JP4867534B2 - Motor speed detection device - Google Patents

Motor speed detection device Download PDF

Info

Publication number
JP4867534B2
JP4867534B2 JP2006245183A JP2006245183A JP4867534B2 JP 4867534 B2 JP4867534 B2 JP 4867534B2 JP 2006245183 A JP2006245183 A JP 2006245183A JP 2006245183 A JP2006245183 A JP 2006245183A JP 4867534 B2 JP4867534 B2 JP 4867534B2
Authority
JP
Japan
Prior art keywords
phase
speed
pulse
motor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006245183A
Other languages
Japanese (ja)
Other versions
JP2008064699A (en
Inventor
和也 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2006245183A priority Critical patent/JP4867534B2/en
Publication of JP2008064699A publication Critical patent/JP2008064699A/en
Application granted granted Critical
Publication of JP4867534B2 publication Critical patent/JP4867534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Electric Motors In General (AREA)

Description

本発明は、モータの極低速域から高速域までの広範囲可変速制御のための速度検出装置に関する。   The present invention relates to a speed detection apparatus for wide-range variable speed control from a very low speed range to a high speed range of a motor.

図4は、モータの可変速制御装置の構成例を示す。電力変換器1は電圧と周波数を制御したPWM出力でモータ2を可変速駆動する。速度制御部3は速度指令とモータ2の速度検出値との偏差を比例積分(PI)演算し、この出力を電流指令とする電流制御部4は電力変換器1の出力電流検出値との偏差の比例積分演算をして電力変換器1の出力電圧・周波数制御信号を得る。   FIG. 4 shows a configuration example of a variable speed control device for a motor. The power converter 1 drives the motor 2 at a variable speed with a PWM output whose voltage and frequency are controlled. The speed control unit 3 performs a proportional integral (PI) operation on the deviation between the speed command and the speed detection value of the motor 2, and the current control unit 4 using this output as a current command is a deviation from the output current detection value of the power converter 1. Thus, the output voltage / frequency control signal of the power converter 1 is obtained.

このような可変速制御装置において、モータ2の速度検出にはパルスピックアップ型の速度検出器が多く用いられている。図4中にはパルスピックアップ型の速度検出器の例を示し、周縁部に多数の歯部をもつ円板(回転体)5をモータ2に軸結合し、この円盤5の周辺部に一定の円周距離(歯部の歯間隔により決まる)を持たせて一対の磁気センサ6a,6bを配置し、これら磁気センサ6a,6bにそれぞれ近接してくる歯部との相対位置変化を電磁的にそれぞれ検出し、これら磁気センサ6a,6bに得る2相のパルス信号Sa,Sbから時刻/位相ラッチ処理部7とタイマ8によりモータ2の回転位置および速度に応じたパルス発生時刻Ta,Tbとパルス発生位相Pa,Pbを抽出し、これらパルスから速度演算部9によりモータ2の速度演算、さらにロータ位相演算を行う。   In such a variable speed control device, a pulse pickup type speed detector is often used for detecting the speed of the motor 2. FIG. 4 shows an example of a pulse pickup type speed detector. A disk (rotary body) 5 having a large number of teeth on the peripheral edge is axially coupled to the motor 2, and a constant part is provided around the disk 5. A pair of magnetic sensors 6a and 6b are arranged with a circumferential distance (determined by the tooth interval of the tooth portion), and the relative position change with the tooth portions adjacent to the magnetic sensors 6a and 6b is electromagnetically detected. Pulse generation times Ta, Tb and pulses corresponding to the rotational position and speed of the motor 2 are detected by the time / phase latch processing unit 7 and the timer 8 from the two-phase pulse signals Sa and Sb respectively detected and obtained by the magnetic sensors 6a and 6b. The generated phases Pa and Pb are extracted, and the speed calculator 9 calculates the speed of the motor 2 and further calculates the rotor phase from these pulses.

