an example, in which a plurality of MOS type active elements are formed on the surface of a semiconductor substrate 101, and silicon oxide is the main component on the active elements. An insulating film 102 mainly composed of silicon nitride having an opening, an insulating film 104 formed by coating and heating a glass solution, a metal film 105 on the insulating film, and a passivation film 106. It has become.

さらにこの酸化シリコンを主成分とする絶縁膜102は
OH基などのイオンを加熱処理中に透過できる膜質であ
る。
Further, the insulating film 102 mainly composed of silicon oxide has a film quality that allows ions such as OH groups to pass through during heat treatment.

窒化シリコンを主成分とする絶縁膜103は緻密であり
OH基などのイオンを加熱処理によっても透過しない膜
質である。またガラス溶液の塗布及び加熱により形成さ
れた絶縁膜104は酸化シリコンのほかにOH基やその
ほかの不純物を含んだ膜質である。絶縁膜102の形成
例として、0.1t。
The insulating film 103 whose main component is silicon nitride is dense and has a film quality that does not allow ions such as OH groups to pass through even when subjected to heat treatment. Further, the insulating film 104 formed by applying and heating a glass solution is a film containing OH groups and other impurities in addition to silicon oxide. As an example of forming the insulating film 102, the thickness is 0.1 t.

rr程度の減圧下で400°C程度の温度によりSiH
4と02を化学反応させ5i02として半導体基板上に
降り積もらせ5i02を主成分とする絶縁膜を形成する
方法(以下、減圧CVD法と称す)がある。絶縁膜10
3の形成例として、lt。
SiH at a temperature of about 400°C under reduced pressure of about rr
There is a method (hereinafter referred to as low pressure CVD method) in which 4 and 02 are chemically reacted to form 5i02 and deposited on a semiconductor substrate to form an insulating film containing 5i02 as a main component. Insulating film 10
As an example of formation of 3, lt.

rr程度の減圧下で300°C程度の温度および高周波
電界によるプラズマによりSiH4とNH3を化学反応
させSixNyとして半導体基板上に降り積もらせ窒化
シリコンを主成分とする絶縁膜を形成する方法(以下、
プラズマCVD法と称す)がある。また絶縁膜104の
形成例として東京応化製の0CD−P−48316など
を半導体基板上に回転塗布した後、400°C程度の加
熱処理により溶液をガラス化して絶縁膜を形成する方法
(以下、SOG法と称す)がある。
A method (hereinafter referred to as
(referred to as plasma CVD method). As an example of forming the insulating film 104, a method (hereinafter referred to as (referred to as the SOG method).

第2図(a)から(、e)は本発明の半導体装置を形成
する方法を実施例として工程を追って示した図である。
FIGS. 2(a) to 2(e) are diagrams showing step by step a method for forming a semiconductor device according to an embodiment of the present invention.

以下この図にしたがって本発明を実施例として工程を追
って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained step by step as an example with reference to this figure.

