JPH02221342A - Copper-series shape memory alloy - Google Patents

Copper-series shape memory alloy

Info

Publication number
JPH02221342A
JPH02221342A JP4116689A JP4116689A JPH02221342A JP H02221342 A JPH02221342 A JP H02221342A JP 4116689 A JP4116689 A JP 4116689A JP 4116689 A JP4116689 A JP 4116689A JP H02221342 A JPH02221342 A JP H02221342A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
copper
memory alloy
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116689A
Other languages
Japanese (ja)
Inventor
Shinobu Shibuya
渋谷 忍
Kosaku Nakano
中野 耕作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4116689A priority Critical patent/JPH02221342A/en
Publication of JPH02221342A publication Critical patent/JPH02221342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the workability and shape memory properties of the shape memory alloy by incorporating a trace amt. of misch metal into a Cu-Al- Zn-Mn alloy having specified compsn. CONSTITUTION:The compsn. of the shape memory alloy is formed with, by weight, 2 to 14% Al, 1 to 10% Zn, 1 to 10% Mn, 0.005 to 0.5% misch metal and the balance Cu. By this compsn., the crystal grains in a beta single phase of the alloy are refined and the crystal anisotropy of the alloy is relaxed to improve the workability. Together with this, the amt. of critical introducing strain (the amt. of shape memory to be treated) is improved. Furthermore, the control of the transformation temp. is facilitated without requiring complicated heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Cu−Aj!−Zn−Mn合金の改良に関し
、これにミツシュメタルを添加して加工性および形状記
憶特性の向上をはかった銅系形状記憶合金に係るもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides Cu-Aj! This invention relates to an improvement of a -Zn-Mn alloy, and relates to a copper-based shape memory alloy in which Mitshu metal is added to improve workability and shape memory properties.

〔従来の技術とその課題〕[Conventional technology and its issues]

Cu−Aj!−Zn−Mn合金は銅系形状記憶合金の実
用上の問題点とされるβ→α+T!共析分解による応力
緩和を達成させた実用的な合金である。
Cu-Aj! -Zn-Mn alloy has β→α+T!, which is considered to be a practical problem with copper-based shape memory alloys. This is a practical alloy that achieves stress relaxation through eutectoid decomposition.

しかし形状特性に寄与するβ相は、結晶異方性が゛大き
いため冷間加工時の加工性が悪く、さらに記憶量を左右
する限界導入歪量を大きくできないという問題があった
。そこでβ相の結晶異方性に起因した加工性不良の問題
を解決するために結晶粒の微細化で補うことが考えられ
た0例えばβ相単相ではなくα+β相にする方法または
C「、Tt、B、Zr、Feなどを添加して金属間化合
物を微細分散させる方法などである。ところが形状記憶
相はβ相であり(rz相も変態するが、脆いためT□相
の存在は加工に不適)微細化を図るためにα十β相組織
にするには複雑な熱処理が必要となる他、導入歪量のう
ちβ相に加わった歪のみが形状記憶変化を示すことによ
り実用上有益ではない、また第三元素の添加により金属
間化合物を分散させる方法においては、形状記憶特性値
である変態温度は、AIl、Zn、Mn量それぞれに大
きく依存するために第三元素により金属間化合物が作ら
れると、これら主成分の消費を招き、変態温度の管理が
困難となる。
However, the β phase, which contributes to the shape characteristics, has a large crystal anisotropy, so it has poor workability during cold working, and there is also the problem that the critical amount of introduced strain, which affects the memory capacity, cannot be increased. Therefore, in order to solve the problem of poor workability caused by the crystal anisotropy of the β phase, it has been considered to make up for it by making the crystal grains finer. This method involves finely dispersing intermetallic compounds by adding Tt, B, Zr, Fe, etc. However, the shape memory phase is a β phase (the rz phase also transforms, but it is brittle, so the presence of the T□ phase is difficult to process). In addition, complex heat treatment is required to create an α-10β phase structure for miniaturization, and it is practically useful because only the strain added to the β phase exhibits shape memory changes. In addition, in the method of dispersing intermetallic compounds by adding a third element, the transformation temperature, which is a shape memory characteristic value, greatly depends on the amounts of Al, Zn, and Mn, so it is difficult to disperse intermetallic compounds by adding a third element. If this occurs, these main components will be consumed, making it difficult to control the transformation temperature.