図5は磁気センサ6a,6bと時刻/位相ラッチ処理部7における各部波形を示す。図中、A相パルスとB相パルスは磁気センサ6a,6bからのパルス信号Sa,Sbの発生周期TA1,TA2,TB1,TB2をもつパルスになり、パルスエッジはパルス信号Sa,Sbのエッジ位置になり、位相θおよび時刻tはパルス信号Sa,Sbのエッジを計数するカウンタの値になる。これら位相θおよび時刻tからパルス発生時刻Ta,Tbとパルス発生位相Pa,Pbを演算で求める。この演算には、同じ相のパルスエッジを使用する1f方式では例えば期間T1fの位相θと時間tから求め、A相パルスとB相パルスの全パルスエッジを使用する4f方式では例えば期間T4fの位相θと時間tから求める。   FIG. 5 shows respective waveforms in the magnetic sensors 6 a and 6 b and the time / phase latch processing unit 7. In the figure, the A-phase pulse and the B-phase pulse are pulses having the generation periods TA1, TA2, TB1, TB2 of the pulse signals Sa, Sb from the magnetic sensors 6a, 6b, and the pulse edges are the edge positions of the pulse signals Sa, Sb. The phase θ and the time t are values of a counter that counts the edges of the pulse signals Sa and Sb. From these phase θ and time t, pulse generation times Ta and Tb and pulse generation phases Pa and Pb are obtained by calculation. For this calculation, the 1f method using the pulse edges of the same phase is obtained from, for example, the phase θ of the period T1f and the time t, and the 4f method using all the pulse edges of the A phase pulse and the B phase pulse is, for example, the phase of the period T4f. Obtained from θ and time t.

このようなパルスピックアップ型の速度検出器は、現在は図5に示す2相のパルスを基にした検出あるいは1相のパルスを基にした検出を行い、パルスのカウント数(位相)とパルス発生時刻により速度検出を行っている(例えば、特許文献1、特許文献2参照)。   Such a pulse pickup type speed detector currently performs detection based on the two-phase pulse shown in FIG. 5 or detection based on the one-phase pulse, and the pulse count number (phase) and pulse generation Speed detection is performed based on time (see, for example, Patent Document 1 and Patent Document 2).

特許文献1にはA相パルスとB相パルスの2相方式において、モータの速度変動むらがある場合にも正確な平均速度を計測する手法が提案されている。特許文献2には1相方式において、回転速度検出の誤差を小さくする手法が提案されている。
特開平6−118090号公報 特開平8−76855号公報
Patent Document 1 proposes a method for measuring an accurate average speed even in the case where there is uneven motor speed fluctuation in a two-phase system of an A-phase pulse and a B-phase pulse. Patent Document 2 proposes a method for reducing an error in rotational speed detection in the one-phase method.
JP-A-6-1118090 JP-A-8-76855

前記の円板5と磁気センサ6a,6bで構成するエンコーダの種類及び特徴としては以下の方式のものがある。   There are the following types of encoders and features of the disk 5 and the magnetic sensors 6a and 6b.

Figure 0004867534
Figure 0004867534

広範囲の回転数が求められるシステムにおいて、安価に高回転での機械的強度を求めるのであれば機械式パルス型が有効である。しかし、歯車やスリットの機械的加工精度に限界があるため、多パルス化は困難である。パルス数が少ないと極低速域でパルスの発生頻度が低いために速度や位置の制御ゲインを上げられず、極低速域での制御が困難となる。   In a system that requires a wide range of rotation speeds, a mechanical pulse type is effective if mechanical strength at high rotation speed is to be obtained at low cost. However, since there is a limit to the mechanical processing accuracy of gears and slits, it is difficult to increase the number of pulses. When the number of pulses is small, the frequency of occurrence of pulses is low in the extremely low speed region, so that the speed and position control gain cannot be increased, and control in the extremely low speed region becomes difficult.

