JPH02221152A - Production of dielectric porcelain - Google Patents

Production of dielectric porcelain

Info

Publication number
JPH02221152A
JPH02221152A JP1041336A JP4133689A JPH02221152A JP H02221152 A JPH02221152 A JP H02221152A JP 1041336 A JP1041336 A JP 1041336A JP 4133689 A JP4133689 A JP 4133689A JP H02221152 A JPH02221152 A JP H02221152A
Authority
JP
Japan
Prior art keywords
oxide
compd
barium titanate
mol
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1041336A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kono
芳明 河野
Nobuyuki Wada
信之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1041336A priority Critical patent/JPH02221152A/en
Publication of JPH02221152A publication Critical patent/JPH02221152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain dielectric porcelain having high permittivity regardless of small grain size by adding both at least one or more kinds of the compd. of element selected from La, Ce, Nd, Pr and Sm and Zr compd. to barium titanate of a raw material and molding the mixture and calcining the molded body in the oxygen atmosphere. CONSTITUTION:Dielectric porcelain is obtained by adding both at least one or more kinds selected from among La compd., Ce compd., Nd compd., Pr compd., Sm compd. and Zr compd. to BaTiO3 of a raw material and molding this composition and calcining the molded body in the atmosphere contg. >=60% e.g. 95% O2 concn. The contents of respective components contained in this porcelain are regulated to 2.5-5.0mol% oxide of La-series elements and 0.5-5mol ZrO2 for 100 mol% BaTiO3. When this dielectric porcelain is utilized, a miniaturized laminated porcelain capacitor having large capacity is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタン酸バリウムを主体とする高誘電率で静
電容量の温度変化が少なく、かつ緻密な誘電体磁器を得
るための誘電体磁器の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to a dielectric material mainly made of barium titanate, which has a high dielectric constant, a small change in capacitance due to temperature, and a dense dielectric ceramic. This invention relates to a method for manufacturing porcelain.

(従来技術) 従来より磁器コンデンサの組成物としてチタン酸バリウ
ムを主体とするものが数多く知られている。チタン酸バ
リウムは120℃付近にキュリー点を持ち、10000
近い誘電率を示すが、チタン酸バリウムだけでは常温で
高誘電率には成り得ない。
(Prior Art) Many ceramic capacitor compositions based on barium titanate have been known. Barium titanate has a Curie point around 120°C, 10,000°C.
Although it shows a similar dielectric constant, barium titanate alone cannot achieve a high dielectric constant at room temperature.

このため、キュリー点を常温に移動させ、常温で高い誘
電率を持たせるためにシフター材と呼ばれるものが添加
される。このシフター材としては錫酸化物、ジルコン酸
化物、希土類がよく知られている。
For this reason, a so-called shifter material is added to move the Curie point to room temperature and provide a high dielectric constant at room temperature. Tin oxide, zircon oxide, and rare earth metals are well known as this shifter material.

ところで、最近の磁器コンデンサの小型化の傾向、特に
積層磁器コンデンサにおいては、磁器誘電体の厚みが1
0μm〜20μmと薄層化する傾向にある。また、磁器
のグレインも信頼性の面から小さいことが望まれており
、グレインが小さいチタン酸バリウムを主体とする磁器
組成物として、特願昭56−18059号、特願昭57
−16809号、特願昭57−105919.特願昭5
7−196469号などが提案されている。これらのチ
タン酸バリウムを主体とする磁器組成物は、チタン酸バ
リウムに酸化セリウムを添加するか、酸化セリウムとジ
ルコン酸バリウムを添加するか、あるいは酸化ネオジウ
ムを添加し、空気が流通する雰囲気下で焼成することに
よってグレインサイズの小さいチタン酸バリウムを得る
ものであった。
By the way, the recent trend of miniaturization of ceramic capacitors, especially in multilayer ceramic capacitors, is that the thickness of the ceramic dielectric is 1
There is a tendency for the layer to become thinner, with a thickness of 0 μm to 20 μm. In addition, it is desired that the grain of porcelain be small from the viewpoint of reliability, and porcelain compositions based on barium titanate with small grains are proposed in Japanese Patent Application No. 56-18059 and Japanese Patent Application No. 57.
-16809, patent application No. 57-105919. Special request 1977
No. 7-196469 has been proposed. These barium titanate-based porcelain compositions are made by adding cerium oxide to barium titanate, adding cerium oxide and barium zirconate, or adding neodymium oxide, and creating them in an atmosphere with air circulation. By firing, barium titanate with small grain size was obtained.