さらに金属間化合物が存在すると例えば押出組織に沿っ
た層状の分散は、素材に異方性を持たせてしまうなどの
種々の問題があった。
Furthermore, if an intermetallic compound is present, there are various problems such as, for example, layered dispersion along the extruded structure imparts anisotropy to the material.

〔発明が解決しようとする!11J!り本発明は上記の
問題について検討の結果、Cu−An−Zn−Mn合金
におけるβ相単相の結晶粒を微細化して冷間加工性なら
びに限界導入歪量を向上させて記憶特性を改善した銅系
形状記憶台9金を開発したものである。
[Invention tries to solve! 11J! As a result of studies on the above-mentioned problems, the present invention has improved memory properties by improving cold workability and critical introduced strain by refining the β-phase single-phase crystal grains in a Cu-An-Zn-Mn alloy. This is a copper-based shape memory base developed using 9-karat gold.

〔課題を解決するための手段右よび作用〕本発明は、A
j!2〜14wt%、Zn1〜10wt%、Mnl〜1
0wL%およびミツシュメタル0.005〜0.5wL
%を含み残部Cuからなる銅系形状記憶合金である。
[Means and effects for solving the problem] The present invention has the following features:
j! 2-14wt%, Zn1-10wt%, Mnl-1
0wL% and Mitsushmetal 0.005-0.5wL
% and the balance is Cu.

すなわち本発明は従来公知のCu−An!−Zn−Mn
の銅系形状記憶合金にミツシュメタルを微量添加して、
合金のβ相単相の結晶粒を微細化することにより合金の
結晶異方性が緩和し、この結果加工性が向上し、さらに
形状記憶処理量(限界導入歪量)を改善した銅系形状記
憶合金を得たものである。
That is, the present invention applies to conventionally known Cu-An! -Zn-Mn
By adding a small amount of Mitshu metal to the copper-based shape memory alloy,
By refining the crystal grains of the single beta phase of the alloy, the crystal anisotropy of the alloy is relaxed, resulting in improved workability and a copper-based shape that improves the amount of shape memory processing (limit amount of introduced strain). A memory alloy was obtained.

しかして本発明においてAl、Zn、Mnの量を上記の
ように限定したのは、A l % Z n s M n
の量はそれぞれが形状記憶合金の変態温度に影響をおよ
ぼすものであり、上記の範囲未満または、この範囲を越
えると必要とする変態温度の−150、℃〜300℃が
得られないからである。ベースとなるCu量は65〜8
5−t%の範囲が適当であり、Cu量が増えると変態温
度も上昇する。またミツシュメタルの量をQ、 OO5
〜0.5wt%としたのは、06005wt%未満では
結晶粒を微細化する効果が不充分であり、0.5wt%
を越えると鍛造などの加工の際に割れなどの欠陥が生じ
るからである。なお本発明において用いるミツシュメタ
ルは、Ceが主成分でLa、Pr、Ndなとの希土類元
素が99.7%以上含むものがよい。
However, in the present invention, the amount of Al, Zn, and Mn is limited as described above because Al % Z n s M n
Each amount affects the transformation temperature of the shape memory alloy, and if it is less than or exceeds the above range, the required transformation temperature of -150°C to 300°C cannot be obtained. . The base amount of Cu is 65-8
A range of 5-t% is suitable, and as the amount of Cu increases, the transformation temperature also increases. Also, the amount of Mitsushmetal is Q, OO5
The reason for setting the value to 0.5 wt% is that if it is less than 0.6005 wt%, the effect of refining crystal grains is insufficient, so 0.5 wt%
This is because if it exceeds this, defects such as cracks will occur during processing such as forging. It is preferable that the Mitsushi metal used in the present invention is mainly composed of Ce and contains 99.7% or more of rare earth elements such as La, Pr, and Nd.

本発明の合金は通常の銅系形状記憶合金のように鋳造後
、熱間鍛造、熱間押出、冷間加工などの加工方法により
加工でき、機械加工によりカップリングなどの所望の形
状に加工され、形状記憶処理が施されて製品化される。
The alloy of the present invention can be processed by hot forging, hot extrusion, cold working, etc. after casting, like ordinary copper-based shape memory alloys, and can be machined into desired shapes such as couplings. , shape memory treatment is applied to the product.

