JPH02219481A - Potation control circuit for rotating body - Google Patents

Potation control circuit for rotating body

Info

Publication number
JPH02219481A
JPH02219481A JP1037149A JP3714989A JPH02219481A JP H02219481 A JPH02219481 A JP H02219481A JP 1037149 A JP1037149 A JP 1037149A JP 3714989 A JP3714989 A JP 3714989A JP H02219481 A JPH02219481 A JP H02219481A
Authority
JP
Japan
Prior art keywords
speed
signal
circuit
pulse
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1037149A
Other languages
Japanese (ja)
Inventor
Akitake Takizawa
聡毅 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1037149A priority Critical patent/JPH02219481A/en
Publication of JPH02219481A publication Critical patent/JPH02219481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

PURPOSE:To eliminate a discretization phenomenon of speed data at the time of a low speed and a pulse vanishing phenomenon at the time of a high speed by decreasing the multiple of a multiplication signal from 4 to 1 in the range where a control according to a quadrupling signal exceeds a possible speed. CONSTITUTION:A comparator 13 receives a signal 19 being actual value data of a speed, judges whether said data is more of less than a certain threshold value, and outputs a signal 15 being 1-bit information. A latch circuit 12 clocks the signal 15 from said comparator 13 by a sampling pulse signal 17 and sends its output signal 16 to a speed detector 7, a position transducer 8 and a selector circuit 9. Said selector circuit 9 receives the signal 16 and outputs the output pulse of a rotary concorder 5 selectively to a quadrupling circuit 10 or a multiplying circuit 11. That is, when the actual value data of said speed is larger than the change-over speed of the multiple of a multiplied signal, said monoploid circuit 11 operates to input said data to said speed detector 7 and position transducer 8 to perform the operation of said speed and position.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、ロータリエンコーダを用いて回転体の回転を
制御する制御回路に関する。
The present invention relates to a control circuit that controls the rotation of a rotating body using a rotary encoder.

【従来の技術】[Conventional technology]

回転体の速度や位置を検出するのにロータリエンコーダ
を用いる方法が知られて7.いる。従来のロークリエン
コーダを用いたサーボモータの制御回路は第3図のよう
な構成である。図において、lはAPC(位置調節器)
、2はASR(速度調節器)、3はACR(電流調節器
)系、4はサーボモータ、5はサーボモータ4の回転軸
に取り付けられたロークリエンコーダ、6はロータリエ
ンコーダ5から出力するパルス信号を波形整形するパル
ス整形器、7は速度検出部、8は位置検出部である。 ロークリエンコーダ5からは第4図に示すようなほぼ9
0@の位相差をもったA相パルスとB相パルスの2信号
が出力される。両信号はデユーティ比がほぼ50%で周
波数はサーボモータ4の回転数に比例するので、このパ
ルスの周波数がわかればサーボモータ4の回転速度がわ
かり、またその積分によりサーボモータの位置もわかる
わけである。 ところで、一般に周波数の検出方式として次の2方法が
ある。 (イ) あるサンプリング時間内のパルス数をカウント
し、ディジタル処理によって周波数を検出する方法。 (II)  F/V回路を通して、アナログ処理によっ
て周波数を検出する方法。 (イ)、(0)いずれの方式も検出の分解能を上げるた
めにA相、B相パルスを第5図に示すように各パルスの
エツジで1パルスとなるようなパルス整形後、信号(4
逓栢信号)に変換している。この変換を行うのが第3図
のパルス整形回路6である。 すなわち、(イ)の方式においてはこの4逓倍信号のパ
ルス数をカウントして周波数を検出し、(TI)の方式
においてはこの信号をF/V回路に通し、電圧相当に変
換して周波数を検出している。
7. A method of using a rotary encoder to detect the speed and position of a rotating body is known. There is. A control circuit for a servo motor using a conventional row encoder has a configuration as shown in FIG. In the figure, l is APC (position adjuster)
, 2 is an ASR (speed regulator), 3 is an ACR (current regulator) system, 4 is a servo motor, 5 is a rotary encoder attached to the rotating shaft of the servo motor 4, and 6 is a pulse output from the rotary encoder 5. A pulse shaper shapes the waveform of the signal, 7 is a speed detection section, and 8 is a position detection section. From the low-resolution encoder 5, approximately 9 as shown in Fig. 4 is output.
Two signals, an A-phase pulse and a B-phase pulse, with a phase difference of 0@ are output. The duty ratio of both signals is approximately 50%, and the frequency is proportional to the rotation speed of the servo motor 4, so if you know the frequency of this pulse, you can know the rotation speed of the servo motor 4, and by integrating it, you can also know the position of the servo motor. It is. By the way, there are generally two methods for detecting frequencies: (b) A method of counting the number of pulses within a certain sampling time and detecting the frequency through digital processing. (II) A method of detecting the frequency by analog processing through an F/V circuit. In both methods (a) and (0), in order to increase the detection resolution, the A-phase and B-phase pulses are shaped into one pulse at the edge of each pulse as shown in Figure 5, and then the signal (4
(transfer signal). The pulse shaping circuit 6 shown in FIG. 3 performs this conversion. That is, in the method (A), the frequency is detected by counting the number of pulses of this quadrupled signal, and in the method (TI), this signal is passed through an F/V circuit, converted into a voltage equivalent, and the frequency is detected. Detected.