また、パルス型での検出方式にも1f方式と4f方式で特性が異なる。例えば、1f方式では、図5におけるTA1,TA2,TB1,TB2を使用するもので、検出精度は高くなるが、位相情報が遅れるので検出遅れが大きい。また、4f方式では図5におけるT1,T2,T3,T4を使用するもので、検出精度が低いが、エッジパルスの発生頻度が高いため検出遅れが小さい。   Also, the pulse-type detection method has different characteristics between the 1f method and the 4f method. For example, the 1f method uses TA1, TA2, TB1, and TB2 in FIG. 5, and the detection accuracy is high, but the phase information is delayed, so the detection delay is large. The 4f method uses T1, T2, T3, and T4 in FIG. 5, and the detection accuracy is low, but the detection delay is small because the frequency of occurrence of edge pulses is high.

現状では適用するモータの運転速度範囲の違いや装置仕様に応じて1f方式と4f方式のものを採用している。また、極低速域から高速域までの広範囲の速度検出には両方式のエンコーダを併設し、これらをモータ速度に応じて切り替える方式が考えられるが、複雑な構成で高価な速度検出装置になる。   At present, the 1f method and the 4f method are adopted according to the difference in the operating speed range of the motor to be applied and the device specifications. In addition, both types of encoders are provided for speed detection in a wide range from a very low speed range to a high speed range, and a method of switching them according to the motor speed is conceivable.

本発明の目的は、安価な装置構成で、精度および応答性を高めた広範囲の速度検出ができるモータの速度検出装置を提供することにある。   An object of the present invention is to provide a motor speed detection device capable of detecting a wide range of speeds with high accuracy and responsiveness with an inexpensive device configuration.

本発明は、前記の課題を解決するため、モータに軸結合した回転体の回転位置を3相以上のパルス信号として検出する多パルス化し、これらパルス信号から回転速度/位相を検出、または高速域では2相パルス信号に、低速域では3相以上のパルス信号に切換えてモータの速度/回転位相を検出するようにしたもので、以下の構成を特徴とする。   In order to solve the above-mentioned problems, the present invention converts the rotational position of a rotating body that is shaft-coupled to a motor into multi-pulses that detect three or more phase pulse signals, and detects the rotational speed / phase from these pulse signals, or the high-speed range. In this case, the motor speed / rotation phase is detected by switching to a two-phase pulse signal and switching to a pulse signal of three or more phases in the low speed range, and has the following configuration.