第2図(a)で示す様に半導体基板201上に不純物を
拡散したソース及びドレイン207、ゲート絶縁膜20
8、ゲート電1極209、下層の絶縁膜210、引出し
配線211からなる複数の能動素子を形成する。ここて
は、−例としてこの能動素子はNチャンネルMOSトラ
ンジスタで、初期の閾値電圧は0.7■であるものとす
る。次に第2図(b)に示す様に半導体基板及び能動素
子上に減圧CVD法により5i02を主成分とする絶縁
膜202とプラズマCVD法により窒化シリコンを主成
分とする膜203を形成する。この窒化シリコンを主成
分とする絶縁膜203の一部で所望の能動素子上のみ、
第2図(C)に示すようにフォトリソ技術及びエツチン
グ技術により開孔部203′を形成する。さらに第2図
(d)に示すようにこの絶縁膜203上及び開孔部20
3°上にSOG法により絶縁膜204を形成し、金属膜
205を形成しパターニングする。このとき絶縁膜20
4により下層の能動素子による段差や開孔部を形成した
絶縁膜による段差を平坦化できる。また金属膜205は
前記の複数の能動素子が存在する領域全体を覆うように
形成し、この領域以外の回路上の金属膜205は除去す
るか、第2の配線として使用してもよい。この後この半
導体装置上にパッシベーション膜205を形成する。こ
のパッシベーション膜206を形成すると同時に、ある
いはパッシベーション膜形成の前か後に加熱処理する事
により、SOG法により形成された絶縁膜204に含ま
れているOH基などのイオンが移動する。第2図(e)
で示すようにSOG法により形成した絶縁膜204の下
に窒化シリコンを主成分とする絶縁膜203がある能動
素子上ではOH基などのイオンは下層に移動できないた
め、下の能動素子への影響はないが、窒化シリコンを主
成分とする絶縁膜が開孔部203′になっている下の能
動素子はSOG法により形成した絶縁膜204に含まれ
ていたOH基などのイオン214は金属膜205の下へ
移動し能動素子のゲート絶縁膜に208に達し、能動素
子のチャンネル部分212゛の閾値電圧を変化させる。
As shown in FIG. 2(a), a source and drain 207 with impurities diffused on a semiconductor substrate 201 and a gate insulating film 20
8. A plurality of active elements consisting of a gate electrode 209, a lower insulating film 210, and an extraction wiring 211 are formed. Here, for example, it is assumed that this active element is an N-channel MOS transistor and the initial threshold voltage is 0.7. Next, as shown in FIG. 2(b), an insulating film 202 containing 5i02 as a main component by low pressure CVD and a film 203 containing silicon nitride as a main component by plasma CVD are formed on the semiconductor substrate and active elements. A part of the insulating film 203 mainly composed of silicon nitride is formed only on the desired active element.
As shown in FIG. 2(C), an opening 203' is formed by photolithography and etching. Furthermore, as shown in FIG.
An insulating film 204 is formed 3° above by the SOG method, and a metal film 205 is formed and patterned. At this time, the insulating film 20
4, it is possible to flatten the step caused by the active element in the lower layer or the step caused by the insulating film in which the opening is formed. Further, the metal film 205 may be formed to cover the entire region where the plurality of active elements are present, and the metal film 205 on the circuit other than this region may be removed or used as a second wiring. After that, a passivation film 205 is formed on this semiconductor device. At the same time as forming this passivation film 206, or by performing heat treatment before or after forming the passivation film, ions such as OH groups contained in the insulating film 204 formed by the SOG method are moved. Figure 2(e)
As shown in , on an active element where there is an insulating film 203 mainly composed of silicon nitride under an insulating film 204 formed by the SOG method, ions such as OH groups cannot move to the lower layer, so they have no effect on the active element below. However, ions 214 such as OH groups contained in the insulating film 204 formed by the SOG method are removed from the metal film in the active element below, where the insulating film mainly composed of silicon nitride forms the opening 203'. It moves below 205 and reaches the gate insulating film of the active element 208, changing the threshold voltage of the channel portion 212' of the active element.

本実施例では閾値電圧が0.7vからO■以下に変化し
た。このようにして閾値電圧の異なる複数の能動素子か
らなる半導体装置が形成された。
In this example, the threshold voltage changed from 0.7 V to below O■. In this way, a semiconductor device including a plurality of active elements having different threshold voltages was formed.

また前記の実施例のような方法で形成した複数の閾値電
圧が異なる能動素子をデータとしてマスりROMを形成
することができる。
Further, a mass ROM can be formed using a plurality of active elements having different threshold voltages formed by the method of the above embodiment as data.

以上述べたように本発明の実施例により閾値電圧の異な
る能動素子を有する半導体装置を形成する場合、能動素
子、引出し配線211、及び酸化シリコンを主成分とす
る絶縁膜202及び窒化シリコンを主成分とする絶縁膜
203を形成後、絶縁膜203のパターニング、更にS
OG法による絶縁膜204の形成と金属膜205の形成
および加熱処理により異なる閾値電圧にする事ができる
ためマスクROMのような半導体装置においてデータ書
き込みをする工程から完成まで少ない工程で半導体装置
が完成する。
As described above, when forming a semiconductor device having active elements with different threshold voltages according to the embodiment of the present invention, the active elements, the lead wiring 211, the insulating film 202 mainly composed of silicon oxide, and the insulating film 202 mainly composed of silicon nitride. After forming the insulating film 203, patterning of the insulating film 203 and further S
Different threshold voltages can be obtained by forming the insulating film 204 by the OG method, forming the metal film 205, and heat treatment, so the semiconductor device can be completed with fewer steps from the process of writing data to completion in a semiconductor device such as a mask ROM. do.