(従来技術の問題点) しかしながら、上述した誘電体磁器の製造方法では、誘
電率は常温で最大10000前後であり、グレインの大
きなチタン酸バリウム系に比べると、誘電率が低く、積
層磁器コンデンサを小型化した場合、大きな静電容量を
得ることが困難であった。
(Problems with the prior art) However, in the method for manufacturing dielectric ceramic described above, the dielectric constant is around 10,000 at room temperature, which is lower than that of barium titanate with large grains, making it difficult to use multilayer ceramic capacitors. When miniaturized, it has been difficult to obtain large capacitance.

また、粒界の変化が特性に大きく左右されるものと考え
られることから、グレインサイズが小さいチタン酸バリ
ウムは、グレインサイズが大きく高誘電率のチタン酸バ
リウムに比べて粒界面積が大きくなるので、誘電率が必
然的に低下した。
In addition, since changes in grain boundaries are thought to be largely influenced by properties, barium titanate with a small grain size has a larger grain boundary area than barium titanate with a large grain size and high dielectric constant. , the dielectric constant inevitably decreased.

そこで本発明は、上述した問題点を解決しようとしたも
のであり、グレインサイズが小さいにもかかわらず、高
い誘電率を有することができる誘電体磁器の製造方法を
提供することを目的とするものである。
Therefore, the present invention is an attempt to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing dielectric ceramic that can have a high dielectric constant despite having a small grain size. It is.

(問題点を解決するための手段) 本発明の誘電体磁器の製造方法は、チタン酸バリウム1
00モル%に対して酸化ランタン、酸化セリウム、酸化
ネオジウム、酸化プラセオジウム。
(Means for Solving the Problems) The method for manufacturing dielectric porcelain of the present invention includes barium titanate 1
Lanthanum oxide, cerium oxide, neodymium oxide, praseodymium oxide relative to 00 mol%.

酸化サマリウムから選ばれた少なくとも1種以上の酸化
物を2.5モル%〜5.0モル%、および酸化ジルコニ
ウムを0.5モル%〜5.0モル%含有してなる誘電体
磁器を得るに際し、 チタン酸バリウム原料に対してランタン化合物。
Obtain dielectric ceramic containing 2.5 mol% to 5.0 mol% of at least one oxide selected from samarium oxide and 0.5 mol% to 5.0 mol% of zirconium oxide. In this case, lanthanum compound is used for barium titanate raw material.

セリウム化合物、ネオジウム化合物、プラセオジウム化
合物、サマリウム化合物から選ばれた少なくとも1種以
上、およびジルコニウム化合物を添加した組成物からな
る成形体を酸素濃度60%以上の雰囲気で焼成すること
を特徴とするものである。
It is characterized by firing a molded body made of a composition to which at least one selected from cerium compounds, neodymium compounds, praseodymium compounds, and samarium compounds and a zirconium compound are added in an atmosphere with an oxygen concentration of 60% or more. be.

(実施例) まず、炭酸バリウムと酸化チタンとをそのモル比が1:
1となるように秤量し、ジルコニア玉石を用いたボール
ミルにて16時時間式混合を行い混合物を得た。そして
、この得られた混合物中の水分を蒸発した後、1150
℃で2時間保持して仮焼し、再びボールミルにて平均粒
径が2μm以下になるまで粉砕してチタン酸バリウムの
微小粉末を得た。
(Example) First, barium carbonate and titanium oxide were mixed in a molar ratio of 1:
1, and mixed for 16 hours in a ball mill using zirconia cobblestones to obtain a mixture. After evaporating the water in the obtained mixture, 1150
The mixture was calcined by being held at ℃ for 2 hours, and then ground again in a ball mill until the average particle size became 2 μm or less to obtain a fine powder of barium titanate.

次に、得られたチタン酸バリウムの微小粉末に対して、
第1表に示すような割合で酸化ランタン。
Next, for the obtained barium titanate fine powder,
Lanthanum oxide in the proportions shown in Table 1.