【発明が解決しようとする課題】[Problem to be solved by the invention]

さて、従来の制御方式で回転体を高精度に制御するには
、ロークリエンコーダの出力パルス数を多くする必要が
あるが、多パルスのエンコーダを使用しかつ高速運転を
行うと第5図に示した4逓倍信号のパルスとパルスがつ
ながる現象が生じる。 この現象が起きる原因として次のことが考えられる。 (イ) A相、B相パルスのエツジからエツジまでの時間(第5
図中のXi)が、4逓倍信号のパルス幅(第5図中のX
2)に比べて等しいか短かいとき (D)  ロータリエンコーダから制御回路までの伝送
路が長距離に及んだとき、伝送路が分布定数回路となり
、A相パルスとB相パルスの位相差が90°より大きく
ずれた場合(例えば第6図に示すようになりx3がX2
に比べ等しいか短かいとき) (ハ) ロークリエンコーダ自体の精度が悪くてデユー
ティ比50%、位相差90°のA相、B相パルスを出力
しないとき。 この現象が生じると、モータの制御が不可能となるため
、モータの最高回転数がこれにより自動的に制約される
。 またこの現象を解消するために第3図に示すパルス整形
器6の逓倍数を下げると、4逓倍のときに較べ高速運転
が可能とはなるが、速度検出の分解能が低下するため、
低速時に速度情報が離散化され回転むらが大きくなると
いう問題がある。
Now, in order to control the rotating body with high precision using the conventional control method, it is necessary to increase the number of output pulses of the rotary encoder, but if a multi-pulse encoder is used and high-speed operation is performed, as shown in Figure 5. A phenomenon occurs in which the pulses of the quadrupled signal shown in the diagram are connected. Possible causes of this phenomenon are as follows. (b) Time from edge to edge of A-phase and B-phase pulses (5th
Xi) in the figure is the pulse width of the quadruple signal (X in Figure 5).
(D) When the transmission path from the rotary encoder to the control circuit extends over a long distance, the transmission path becomes a distributed constant circuit, and the phase difference between the A-phase pulse and the B-phase pulse is equal to or shorter than 2). If the deviation is greater than 90° (for example, as shown in Figure 6, x3 becomes X2
(C) When the accuracy of the low-resolution encoder itself is poor and it does not output A-phase and B-phase pulses with a duty ratio of 50% and a phase difference of 90°. When this phenomenon occurs, it becomes impossible to control the motor, and the maximum rotational speed of the motor is thereby automatically limited. Furthermore, in order to eliminate this phenomenon, if the multiplier of the pulse shaper 6 shown in FIG.
There is a problem in that speed information is discretized at low speeds and rotational unevenness increases.

【課題を解決するための手段】[Means to solve the problem]

この課題を解決するために、4逓倍信号による制御が可
能な速度範囲においてはA相、B相パルスを4逓倍し、
その速度を超えた範囲においては逓倍数を第7図に示す
ように1逓倍信号に下げるように自動的に切替えてモー
タの制御を行うようにしたものである。
In order to solve this problem, the A-phase and B-phase pulses are multiplied by 4 in the speed range that can be controlled by a 4-multiply signal.
In a range exceeding that speed, the motor is controlled by automatically switching the multiplier to a one-multiply signal as shown in FIG.