また本実施例ではガラス溶液の塗布及び加熱により形成
する絶縁膜の例としてSOG法による絶縁膜を例に挙げ
たが、このほかシラノール系溶液やポリイミドの溶液な
どのようなOH基を含む溶液を用いたガラス溶液ならば
本発明の半導体装置を構成できる。
Furthermore, in this example, an insulating film formed by the SOG method was used as an example of an insulating film formed by coating and heating a glass solution, but in addition, solutions containing OH groups such as silanol solutions and polyimide solutions were used. The semiconductor device of the present invention can be constructed using the glass solution used.

[発明の効果] 以上述べたように本発明の半導体装置の構造によれば、
SOG法による絶縁膜の形成と金属膜の形成及び加熱処
理により下層の能動素子を異なる閾値電圧にする事がで
きるためSOG法により形成された絶縁膜の下の窒化シ
リコンを主成分とする絶縁膜のパターニングすなわち窒
化シリコンを主成分とする絶縁膜が開孔部になっている
が、いないかにより下層の能動素子の閾値電圧を変化さ
せることができ、閾値電圧の異なる能動素子を有する半
導体装置を形成できる。
[Effects of the Invention] As described above, according to the structure of the semiconductor device of the present invention,
The insulating film whose main component is silicon nitride under the insulating film formed by the SOG method because the underlying active elements can be made to have different threshold voltages by forming the insulating film by the SOG method, forming the metal film, and heat treatment. In other words, the threshold voltage of the underlying active element can be changed depending on the patterning of the insulating film whose main component is silicon nitride, and the threshold voltage of the underlying active element can be changed. Can be formed.

また本発明の半導体装置の構造を用いてマスクROMを
形成すると、能動素子上の窒化シリコンを主成分とする
絶縁膜のパターニングによる下層の能動素子の閾値電圧
を変化させる方法によりデータの書き込みをすることに
よりマスクROMのデータ書き込みの工程から半導体装
置の完成までに必要とする工程を従来技術に比べて部分
の一程度にに短縮でき半導体装置を短い納期で完成でき
るという効果を有する。
Furthermore, when a mask ROM is formed using the structure of the semiconductor device of the present invention, data is written by a method of changing the threshold voltage of the underlying active element by patterning an insulating film mainly composed of silicon nitride on the active element. This has the effect that the steps required from writing data in the mask ROM to completing the semiconductor device can be shortened to about one part compared to the conventional technology, and the semiconductor device can be completed in a short delivery time.