酸化セリウム、酸化プラセオジウム、酸化ネオジウム、
酸化サマリウム、酸化ジルコニア、ジルコン酸バリウム
を選択的に添加して秤量し、酢酸ビニルバインダーを加
え16時時間式混合した。なお、この際、鉱化剤として
酸化チタン、酸化珪素、酸化アルミニウム、炭酸マンガ
ンを選択的に添加した。
Cerium oxide, praseodymium oxide, neodymium oxide,
Samarium oxide, zirconia oxide, and barium zirconate were selectively added and weighed, and a vinyl acetate binder was added and mixed for 16 hours. At this time, titanium oxide, silicon oxide, aluminum oxide, and manganese carbonate were selectively added as mineralizing agents.

次に、これを乾燥後造粒した後、2000Kg/cm2
の圧力でプレス成形し、直径10mm、厚さ1mmの円
板状の成形体を得た。そして、得られた成形体を第1表
に示すような焼成条件で焼成し、誘電体磁器を得た。な
お、焼成条件の焼成パターンA、BおよびCは、次の通
りである。焼成パターンAは、第1図(A>に示すよう
に、大気中で第1表に示した焼成温度まで200℃/1
時間の割合で昇温し、その焼成温度で2時間保持した後
、室温まで200℃/1時間の割合で冷却するものであ
る。焼成パターンBは、第2図(B)に示すように、第
1表に示した酸素濃度の酸素雰囲気下で、第1表に示し
た焼成温度まで200℃/1時間の割合で昇温し、その
焼成温度で2時間保持した後、室温まで200℃/1時
間の割合で冷却するものである。焼成パターンCは、第
1図(C)に示すように、大気中で800℃まで200
℃/1時間の割合で昇温し、さらに焼成雰囲気を大気中
から第1表に示した酸素濃度の酸素雰囲気下に変えて、
800℃から第1表に示した焼成温度まで同じ割合で昇
温する。そして、酸素雰囲気下のままその焼成温度で2
時間保持した後、800℃まで200℃/1時間の割合
で冷却し、再び焼成雰囲気を大気中に戻して室温まで同
じ割合で冷却するものである。
Next, after drying and granulating this, 2000Kg/cm2
Press molding was carried out at a pressure of 10 mm to obtain a disc-shaped molded body with a diameter of 10 mm and a thickness of 1 mm. Then, the obtained molded body was fired under the firing conditions shown in Table 1 to obtain dielectric porcelain. Note that the firing patterns A, B, and C of the firing conditions are as follows. Firing pattern A is as shown in Figure 1 (A>).
The temperature is raised at a rate of 200° C./hour, held at that firing temperature for 2 hours, and then cooled to room temperature at a rate of 200° C./hour. Firing pattern B is as shown in Figure 2 (B), in which the temperature is raised to the firing temperature shown in Table 1 at a rate of 200°C/1 hour in an oxygen atmosphere with the oxygen concentration shown in Table 1. After holding the firing temperature for 2 hours, it is cooled to room temperature at a rate of 200° C./hour. Firing pattern C is as shown in Figure 1 (C).
The temperature was raised at a rate of °C/1 hour, and the firing atmosphere was changed from air to an oxygen atmosphere with an oxygen concentration shown in Table 1.
The temperature is increased from 800° C. to the firing temperature shown in Table 1 at the same rate. Then, under the oxygen atmosphere, at the same firing temperature,
After being maintained for a certain period of time, it is cooled down to 800° C. at a rate of 200° C./hour, and the firing atmosphere is returned to the atmosphere and cooled down to room temperature at the same rate.

次に、得られた円板状の誘電体磁器の両生表面に焼付け
によって銀電極を形成し、磁器コンデンサの試料を得た
。そして、得られた磁器コンデンサについて、室温での
誘電率、誘電損失および容量の温度変化率を測定し、そ
の結果を第2表に示した。なお、誘電率および誘電損失
については周波数をIKHzとして測定を行い、また、
容量の温度変化率については20℃での容量を基準とし
て85℃での容量を測定した。
Next, a silver electrode was formed on the amphiboid surface of the obtained disc-shaped dielectric ceramic by baking to obtain a sample of a ceramic capacitor. Then, the dielectric constant, dielectric loss, and rate of change of capacitance with temperature at room temperature were measured for the obtained ceramic capacitor, and the results are shown in Table 2. Note that the dielectric constant and dielectric loss were measured at a frequency of IKHz, and
Regarding the rate of change in capacity with temperature, the capacity at 85°C was measured based on the capacity at 20°C.