【作 用】[For use]

ロークリエンコーダの出力パルスであるA相、B相パル
スの逓倍数がある速度を境に切替わるので、低速時にお
ける速度データの離散化現象や1、高速時におけるパル
ス消滅現象が解消される。
Since the multipliers of the A-phase and B-phase pulses, which are the output pulses of the low-resolution encoder, are switched at a certain speed, the phenomenon of discretization of speed data at low speeds and the pulse disappearance phenomenon at high speeds are eliminated.

【実施例】【Example】

以下に本発明による回転制御回路の一実施例を図面によ
り説明する。ただし本実施例の速度検出部および位相検
出部はデジタル処理を行うものとする。 第1図は本発明による回転制御回路を組み込んだサーボ
モータの制御回路のブロック線図であり、図中第3図と
同じ参照数字は同じ構成部分を示す。 第2図は第1図の制御ブロック回路の動作を示す信号の
タイミングチャートである。 コンパレータ13は信号19(速度の実際値データ)を
受けとり、そのデータがあるしきい値(逓倍数の切替わ
り点で、第2図に破線りで示した値)以上または以下で
あるかを判断し、1bitの情報(信号15)を出力す
る。ラッチ回路12はコンパレータ13からの信号15
をサンプリングパルス (信号17)でクロッキングを
行いその出力(信号16)を速度検出部7、位置検出部
8、セレクタ回路9に送る。セレクタ回路9は信号16
を受はロークリコンコーダ5の出力パルス(人相、B相
パルス)を4逓倍回路10又は1逓倍回路11に選択的
に出力する。すなわち速度の実際値データが逓倍数の切
替わり速度(すなわち上述したしきい値D)より小さけ
れば4逓倍回路10が動作して従来と同様の制御演算を
行ない、また大きいときはl逓倍回路11が動作して速
度検出部7および位置検出部8に入力し速度および位置
演算を行う。またラッチ回路12は速度検出部7および
位置検出部8がサンプリング制御を行っているためサン
プリングパルスと同期をとるために挿入されている。
An embodiment of the rotation control circuit according to the present invention will be described below with reference to the drawings. However, it is assumed that the speed detection section and the phase detection section of this embodiment perform digital processing. FIG. 1 is a block diagram of a control circuit for a servo motor incorporating a rotation control circuit according to the present invention, in which the same reference numerals as in FIG. 3 indicate the same components. FIG. 2 is a signal timing chart showing the operation of the control block circuit of FIG. 1. Comparator 13 receives signal 19 (actual value data of speed) and determines whether the data is above or below a certain threshold (the value indicated by the broken line in Figure 2 at the switching point of the multiplier). and outputs 1-bit information (signal 15). The latch circuit 12 receives the signal 15 from the comparator 13.
is clocked using a sampling pulse (signal 17) and its output (signal 16) is sent to the speed detection section 7, position detection section 8, and selector circuit 9. Selector circuit 9 receives signal 16
The receiver selectively outputs the output pulses (human phase, B-phase pulses) of the low reconcoder 5 to a quadrupling circuit 10 or a one-multiplying circuit 11. That is, if the actual value data of the speed is smaller than the switching speed of the multiplier (that is, the above-mentioned threshold value D), the 4 multiplier circuit 10 operates and performs the same control calculation as the conventional one, and when it is larger, the 1 multiplier circuit 11 operates. operates and inputs the signal to the speed detection section 7 and position detection section 8 to calculate speed and position. Furthermore, the latch circuit 12 is inserted to synchronize with the sampling pulse since the speed detection section 7 and the position detection section 8 perform sampling control.