)速度検出対象のモータに軸結合された回転体と、
前記回転体の歯部またはスリットとの相対位置変化を磁気的または光学的にA相、B相,C相、D相の4相化したパルス信号(Sa〜Sd)で、かつA相のパルス信号Saに対してC相のパルス信号Scが1/4相分遅れ、C相のパルス信号Scに対してB相のパルス信号Sbが1/4相分遅れ、B相のパルス信号Sbに対してD相のパルス信号Sdが1/4相分遅れた4相で検出するセンサと、
前記4相のパルス信号(Sa〜Sd)の全てのエッジ位置に同期したパルスエッジ波形とタイマ信号から該パルス信号(Sa〜Sd)のパルス発生時刻(Ta〜Td)とパルス発生位相(Pa〜Pd)を求める時刻/位相ラッチ処理部と、
前記2相のパルス発生時刻(Ta,Tb)とパルス発生位相(Pa,Pb)を取り込み、このうち同じ相のパルスエッジの位相とこのパルスエッジ期間から前記モータの高速時の速度または回転位相を求める高速時演算処理部と、
前記4相のパルス発生時刻(Ta〜Td)とパルス発生位相(Pa〜Pd)を取り込み、前記4相のパルスエッジの位相とこれらのパルスエッジ期間から前記モータの低速時の速度または回転位相を求める低速時演算処理部と、
前記高速時演算処理部の演算結果からモータの高速時と低速時を判定する切換判定部と、
前記切換判定部の判定結果で前記両演算処理部の出力を切換えて出力する切換スイッチを備えたことを特徴とする。
( 1 ) a rotating body shaft-coupled to a speed detection target motor;
A pulse signal (Sa to Sd) in which the change in relative position with respect to the tooth portion or slit of the rotating body is magnetically or optically converted into four phases of A phase, B phase, C phase, and D phase , and an A phase pulse The C phase pulse signal Sc is delayed by 1/4 phase with respect to the signal Sa, the B phase pulse signal Sb is delayed by 1/4 phase with respect to the C phase pulse signal Sc, and with respect to the B phase pulse signal Sb. A sensor for detecting the D phase pulse signal Sd in four phases delayed by 1/4 phase;
From the pulse edge waveform synchronized with all edge positions of the four-phase pulse signals (Sa to Sd) and the timer signal, the pulse generation time (Ta to Td) and pulse generation phase (Pa to A time / phase latch processing unit for obtaining Pd);
The two-phase pulse generation time (Ta, Tb) and the pulse generation phase (Pa, Pb) are taken in, and the pulse edge phase of the same phase and the speed or rotation phase of the motor at a high speed are determined from this pulse edge period. A high-speed arithmetic processing unit to be obtained;
The four-phase pulse generation time (Ta to Td) and the pulse generation phase (Pa to Pd) are taken in, and the phase of the four-phase pulse edge and the speed or rotation phase of the motor at a low speed are determined from these pulse edge periods. A low-speed calculation processing unit to be obtained;
A switching determination unit for determining a high speed and a low speed of the motor from the calculation result of the high-speed calculation processing unit;
There is provided a changeover switch for switching and outputting the outputs of the two arithmetic processing units according to the determination result of the switching determination unit.

以上のとおり、本発明によれば、モータに軸結合した回転体の回転位置を3相以上のパルス信号として検出する多パルス化し、これらパルス信号から回転速度/位相を検出、または高速域では2相パルス信号に、低速域では3相以上のパルス信号に切換えてモータの速度/回転位相を検出するようにしたため、安価な装置構成で、精度および応答性を高めた広範囲の速度検出ができる効果がある。   As described above, according to the present invention, the rotation position of the rotating body that is shaft-coupled to the motor is converted to multiple pulses that detect three or more phase pulse signals, and the rotation speed / phase is detected from these pulse signals, or 2 in the high speed range. The phase pulse signal is switched to a pulse signal of three or more phases in the low speed range, and the speed / rotation phase of the motor is detected, so that a wide range of speed detection with improved accuracy and responsiveness can be achieved with an inexpensive device configuration. There is.

(実施形態1)
図1はモータの可変速制御装置の構成図を示し、図4と異なる部分は速度検出装置にある。本実施形態では、1つの円板(回転体)に対しセンサを3つ以上設置することで多相化し、低速域での多パルス化を図ることで精度と応答性を高めるものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a variable speed control device for a motor, and a portion different from FIG. 4 is a speed detection device. In the present embodiment, three or more sensors are installed on one disk (rotary body) to make it multiphase, and to increase the accuracy and responsiveness by making multipulses in a low speed region.