上述した実施例において、チタン酸バリウムに添加する
化合物として酸化物を用いたものを示したが、酸化物に
限定するものではなく、次に示すような化合物を用いて
もよい。
In the above-described embodiments, an oxide was used as a compound added to barium titanate, but the compound is not limited to an oxide, and the following compounds may also be used.

ランタン化合物−La2CO3,La([03) 2.
La (C204) 3セリウム化合物・CeCO3,
Ce(803)3.Ce(OH)4ネオジウム化合物・
・・Nd (DH) 3tドd(NO3)3゜Nd2(
CO3)syNd2(C20a)3プラセオジウム化合
物−Pr2((:03)3tPr(NO3)3セマリウ
ム化合物−Sm2(C20a)3tsm(NO3)3ジ
ルコニウム化合物−=−BaZr03. (:aZr0
3. ZrCl4゜ZrO(NO3)2.Zr0(CH
3COO)2(以下、余白) 第 表 );叩は仝兄明の範囲外 第1表および第2表から明らかなように、本発明の誘電
体磁器の製造方法によって作製された試料(試料番号4
〜13)では、焼結体のグレインは1〜31tmと小さ
く、しかも13000以上の高い誘電率を示した。また
、85℃での容量の温度変化率は一80%以内であり、
JIS規格の温度特性であるF特性(20℃における静
電容量を基準として、−25℃〜+85℃における容量
の変化率が一80%〜+30%を越えない。)を満足し
た。
Lanthanum compound - La2CO3, La ([03) 2.
La (C204) 3 cerium compound・CeCO3,
Ce(803)3. Ce(OH)4 neodymium compound/
・・Nd (DH) 3td(NO3) 3°Nd2(
CO3)syNd2(C20a)3Praseodymium compound-Pr2((:03)3tPr(NO3)3Semarium compound-Sm2(C20a)3tsm(NO3)3Zirconium compound-=-BaZr03.(:aZr0
3. ZrCl4゜ZrO(NO3)2. Zr0(CH
3COO) 2 (hereinafter referred to as blank space Table 1); beating is outside the scope of the author's work.As is clear from Tables 1 and 2, the sample (sample number 4
-13), the grains of the sintered bodies were as small as 1 to 31 tm, and they exhibited high dielectric constants of 13,000 or more. In addition, the temperature change rate of capacity at 85°C is within -80%,
It satisfied the F characteristic, which is the temperature characteristic of the JIS standard (the rate of change in capacitance from -25°C to +85°C does not exceed 180% to +30%, based on the capacitance at 20°C).

また、本発明の範囲外である試N(試料番号1〜3およ
び試料番号14〜18)ついては、次のようなことが理
解できる。
Furthermore, regarding Sample N (sample numbers 1 to 3 and sample numbers 14 to 18), which are outside the scope of the present invention, the following can be understood.

(イ)試料番号1および2では添加した酸化ランタン、
酸化セリウム、酸化ネオジウム、酸化サマリウムの添加
量が少なく室温での誘電率が低くなる。
(b) In sample numbers 1 and 2, added lanthanum oxide,
Since the amount of cerium oxide, neodymium oxide, and samarium oxide added is small, the dielectric constant at room temperature is low.

(ロ)試料番号3では酸化ジルコニアの添加量が少なく
容量の温度変化率が一80%を越えてしまいJIS規格
の・温度特性であるF特性を満足させることができなく
なる。
(b) In sample No. 3, the amount of zirconia oxide added is small and the rate of change in capacity with temperature exceeds 180%, making it impossible to satisfy the F characteristic, which is the temperature characteristic of the JIS standard.

(ハ)試料番号14および15では、酸化セリウム。(c) For sample numbers 14 and 15, cerium oxide.

酸化ネオジウム、酸化サマリウムの添加量が多いために
、キュリー点が低温に移動し室温での誘電率が低くなる
Because the amount of neodymium oxide and samarium oxide added is large, the Curie point moves to a lower temperature and the dielectric constant at room temperature becomes lower.

(ニ)試料番号16〜18では焼成中の酸素濃度が低く
、誘電率が低くなる。
(d) In sample numbers 16 to 18, the oxygen concentration during firing was low and the dielectric constant was low.