【発明の効果】【Effect of the invention】

以上説明したように、本発明によれば、多パルスのロー
クリエンコーダで広範囲にわたって回転むらのない速度
制御、特に高速運転が可能となる。
As described above, according to the present invention, it is possible to control speed over a wide range without rotational unevenness, especially high-speed operation, using a multi-pulse low-return encoder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による回転体の回転制御回路の一実施例
のブロック線図、第2図は第1図に示した本発明の実施
例のタイミングチャート、第3図は従来のサーボモータ
の制御回路のブロック線図、第4図はロータリエンコー
ダの出力パルスのタイミングチャート、第5図はパルス
整形後の信号(4週倍信号)のタイミングチャート、第
6図は高速運転時におけるロークリエンコーダの出力で
ある人相、B相パルスのタイミングチャート、第7図は
l逓倍信号のタイミングチャートである。 4−モータ、5−・−ロータリエンコーダ、7・−・速
度検出部、8−位置検出部、9−・セレクタ回路、10
−4逓倍回路、11−1逓倍回路、12− ラッチ回路
、13・−・コンパレータ。
FIG. 1 is a block diagram of an embodiment of a rotation control circuit for a rotating body according to the present invention, FIG. 2 is a timing chart of the embodiment of the present invention shown in FIG. 1, and FIG. 3 is a diagram of a conventional servo motor. Block diagram of the control circuit, Figure 4 is the timing chart of the output pulse of the rotary encoder, Figure 5 is the timing chart of the signal after pulse shaping (4-week signal), Figure 6 is the low reencoder during high-speed operation. FIG. 7 is a timing chart of the human phase and B-phase pulses which are the outputs of the 1-multiple signal. 4-motor, 5--rotary encoder, 7--speed detection section, 8-position detection section, 9--selector circuit, 10
-4 multiplier circuit, 11-1 multiplier circuit, 12-latch circuit, 13-- comparator.

Claims (1)

【特許請求の範囲】[Claims] 1)回転体の回転にともなってパルス信号を出力するロ
ータリエンコーダと、前記パルス信号に基づいて検出し
た回転体の速度に応じて前記パルス信号の逓倍数を切換
える切換回路とを有することを特徴とする回転体の回転
制御回路。
1) A rotary encoder that outputs a pulse signal as the rotating body rotates, and a switching circuit that switches the multiplier of the pulse signal according to the speed of the rotating body detected based on the pulse signal. A rotation control circuit for a rotating body.
JP1037149A 1989-02-16 1989-02-16 Potation control circuit for rotating body Pending JPH02219481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1037149A JPH02219481A (en) 1989-02-16 1989-02-16 Potation control circuit for rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1037149A JPH02219481A (en) 1989-02-16 1989-02-16 Potation control circuit for rotating body

Publications (1)

Publication Number Publication Date
JPH02219481A true JPH02219481A (en) 1990-09-03

Family

ID=12489556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1037149A Pending JPH02219481A (en) 1989-02-16 1989-02-16 Potation control circuit for rotating body

Country Status (1)

Country Link
JP (1) JPH02219481A (en)

Similar Documents

Publication Publication Date Title
EP0358989B1 (en) Position or speed sensing apparatus
US4228396A (en) Electronic tachometer and combined brushless motor commutation and tachometer system
JPS62162968A (en) Speed detecting device
EP0162268A1 (en) Position/speed detection method and apparatus
EP0078854A1 (en) Speed detecting device
US4994723A (en) Digital servo system for controlling rotational speed of rotary body
JPH02219481A (en) Potation control circuit for rotating body
US4599600A (en) Conversion of quadrature signals into counter control pulses
KR100384173B1 (en) Apparatus and method for high resolution processing of encoder signal for a motor control
US4689539A (en) Speed detecting device
RU2115229C1 (en) Analog-to-digital angle converter
KR890009062A (en) Digital Slip Frequency Generator and Sleep Frequency Determination
JP2941790B1 (en) Pulse counter
JP4867534B2 (en) Motor speed detection device
KR0185917B1 (en) Capstan motor speed control device
JPS5923196B2 (en) Digital servo system
JPH01314016A (en) Input signal converting method for digital servo system
JPH0716555B2 (en) Sewing machine controller
JPH0552589A (en) Absolute encoder device
SU1670370A1 (en) Device for measuring radial gap in turbomachines
KR19990001541A (en) Speed detection method and device
SU1215027A1 (en) Method of converting rotational speed and arrangement for accomplishment of same
JPH05322909A (en) Rotating-speed detecting apparatus
SU618719A1 (en) Position drive braking device
SU655070A1 (en) Method and apparatus for discrete differentiatpion of electric signals