図1では、機械式パルス型のエンコーダを用いる場合を示し、低速域でのパルス数を増加させるために、従来の2相検出から4相検出に変更する。この4相検出には、周縁部に多数の歯部をもつ円板(回転体)5の周辺部に一定の円周距離を持たせて4つの磁気センサ6a〜6dを配置し、これら磁気センサ6a〜6dにそれぞれ近接してくる歯部との相対位置変化を磁気的にそれぞれ検出し、これら磁気センサ6a〜6dに得る4相のパルス信号Sa〜Sdから時刻/位相ラッチ処理部7とタイマ8によりモータ2の回転位置および速度に応じたパルス発生時刻Ta〜Tdとパルス発生位相Pa〜Pdを抽出し、これらパルスから速度演算部9によりモータ2の速度演算、さらにロータ位相演算を行う。   FIG. 1 shows a case where a mechanical pulse type encoder is used, and the conventional two-phase detection is changed to four-phase detection in order to increase the number of pulses in the low speed region. In this four-phase detection, four magnetic sensors 6a to 6d are arranged at a peripheral portion of a disc (rotary body) 5 having a large number of teeth at a peripheral portion with a constant circumferential distance. 6a to 6d are respectively detected magnetically relative position changes with the tooth portions adjacent to each other, and the time / phase latch processing unit 7 and the timer are obtained from the four-phase pulse signals Sa to Sd obtained by the magnetic sensors 6a to 6d. 8, pulse generation times Ta to Td and pulse generation phases Pa to Pd corresponding to the rotational position and speed of the motor 2 are extracted, and the speed calculation unit 9 calculates the speed of the motor 2 and further calculates the rotor phase from these pulses.

図2は磁気センサ6a〜6dに得る4相化(A相、B相、C相、D相)したパルス信号Sa〜Sdの波形と、これらパルス信号Sa〜Sdの全てのエッジ位置に同期したパルスを得る4f方式のパルスエッジ波形を示す。円板5の歯部に対する磁気センサ6a〜6dの相対位置は、パルス信号Sa〜Sdに得るA相に対してC相が1/4相分遅れ、同様にC相に対してB相が1/4相分遅れ、B相に対してD相が1/4相分遅れた4相を検出する。   FIG. 2 is synchronized with the waveforms of the four-phased (A-phase, B-phase, C-phase, D-phase) pulse signals Sa to Sd obtained in the magnetic sensors 6a to 6d and all the edge positions of these pulse signals Sa to Sd. The pulse edge waveform of 4f system which obtains a pulse is shown. The relative positions of the magnetic sensors 6a to 6d with respect to the teeth of the disk 5 are such that the C phase is delayed by 1/4 phase with respect to the A phase obtained in the pulse signals Sa to Sd, and similarly, the B phase is 1 with respect to the C phase. / 4 phase is delayed, and 4 phases are detected in which D phase is delayed by 1/4 phase relative to B phase.

この構成になる速度検出装置によれば、1つの歯から検出できるパルスがA〜D相に多相化することができ、低速域での多パルス化を図ることで制御性能を高め、極低速域から高速域までの広範囲の速度検出ができる。しかも、円板5は歯数が従来と同じに少ないもので済み、歯部の加工精度を高めた製作を容易にするし、コストアップもない。そして、磁気センサには同じ構造のものを4つ設置することで済み、時刻/位相ラッチ処理部7も同じ信号処理回路を増設することで済む。   According to the speed detection device configured as described above, pulses that can be detected from one tooth can be multiphased into the A to D phases, and the control performance is improved by increasing the number of pulses in the low speed range, thereby achieving extremely low speed. Can detect a wide range of speed from high to high speed. In addition, the number of teeth of the disk 5 is as small as that of the prior art, making it easy to manufacture with a high processing accuracy of the teeth, and there is no cost increase. Then, it is only necessary to install four magnetic sensors having the same structure, and the time / phase latch processing unit 7 can be additionally provided with the same signal processing circuit.

(実施形態2)
上記の実施形態1において、磁気センサ6a〜6dに得るパルスのエッジ精度は、各相の1fエッジ間(図5のTA1,TA2、TB1,TB2)の精度が良いが、異なる相のエッジ間の精度(図5のT1,T2,T3,T4)はよくない。これは、取り付け精度や歯車の機械加工精度による誤差のためである。特に3相以上にした場合、各相間の精度は取りつけ精度で決まる。
(Embodiment 2)
In the first embodiment, the edge accuracy of the pulses obtained in the magnetic sensors 6a to 6d is good between the 1f edges of each phase (TA1, TA2, TB1, TB2 in FIG. 5), but between the edges of different phases. The accuracy (T1, T2, T3, T4 in FIG. 5) is not good. This is because of errors due to mounting accuracy and gear machining accuracy. In particular, when the number of phases is three or more, the accuracy between each phase is determined by the mounting accuracy.