本発明は上記したようにCu−Al2−Zn−Mn系の
銅形状記憶合金に微量のミツシュメタルを添加すること
により合金のβ相単相の結晶粒を微細化して冷間加工性
ならびに限界導入歪量を向上させたもので、従来のα+
β相の微細化や、金属間化合物を微細分散する方法のよ
うに複雑な熱処理を必要とせず、また変態温度の管理も
容易である。
As described above, the present invention adds a small amount of Mitshu metal to a Cu-Al2-Zn-Mn based copper shape memory alloy to refine the crystal grains of the single β phase of the alloy, thereby improving cold workability and limiting introduced strain. This is an improved version of the conventional α+
This method does not require complicated heat treatment, unlike the method of finely distributing the β phase or finely dispersing intermetallic compounds, and the transformation temperature can be easily controlled.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

Aj!lO,0wt%、Mn5.0wt%、Zn4.0
wt%、残部Cuの母材およびこの母材にミツシュメタ
ルを0.005〜1.015wt%含有する第1表に示
す組成の直径250aφ、長さ500■の鋳塊を鋳造し
た。この鋳塊について鋳塊組織の特徴と結晶粒径を調べ
た。その結果を第1表に示す。
Aj! lO, 0wt%, Mn5.0wt%, Zn4.0
An ingot having a diameter of 250 aφ and a length of 500 cm and having a composition shown in Table 1 and containing a base material of 0.005 to 1.015 wt % of Mitshu metal in the base material with a balance of Cu and a balance of Cu was cast. The characteristics of the ingot structure and grain size of this ingot were investigated. The results are shown in Table 1.

第1表より明らかなようにミッシェメタル量の増加にし
たがって結晶粒の微細化効果が顕著になり0.1wt%
添加では無添加材の1/10程度になる。そして増加量
と共に微細化は進んだが1.Owt%程度のものは鋳塊
の内部に割れが生じる。
As is clear from Table 1, as the amount of Mische metal increases, the effect of refining the crystal grains becomes more significant.
When added, the amount becomes about 1/10 of that of the material without additives. As the amount increased, the miniaturization progressed, but 1. If the ingot is about Owt%, cracks occur inside the ingot.

次に上記の鋳塊を外削後700″Cに加熱し、直径30
閣に熱間押出を行ない空冷後機械加工により外径28■
φ、内径20■φ、厚さ5−のリング状試料を作製した
Next, the above ingot was heated to 700"C after external cutting, and the diameter was 30".
After hot extrusion and air cooling, the outer diameter is 28mm by machining.
A ring-shaped sample with a diameter of 20 mm and a thickness of 5 mm was prepared.

この試料について400℃で20分の焼鈍を行ない形状
記憶処理した。ここで初期に5%の拡大を付与し歪導入
試験を行なうと共に限界歪量を調べた。なお限界歪量は
最大値と平均値を求めた。
This sample was annealed at 400° C. for 20 minutes to undergo shape memory treatment. Here, a strain introduction test was performed by initially applying an expansion of 5%, and the critical amount of strain was investigated. The maximum value and average value of the critical strain amount were determined.

その結果を第2表に示す、また試験は各試料番号につき
10個宛行なった。
The results are shown in Table 2, and the test was conducted on 10 samples for each sample number.

第2表 第2表から明らかなようにミッシェメタル無添加材は再
結晶粒径が大きいため初期試験(5%歪)においても全
数割れが生じた。これに対しミッシェメタル添加材は平
均歪量で5%以上を示し、加工性が格段に向上している
ことが判る。しかし1wt%程度添加したものは最大歪
量は大きいものの低歪で破断したものが多く、平均値が
低い、この理由は鋳塊の内部割れが、ミクロ的に加工後
も残っていたためと考えられる。
As is clear from Table 2, since the Mische metal-free material had a large recrystallized grain size, cracking occurred in all the samples even in the initial test (5% strain). On the other hand, the Mische metal additive material showed an average strain of 5% or more, indicating that the workability was significantly improved. However, for the ingots with about 1wt% addition, although the maximum strain was large, many of them fractured at low strain, and the average value was low.The reason for this is thought to be that internal cracks in the ingot remained microscopically even after processing. .