さらに金属膜及びパッシベーション膜形成前にSOG法
による絶縁膜の形成により半導体装置の表面が平坦化さ
れているためパッシベーション膜にひび割れが生じにく
く、信頼性の高い半導体装置を提供できる。
Furthermore, since the surface of the semiconductor device is flattened by forming an insulating film using the SOG method before forming the metal film and the passivation film, cracks are less likely to occur in the passivation film, making it possible to provide a highly reliable semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の半導体装置の断面図。 第2図(a)〜(e)は本発明の半導体装置を形成する
実施例を工程を於って示した図。 101.201・・・・・半導体基板 102.202・・・・・5i02を主成分とする絶縁
膜103.203・・・・・窒化シリコンを主成分とす
る絶縁膜 203′   ・・・・・窒化シリコンを主成分とする
絶縁膜の開孔部 104.204・・・・・ガラス溶液の塗布及び加熱に
より形成した絶縁膜 105.205・・・・・金属膜 106.206・・・・・パッシベーション膜107.
207・・・・・不純物拡散層(ソース及びドレイン) 108.208・・・・・ゲート絶縁膜109.209
・・・・・ケート電極 110.210・・・・・下層の絶縁膜111.211
・・・・・引出し配線 112.212・・・・・能動素子のチャンネル部21
2”  ・・・・・OH基及び電荷により閾値電圧の変
化したチャンネル部 113.213・・・・・コンタクトホール214  
 ・・・・・SOG法により形成した絶縁膜に含まれて
いたOR基などのイオン 以上 出願人 セイコーエプソン株式会社 代理人弁理士 鈴木喜三部(他1名)
FIG. 1 is a sectional view of a semiconductor device of the present invention. FIGS. 2(a) to 2(e) are diagrams showing steps of an embodiment of forming a semiconductor device of the present invention. 101.201... Semiconductor substrate 102.202... Insulating film containing 5i02 as the main component 103.203... Insulating film 203' containing silicon nitride as the main component... Openings 104,204 of an insulating film mainly composed of silicon nitride...Insulating film 105,205 formed by coating and heating a glass solution...Metal film 106,206... Passivation film 107.
207... Impurity diffusion layer (source and drain) 108.208... Gate insulating film 109.209
...Kate electrode 110.210 ... Lower layer insulating film 111.211
...Output wiring 112.212...Channel section 21 of active element
2”...Channel portion 113 where the threshold voltage has changed due to OH groups and charges.213...Contact hole 214
...Ions such as OR groups contained in the insulating film formed by the SOG method Applicant Seiko Epson Co., Ltd. Representative Patent Attorney Kizobe Suzuki (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)複数からなるMOS型の能動素子と、その能動素
子上の酸化シリコンを主成分とする絶縁膜と、窒化シリ
コンを主成分とする絶縁膜と、ガラス溶液の塗布及び加
熱により形成された絶縁膜と、その絶縁膜上の金属膜か
らなる半導体装置に於いて、前記窒化シリコンを主成分
とする絶縁膜の一部で所望の能動素子上について開孔部
を有する構造を特徴とする半導体装置。
(1) A MOS type active element consisting of a plurality of elements, an insulating film mainly composed of silicon oxide on the active element, an insulating film mainly composed of silicon nitride, and formed by coating and heating a glass solution. A semiconductor device comprising an insulating film and a metal film on the insulating film, characterized in that a part of the insulating film mainly composed of silicon nitride has an opening over a desired active element. Device.
(2)前記窒化シリコンを主成分とする絶縁膜の一部で
所望の能動素子上について開孔部を有した構造、および
窒化シリコンを主成分とする絶縁膜上にガラス溶液の塗
布及び加熱により形成された絶縁膜を有する構造による
閾値電圧の異なる能動素子を有することを特徴とする第
1項記載の半導体装置。
(2) A structure in which a part of the insulating film mainly composed of silicon nitride has an opening above a desired active element, and a glass solution is applied and heated on the insulating film mainly composed of silicon nitride. 2. The semiconductor device according to claim 1, further comprising active elements having different threshold voltages due to a structure having an insulating film formed thereon.
(3)前記能動素子上に形成する金属膜は複数の能動素
子のある領域全体を覆う構造であることを特徴とする第
1項記載の半導体装置。
(3) The semiconductor device according to item 1, wherein the metal film formed on the active element has a structure that covers the entire region where the plurality of active elements are located.
JP1042710A 1989-02-22 1989-02-22 Semiconductor device Pending JPH02222169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1042710A JPH02222169A (en) 1989-02-22 1989-02-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1042710A JPH02222169A (en) 1989-02-22 1989-02-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02222169A true JPH02222169A (en) 1990-09-04

Family

ID=12643630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042710A Pending JPH02222169A (en) 1989-02-22 1989-02-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02222169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8350308B2 (en) 2008-03-06 2013-01-08 Nxp B.V. Reverse engineering resistant read only memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8350308B2 (en) 2008-03-06 2013-01-08 Nxp B.V. Reverse engineering resistant read only memory

Similar Documents

Publication Publication Date Title
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
US4432133A (en) Method of producing a field effect transistor
JPH08148649A (en) Method of manufacturing semiconductor device
JPH02222169A (en) Semiconductor device
US6624079B2 (en) Method for forming high resistance resistor with integrated high voltage device process
JPH09191078A (en) Manufacture of semiconductor device
JPH02205357A (en) Semiconductor device
JPH02106967A (en) Semiconductor device
JPS59119871A (en) Manufacture of nonvolatile semiconductor memory device
KR0161892B1 (en) Thin film transistor
JPH01208866A (en) Manufacture of semiconductor device
JPH09246400A (en) Manufacture of semiconductor device
JPH0582734A (en) Manufacture of mos semiconductor device
JPH1126729A (en) Manufacture of semiconductor integrated circuit
JPS5955068A (en) Manufacture of semiconductor device
KR100192474B1 (en) Method of manufacturing mosfet
JPH0369168A (en) Thin film field effect transistor
JPS61154046A (en) Semiconductor device
KR100461791B1 (en) Method of fabricating semiconductor devices
KR100395911B1 (en) Method for manufacturing semiconductor device
JPH04208570A (en) Manufacture of semiconductor device
JPH04145666A (en) Electrically erasable nonvolatile semiconductor memory
JPH01165162A (en) Manufacture of semiconductor memory device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPH04167555A (en) Manufacture of semiconductor device