本実施形態では、単位時間当たりの検出パルス数が多くなる高速域では従来と同様に2相1f方式で高精度に検出し、単位時間当たりの検出パルスが少なくなる低速域では多相のエッジ検出により多パルス化を図ることで、全域で精度および応答性を高めた速度検出を図るものである。   In the present embodiment, in the high speed region where the number of detection pulses per unit time increases, the two-phase 1f method is detected with high accuracy as in the conventional case, and in the low speed region where the detection pulses per unit time decreases, multiphase edge detection is performed. Thus, speed detection with improved accuracy and responsiveness is achieved throughout the entire area by increasing the number of pulses.

図3はモータの可変速制御装置の構成例を示し、図1と異なる部分は速度検出装置に高速/低速切換機能ブロックを追加した点にある。高速時検出部10Hは、パルス発生時刻Ta,Tbとパルス発生位相Pa,Pbを取り込み、2相1f方式で速度演算処理を行う。低速時検出部10Lは、パルス発生時刻Ta〜Tdとパルス発生位相Pa〜Pdを取り込み、4相4f方式で速度演算処理を行う。切換判定部11は高速時検出部10Hの演算結果から高速度と低速度を判定し、この判定結果で切換スイッチ12を切換え、高速度域であれば高速時検出部10Hの演算結果を速度検出信号として取り出し、低速度域であれば低速時検出部10Lの演算結果を速度検出信号として取り出す。   FIG. 3 shows an example of the configuration of a motor variable speed control device. The difference from FIG. 1 is that a high speed / low speed switching function block is added to the speed detection device. The high-speed detection unit 10H takes in the pulse generation times Ta and Tb and the pulse generation phases Pa and Pb, and performs speed calculation processing by the two-phase 1f method. The low-speed detection unit 10L takes in the pulse generation times Ta to Td and the pulse generation phases Pa to Pd and performs a speed calculation process using a four-phase 4f method. The switching determination unit 11 determines the high speed and the low speed from the calculation result of the high speed detection unit 10H, and switches the changeover switch 12 based on the determination result. If the speed is high, the calculation result of the high speed detection unit 10H is speed detected. If it is a low speed range, the calculation result of the low speed detection unit 10L is extracted as a speed detection signal.

この構成になる速度検出装置によれば、高速域では従来と同様に2相1fで高精度に検出し、低速域では多相のエッジ検出により多パルス化を図ることで、磁気センサの取り付け精度や歯車の機械加工精度による誤差がある場合にも全域で良好な速度検出を達成できる。   According to the speed detection device configured as described above, in the high speed range, the two-phase 1f is detected with high accuracy in the same manner as in the past, and in the low speed range, multi-pulse detection is performed to detect multiple pulses. Even when there is an error due to the machining accuracy of the gears, good speed detection can be achieved in the entire area.

なお、以上までの実施形態では、機械式パルス型の磁気センサを使用する場合を示すが、これに代えて、前記表に示す光学式パルス型のものを使用して同等の作用効果を得ることができる。この場合、磁気センサに代わる4つの光学センサは回転体の歯部またはスリットとの相対位置変化を光学的に4相のパルス信号として検出する。   In the above embodiments, the case where a mechanical pulse type magnetic sensor is used is shown. Instead, the same effect can be obtained by using the optical pulse type shown in the above table. Can do. In this case, the four optical sensors instead of the magnetic sensor optically detect a change in the relative position with the tooth portion or slit of the rotating body as a four-phase pulse signal.