以上の試験によりミツシュメタルをo、 o o s〜
0.5wt%含む材料は鋳造組織も健全であり、簡単な
工程により、微細再結晶粒を得ることが可能となり、こ
のため形状記憶処理により平均5%以上の歪が導入可能
となった。なお上記の試料を逆変態温度以上に加熱して
形状の復元量を測定したところ、いずれも100%の値
を示した。
Through the above tests, Mitsushmetal was evaluated as o, o o s~
The material containing 0.5 wt% has a sound casting structure, making it possible to obtain fine recrystallized grains through a simple process, and therefore making it possible to introduce an average strain of 5% or more through shape memory treatment. Note that when the above samples were heated to a temperature higher than the reverse transformation temperature and the amount of shape restoration was measured, all values showed a value of 100%.

〔効果〕〔effect〕

以上に説明したように本発明によれば、微細な結晶粒が
得られ合金の結晶異方性が緩和されて加工性が向上する
と共に限界導入歪量を改善した銅系形状記憶合金が得ら
れるもので工業上顕著な効果を奏するものである。
As explained above, according to the present invention, it is possible to obtain a copper-based shape memory alloy that has fine crystal grains, alleviates the crystal anisotropy of the alloy, improves workability, and improves the critical amount of introduced strain. It has a remarkable industrial effect.

Claims (1)

【特許請求の範囲】[Claims] Al2〜14wt%、Zn1〜10wt%、Mn1〜1
0wt%、およびミッシュメタル0.005〜0.5w
t%を含み残部Cuからなる銅系形状記憶合金。
Al2-14wt%, Zn1-10wt%, Mn1-1
0wt%, and misch metal 0.005~0.5w
A copper-based shape memory alloy containing t% and the balance being Cu.
JP4116689A 1989-02-21 1989-02-21 Copper-series shape memory alloy Pending JPH02221342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116689A JPH02221342A (en) 1989-02-21 1989-02-21 Copper-series shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116689A JPH02221342A (en) 1989-02-21 1989-02-21 Copper-series shape memory alloy

Publications (1)

Publication Number Publication Date
JPH02221342A true JPH02221342A (en) 1990-09-04

Family

ID=12600840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116689A Pending JPH02221342A (en) 1989-02-21 1989-02-21 Copper-series shape memory alloy

Country Status (1)

Country Link
JP (1) JPH02221342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058531C (en) * 1997-05-08 2000-11-15 华南理工大学 Beta brass shape-memory alloy and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058531C (en) * 1997-05-08 2000-11-15 华南理工大学 Beta brass shape-memory alloy and preparation method

Similar Documents

Publication Publication Date Title
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
US2915391A (en) Aluminum base alloy
US3827917A (en) Aluminum electrical conductor and process for making the same
US4288257A (en) Brass material and a process for the preparation thereof
US3843418A (en) Aluminum alloys for electrical conductors and method thereof
US4238249A (en) Process for the preparation of a copper-zinc material
US6059905A (en) Process for treating a copper-beryllium alloy
JP2534073B2 (en) Copper alloy for electronic component construction and method for producing the same
JPH02221342A (en) Copper-series shape memory alloy
JPH0457738B2 (en)
JP2956696B1 (en) High strength and high conductivity copper alloy and its processing method
CN110218903B (en) ESP continuous casting crystallizer narrow-surface copper plate base metal and machining method thereof, and ESP continuous casting crystallizer narrow-surface copper plate
JP3504917B2 (en) Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members
JPH0711363A (en) High strength and high conductivity copper alloy member and its production
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPS63243247A (en) High-strength aluminum-based composite conductive wire and its production
JPH01108339A (en) Aluminum alloy for piston combining heat resistance with high strength
JPH0557346B2 (en)
JPS63157843A (en) Manufacture of aluminum-alloy conductor
JPS5931585B2 (en) Manufacturing method of conductive aluminum alloy
US2137285A (en) Copper alloys
JPS6157380B2 (en)
JPH0256416B2 (en)
JP2000309835A (en) Brass material, production of brass material and method for working brass material
JPH0547613B2 (en)