(発明の効果) 以上説明したように、本発明の誘電体磁器の製造方法に
よれば、グレインサイズが小さいにもかかわらず、高い
誘電率を有する誘電体磁器を得ることができる。
(Effects of the Invention) As explained above, according to the method for manufacturing dielectric ceramic of the present invention, dielectric ceramic having a high dielectric constant can be obtained despite having a small grain size.

また、このような誘電体磁器を用いれば、従来の積層磁
器コンデンサよりも小型で大容量の積層磁器コンデンサ
を得ることができる。
Further, by using such dielectric ceramic, it is possible to obtain a multilayer ceramic capacitor that is smaller and has a larger capacity than conventional multilayer ceramic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)は焼成パターン(焼成雰囲気およ
び温度と時間との関係)を示す説明図である。 第 (△) (已) 口
FIGS. 1A to 1C are explanatory diagrams showing firing patterns (the relationship between firing atmosphere, temperature, and time). No. (△) (已) Mouth

Claims (1)

【特許請求の範囲】[Claims]  チタン酸バリウム100モル%に対して酸化ランタン
,酸化セリウム,酸化ネオジウム,酸化プラセオジウム
,酸化セマリウムから選ばれた少なくとも1種以上の酸
化物を2.5モル%〜5.0モル%、および酸化ジルコ
ニウムを0.5モル%〜5.0モル%含有してなる誘電
体磁器を得るに際し、チタン酸バリウム原料に対してラ
ンタン化合物,セリウム化合物,ネオジウム化合物,プ
ラセオジウム化合物,サマリウム化合物から選ばれた少
なくとも1種以上、およびジルコニウム化合物を添加し
た組成物からなる成形体を酸素濃度60%以上の雰囲気
で焼成することを特徴とする誘電体磁器の製造方法。
Based on 100 mol% of barium titanate, 2.5 mol% to 5.0 mol% of at least one oxide selected from lanthanum oxide, cerium oxide, neodymium oxide, praseodymium oxide, and cemarium oxide, and zirconium oxide When obtaining dielectric ceramic containing 0.5 mol% to 5.0 mol% of barium titanate, at least one compound selected from lanthanum compounds, cerium compounds, neodymium compounds, praseodymium compounds, and samarium compounds is added to the barium titanate raw material. A method for producing dielectric porcelain, which comprises firing a molded body made of a composition containing a zirconium compound or more and a zirconium compound in an atmosphere with an oxygen concentration of 60% or more.
JP1041336A 1989-02-21 1989-02-21 Production of dielectric porcelain Pending JPH02221152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041336A JPH02221152A (en) 1989-02-21 1989-02-21 Production of dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1041336A JPH02221152A (en) 1989-02-21 1989-02-21 Production of dielectric porcelain

Publications (1)

Publication Number Publication Date
JPH02221152A true JPH02221152A (en) 1990-09-04

Family

ID=12605679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041336A Pending JPH02221152A (en) 1989-02-21 1989-02-21 Production of dielectric porcelain

Country Status (1)

Country Link
JP (1) JPH02221152A (en)

Similar Documents

Publication Publication Date Title
US4987107A (en) Ceramic composition for reduction-reoxidation type semiconductive capacitor
EP0630032B1 (en) Non-reducible dielectric ceramic composition
JPH0232227B2 (en)
JP2919360B2 (en) Dielectric porcelain composition
JPH02221152A (en) Production of dielectric porcelain
US2966420A (en) Ceramic dielectric process
GB2210871A (en) Dielectric ceramic composition
JPS6348826B2 (en)
KR100268702B1 (en) compound of dielectric ceramic
JPS5815078A (en) High dielectric constant ceramic dielectric composition
JPH02183905A (en) Dielectric ceramic composite
JPH05213666A (en) Dielectric porcelain composition and its production
JPS6217806B2 (en)
JPH0987014A (en) Production of high dielectric constant porcelain composition
JPH01175715A (en) Porcelain composition for reduction re-oxidation type semiconductor capacitor
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JPH02157155A (en) Production of dielectric ceramics composition of high permittivity
JPH0562519A (en) Dielectric ceramic composition
JPH0582341B2 (en)
JPS6230482B2 (en)
JPH031265B2 (en)
JP2000103676A (en) Dielectric ceramic composition
JPH05213668A (en) Novel dielectric porcelain composition
JPH05314816A (en) Dielectric ceramic composition, and ceramic capacitor and thick film capacitor using same
JPH04351804A (en) Dielectric porcelain composite, and ceramic capacitor and thick film capacitor using said composite