本発明の実施形態1を示すモータの可変速制御装置の構成図。The block diagram of the variable speed control apparatus of the motor which shows Embodiment 1 of this invention. 4つの磁気センサによる多相化波形図。The polyphase-ized waveform diagram by four magnetic sensors. 本発明の実施形態2を示すモータの可変速制御装置の構成図。The block diagram of the variable speed control apparatus of the motor which shows Embodiment 2 of this invention. 従来のモータの可変速制御装置の構成例。The structural example of the conventional variable speed control apparatus of a motor. 2つの磁気センサによる時刻/位相検出波形図。The time / phase detection waveform diagram by two magnetic sensors.

符号の説明Explanation of symbols

1 電力変換器
2 モータ
3 速度制御部
4 電流制御部
5 円板(回転体)
6a〜6d 磁気センサ
7 時刻/位相ラッチ処理部
8 タイマ
9 速度演算処理部
10H 高速時検出部
10L 低速時検出部
11 切換判定部
12 切換スイッチ
DESCRIPTION OF SYMBOLS 1 Power converter 2 Motor 3 Speed control part 4 Current control part 5 Disc (rotary body)
6a to 6d Magnetic sensor 7 Time / phase latch processing unit 8 Timer 9 Speed calculation processing unit 10H High-speed detection unit 10L Low-speed detection unit 11 Switch determination unit 12 Changeover switch

Claims (1)

速度検出対象のモータに軸結合された回転体と、
前記回転体の歯部またはスリットとの相対位置変化を磁気的または光学的にA相、B相,C相、D相の4相化したパルス信号(Sa〜Sd)で、かつA相のパルス信号Saに対してC相のパルス信号Scが1/4相分遅れ、C相のパルス信号Scに対してB相のパルス信号Sbが1/4相分遅れ、B相のパルス信号Sbに対してD相のパルス信号Sdが1/4相分遅れた4相で検出するセンサと、
前記4相のパルス信号(Sa〜Sd)の全てのエッジ位置に同期したパルスエッジ波形とタイマ信号から該パルス信号(Sa〜Sd)のパルス発生時刻(Ta〜Td)とパルス発生位相(Pa〜Pd)を求める時刻/位相ラッチ処理部と、
前記2相のパルス発生時刻(Ta,Tb)とパルス発生位相(Pa,Pb)を取り込み、このうち同じ相のパルスエッジの位相とこのパルスエッジ期間から前記モータの高速時の速度または回転位相を求める高速時演算処理部と、
前記4相のパルス発生時刻(Ta〜Td)とパルス発生位相(Pa〜Pd)を取り込み、前記4相のパルスエッジの位相とこれらのパルスエッジ期間から前記モータの低速時の速度または回転位相を求める低速時演算処理部と、
前記高速時演算処理部の演算結果からモータの高速時と低速時を判定する切換判定部と、
前記切換判定部の判定結果で前記両演算処理部の出力を切換えて出力する切換スイッチを備えたことを特徴とするモータの速度検出装置。
A rotating body shaft-coupled to the speed detection motor;
A pulse signal (Sa to Sd) in which the change in relative position with respect to the tooth portion or slit of the rotating body is magnetically or optically converted into four phases of A phase, B phase, C phase, and D phase , and an A phase pulse The C phase pulse signal Sc is delayed by 1/4 phase with respect to the signal Sa, the B phase pulse signal Sb is delayed by 1/4 phase with respect to the C phase pulse signal Sc, and with respect to the B phase pulse signal Sb. A sensor for detecting the D phase pulse signal Sd in four phases delayed by 1/4 phase;
From the pulse edge waveform synchronized with all edge positions of the four-phase pulse signals (Sa to Sd) and the timer signal, the pulse generation time (Ta to Td) and pulse generation phase (Pa to A time / phase latch processing unit for obtaining Pd);
The two-phase pulse generation time (Ta, Tb) and the pulse generation phase (Pa, Pb) are taken in, and the pulse edge phase of the same phase and the speed or rotation phase of the motor at a high speed are determined from this pulse edge period. A high-speed arithmetic processing unit to be obtained;
The four-phase pulse generation time (Ta to Td) and the pulse generation phase (Pa to Pd) are taken in, and the phase of the four-phase pulse edge and the speed or rotation phase of the motor at a low speed are determined from these pulse edge periods. A low-speed calculation processing unit to be obtained;
A switching determination unit for determining a high speed and a low speed of the motor from the calculation result of the high-speed calculation processing unit;
A motor speed detecting device comprising a changeover switch for switching and outputting the outputs of the two arithmetic processing units according to the determination result of the switching determination unit.
JP2006245183A 2006-09-11 2006-09-11 Motor speed detection device Expired - Fee Related JP4867534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245183A JP4867534B2 (en) 2006-09-11 2006-09-11 Motor speed detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245183A JP4867534B2 (en) 2006-09-11 2006-09-11 Motor speed detection device

Publications (2)

Publication Number Publication Date
JP2008064699A JP2008064699A (en) 2008-03-21
JP4867534B2 true JP4867534B2 (en) 2012-02-01

Family

ID=39287531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245183A Expired - Fee Related JP4867534B2 (en) 2006-09-11 2006-09-11 Motor speed detection device

Country Status (1)

Country Link
JP (1) JP4867534B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309951B2 (en) * 2008-12-16 2013-10-09 株式会社明電舎 Rotation speed detection method
CN114675049B (en) * 2022-03-11 2023-04-11 中国科学院西安光学精密机械研究所 Reaction flywheel speed measurement method and system based on multiple groups of switch Hall sensors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193361A (en) * 1983-04-18 1984-11-01 Mitsubishi Electric Corp Wheel rotary speed measuring apparatus
JPS61292560A (en) * 1985-06-20 1986-12-23 Mazda Motor Corp Rotation detector
JP2574873B2 (en) * 1988-08-24 1997-01-22 株式会社日立製作所 Position or speed detector
JP3173174B2 (en) * 1992-10-06 2001-06-04 株式会社明電舎 Speed detector
JP4253372B2 (en) * 1998-07-29 2009-04-08 日本オーチス・エレベータ株式会社 Elevator speed control apparatus and recording medium recording elevator speed detection program
DE69933927T2 (en) * 1999-02-26 2007-07-12 Mitsubishi Denki K.K. ABSOLUTE VALUE CODIER

Also Published As

Publication number Publication date
JP2008064699A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5491207B2 (en) Stepping motor drive device
JP4835606B2 (en) Rotating body phase / speed detector
US9692341B2 (en) Apparatus for detecting speed of motor
JP5217766B2 (en) Angular position detection device and rotation number detection device of rotating body
JP5309951B2 (en) Rotation speed detection method
JP4867534B2 (en) Motor speed detection device
US9134143B2 (en) Absolute position detector with abnormality detection function
JP2009095154A (en) Motor controller and its speed detection method
JP4782434B2 (en) Rotation detection device signal processing device
JP6006069B2 (en) Encoder and encoder error detection method
JP4797096B2 (en) Stepping motor rotation angle detection device
US20180023975A1 (en) Method of Determining A Direction of Rotation and Valid Transitions of Quadrature Pulses
KR101018713B1 (en) Method for processing output signal of encoder
JP2009254066A (en) Apparatus and method of detecting displacement, and method of manufacturing motor with position detection sensor
KR102077362B1 (en) Improvements in motor controllers
JP2003130686A (en) Device for detecting position
JP3860324B2 (en) Motor speed control device
JP2009153335A (en) Brushless servo motor
JP2011095121A (en) Position detector
EP2977727B1 (en) Field programmable gate array based brushless dc motor speed detector
JP2674024B2 (en) Servo controller
JP2019088181A (en) Motor drive device and motor drive method
WO2014010063A1 (en) Motor controller
JP2003130683A (en) Device for detecting position
JP2008096128A (en) Motor speed detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees