JP4835606B2 - Rotating body phase / speed detector - Google Patents

Rotating body phase / speed detector Download PDF

Info

Publication number
JP4835606B2
JP4835606B2 JP2008038305A JP2008038305A JP4835606B2 JP 4835606 B2 JP4835606 B2 JP 4835606B2 JP 2008038305 A JP2008038305 A JP 2008038305A JP 2008038305 A JP2008038305 A JP 2008038305A JP 4835606 B2 JP4835606 B2 JP 4835606B2
Authority
JP
Japan
Prior art keywords
phase
pulse
speed
sine wave
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008038305A
Other languages
Japanese (ja)
Other versions
JP2009198231A (en
Inventor
和也 小倉
勝之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008038305A priority Critical patent/JP4835606B2/en
Priority to PCT/JP2009/052636 priority patent/WO2009104576A1/en
Publication of JP2009198231A publication Critical patent/JP2009198231A/en
Application granted granted Critical
Publication of JP4835606B2 publication Critical patent/JP4835606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation

Description

本発明は、モータなどの回転体の回転位置(位相)・速度をエンコーダと位相・速度検出回路で検出する装置に係り、特に方形波パルスによる位相・速度検出と正弦波信号による位相・速度検出を切り替える検出装置に関する。   The present invention relates to an apparatus for detecting the rotational position (phase) / speed of a rotating body such as a motor by an encoder and a phase / speed detection circuit, and in particular, phase / speed detection by a square wave pulse and phase / speed detection by a sine wave signal. The present invention relates to a detection device for switching between

モータを速度制御するインバータなどにおいて、モータの回転数(速度)・位相をエンコーダと位相・速度検出回路で検出してその速度フィードバック制御や位置フィードバック制御等を可能にする位相・速度検出方式として、以下の2つの方式がある。   In an inverter that controls the speed of a motor, as a phase / speed detection method that enables the speed feedback control and position feedback control, etc., by detecting the motor speed (speed) / phase with an encoder and phase / speed detection circuit, There are the following two methods.

(1)方形波パルスを出力するエンコーダを回転体に結合し、方形波パルスの各エッジ情報を元に、エッジの数(位相)とエッジの発生時刻から速度検出する方式。   (1) A system in which an encoder that outputs a square wave pulse is coupled to a rotating body, and the speed is detected from the number of edges (phase) and the time of occurrence of the edge based on each edge information of the square wave pulse.

この方形波パルスによる速度検出方式において、図5に示すように、90°位相差のある2相(A,B相)の方形波パルス信号を用いて速度を検出する場合を以下に示す。一般的に組込み型の演算は固定周期で演算され、図5の位相・速度演算のように一定周期で検出処理が動作する。速度を検出するには、ある期間の位相偏差と、その位相偏差にかかった時間が必要になる。一般的な方形波パルス検出方式では、前回検出した位相と時刻を保存しておき、今回の最新パルスの位相と時刻を用いて速度演算を行う。   In this velocity detection method using a square wave pulse, as shown in FIG. 5, a case where velocity is detected using a square wave pulse signal of two phases (A and B phases) having a phase difference of 90 ° will be described below. In general, the built-in type calculation is performed at a fixed cycle, and the detection process operates at a fixed cycle like the phase / speed calculation in FIG. In order to detect the speed, a phase deviation in a certain period and a time required for the phase deviation are required. In a general square wave pulse detection method, the previously detected phase and time are stored, and speed calculation is performed using the phase and time of the latest pulse of this time.

図5の例では、前回検出した時刻Taのパルス情報を保存しておき、今回の検出にて得られた時刻Tbのパルス情報を用いて演算する。これら2つのパルス位相差は5なので、5パルス分の位相差が発生するのにTb−Taの時間がかかっているので、K×5/(Tb−Ta)で速度検出をすることができる(Kは、1回転のパルス数から求める検出係数)。   In the example of FIG. 5, the pulse information at the time Ta detected last time is stored, and the calculation is performed using the pulse information at the time Tb obtained by the current detection. Since the phase difference between these two pulses is 5, it takes Tb-Ta to generate the phase difference for 5 pulses, so that the speed can be detected with K × 5 / (Tb-Ta) ( K is a detection coefficient obtained from the number of pulses per rotation).

この方式のメリットは、(a)ON/OFFの2状態しかないパルスを扱うため、デジタルでの扱いが容易であり、検出回路がシンプルになる。(b)遅れが一定になるのであれば、フィルタ処理が容易である。(c)比較的精度がよい。図5の場合、1パルス周期に4つある4fエッジを用いているため、A/B相の位相差や、各相のデューティの精度が必要となるが、精度のよい1fエッジを用いる方式もある。   The merit of this method is that (a) a pulse having only two states of ON / OFF is handled, so that digital handling is easy and the detection circuit becomes simple. (B) If the delay is constant, the filtering process is easy. (C) The accuracy is relatively good. In the case of FIG. 5, since four 4f edges are used in one pulse period, the phase difference of the A / B phase and the accuracy of the duty of each phase are required. However, there is a method using a precise 1f edge. is there.

また、デメリットは、(a)パルスエッジが来ないと、位相情報が分からない。よってパルス間の位相は検出できない。(b)パルスエッジの時刻を計測する必要がある。(c)低速度域ではパルスが来ないため、低速域での位相及び速度検出精度を上げることができない。   Further, (a) phase information is not known unless a pulse edge comes. Therefore, the phase between pulses cannot be detected. (B) It is necessary to measure the time of the pulse edge. (C) Since the pulse does not come in the low speed region, the phase and speed detection accuracy in the low speed region cannot be increased.

(2)正弦波信号を出力するエンコーダを回転体に結合し、アナログ検出により得る正弦波情報をパルス化し、このパルス間の位相を検出し、パルス情報を高精度化する方式。この方式は、任意の時刻でパルスの位相が得られ、位相検出及び速度検出を高精度に検出することができる。   (2) A system in which an encoder that outputs a sine wave signal is coupled to a rotating body, sine wave information obtained by analog detection is pulsed, the phase between the pulses is detected, and the pulse information is highly accurate. In this method, the phase of a pulse can be obtained at an arbitrary time, and phase detection and speed detection can be detected with high accuracy.

このアナログ検出による速度検出方式において、図6に示すように、90°位相差のある2相(A,B相)の正弦波パルス信号を用いて速度を検出する場合を以下に示す。   In the speed detection method based on this analog detection, as shown in FIG. 6, the case where the speed is detected using a two-phase (A, B phase) sine wave pulse signal having a 90 ° phase difference is shown below.

正弦波であるため、瞬時のパルス位相が分かる。よって、位相・速度演算開始時の位相が正確にわかり、今回と前回の位相差が1パルス未満の単位で正確にわかることになる(図6中のθa及びθb)。よって、各演算周期開始時刻のTa、及びTb(これは計測する必要はなく、演算の割込み周期でよい)を用いて、速度は(θa−θb)/(Ta−Tb)で得られる。   Since it is a sine wave, the instantaneous pulse phase is known. Therefore, the phase at the start of the phase / velocity calculation is accurately known, and the phase difference between the current time and the previous time is accurately known in units of less than one pulse (θa and θb in FIG. 6). Therefore, the speed can be obtained by (θa−θb) / (Ta−Tb) using Ta and Tb at the start time of each calculation cycle (this does not need to be measured and may be an interrupt cycle of calculation).

この方式のメリットは、(a)瞬時のパルス位相が分かるため、現時点での正確な位相がわかる。(b)演算周期が、速度を演算する場合の時刻差と一致するため、時間の管理が不要となる。(c)低速域でも瞬時のパルス位相が分かるため、位相及び速度の検出精度がよい。   The merit of this method is as follows: (a) Since the instantaneous pulse phase is known, the current accurate phase is known. (B) Since the calculation cycle matches the time difference when the speed is calculated, time management becomes unnecessary. (C) Since the instantaneous pulse phase is known even in the low speed range, the phase and speed detection accuracy is good.

また、デメリットは、(a)検出回路のアナログ/デジタル変換が必要。(b)アナログのフィルタを入れると、高い周波数で遅れを生じるため、あまりフィルタを入れられない。(c)アナログのノイズやアナログ/デジタル変換の変換誤差により精度が落ちる場合がある。(d)高周波数の場合、演算周期を短くするか、1回転あたりのパルスを少なくする必要がある。1演算周期あたりにパルスの180°以上回転すると、正転か逆転か分からなくなる。また、1演算周期あたりに複数のパルスが来ると、パルスを数える手段がない。   Disadvantages are: (a) Analog / digital conversion of the detection circuit is required. (B) When an analog filter is inserted, a delay occurs at a high frequency, so that the filter cannot be inserted so much. (C) The accuracy may drop due to analog noise or analog / digital conversion errors. (D) In the case of a high frequency, it is necessary to shorten the calculation cycle or reduce the number of pulses per rotation. If the pulse is rotated by 180 ° or more per calculation cycle, it is not known whether the rotation is normal or reverse. Further, when a plurality of pulses come per calculation cycle, there is no means for counting the pulses.

これらを解決する方式として、図7にエンコーダと位相・速度検出回路を示すように、正弦波エンコーダからの位相差π/2のA,B相正弦波から、正弦波パルス(ディジタルデータ)と方形波パルスの両者を検出し、1パルス以上の位置情報は方形波パルスによる検出を、1パルス未満の位置情報は正弦波パルスによる検出を行い、両者を合成して位置、回転数を検出する方式がある(例えば、特許文献1、特許文献2参照)。
特開平07−229756号公報 特開2006−234688号公報
As a method for solving these problems, as shown in FIG. 7 with an encoder and a phase / speed detection circuit, a sine wave pulse (digital data) and a square are obtained from A and B phase sine waves with a phase difference of π / 2 from the sine wave encoder. A system that detects both wave pulses, detects position information of one pulse or more by a square wave pulse, detects position information of less than one pulse by a sine wave pulse, and combines the two to detect the position and the number of rotations. (For example, refer to Patent Document 1 and Patent Document 2).
Japanese Patent Application Laid-Open No. 07-229756 JP 2006-234688 A

モータの位相・速度検出信号を元に制御するインバータ装置とエンコーダが取り付けてあるモータは、必ずしも近い場所に設置されるとは限らず、離れた場所に設置されてその間を信号ケーブルで接続する場合が多い。この場合、位相・速度検出回路にはフィルタを介挿し、信号ケーブル等に誘導されるノイズ等を除去している。   Motors with inverters and encoders that are controlled based on motor phase / speed detection signals are not necessarily installed in close locations, but are installed in remote locations and connected between them with signal cables There are many. In this case, a filter is inserted in the phase / velocity detection circuit to remove noise induced in the signal cable or the like.

図7のF1で示す検出回路入力端部分にフィルタを入れた場合、入力信号の全体にフィルタがかかるため、方形波パルスと正弦波パルスとの間には位相ずれが生じないが、高い回転数まで検出する場合にはパルスの周波数が数百kHzになるため、あまり大きな時定数のフィルタを入れることができない。よって、時定数の小さいフィルタを使うのでは正弦波パルスを検出するアナログ変換値にノイズが残ってしまい、検出誤差を生じてしまう。   When a filter is inserted at the detection circuit input end portion indicated by F1 in FIG. 7, since the entire input signal is filtered, there is no phase shift between the square wave pulse and the sine wave pulse, but a high rotational speed. In the case of detecting up to 1, the frequency of the pulse becomes several hundred kHz, so a filter having a very large time constant cannot be inserted. Therefore, if a filter with a small time constant is used, noise remains in the analog conversion value for detecting a sine wave pulse, and a detection error occurs.

図7のF2で示すA/D変換器の入力端部分にフィルタを入れると、A/D変換値にのみフィルタがかかるため、高精度な検出が可能となる。しかしながら、方形波パルスと正弦波パルスに位相差を生じるため両者の整合性がとれなくなる。この場合、1パルス単位での誤検出をする場合があり、位相飛びが発生する。この位相飛びは速度検出に大きな悪影響を及ぼす。   When a filter is inserted in the input end portion of the A / D converter indicated by F2 in FIG. 7, only the A / D conversion value is filtered, so that highly accurate detection is possible. However, since a phase difference is generated between the square wave pulse and the sine wave pulse, the consistency between them cannot be obtained. In this case, erroneous detection may occur in units of one pulse, and a phase jump occurs. This phase jump has a great adverse effect on speed detection.

上記のような理由から、F1部分(検出回路入力端)、またはF2部分(A/D変換器入力端)にフィルタを入れることによる不都合を回避するためには、エンコーダと検出回路を比較的近い配置にした設計を必要とするか、検出性能を低下させる設計になるものであった。   For the above reasons, the encoder and the detection circuit are relatively close to avoid the inconvenience caused by inserting a filter in the F1 portion (detection circuit input end) or the F2 portion (A / D converter input end). The design required for the arrangement was required or the detection performance was lowered.

本発明の目的は、広い速度範囲で位相・速度検出の精度を高め、しかも検出回路の信号処理で発生する位相ずれを補償した位相・速度検出ができる回転体の位相・速度検出装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a phase / velocity detection device for a rotating body capable of detecting phase / velocity with improved accuracy of phase / velocity detection in a wide speed range and compensating for phase shift generated by signal processing of a detection circuit. There is.

本発明は、前記の課題を解決するため、回転体が高速回転領域では方形波パルスによる位相・速度検出を行い、低速回転領域では正弦波信号による位相・速度検出を行う切り替え、正弦波信号による位相検出には回転体の1回転以上の位相分を方形波パルスにより設定し、この方形波パルスと正弦波パルスとの間での位相進み/遅れに応じて正弦波信号による位相検出値を1パルス分だけ増減するようにしたもので、以下の構成を特徴とする。   In order to solve the above-described problems, the present invention performs phase / speed detection using a square wave pulse when the rotating body is in a high-speed rotation region, and performs phase / speed detection using a sine wave signal in a low-speed rotation region. For phase detection, a phase of one or more rotations of the rotating body is set by a square wave pulse, and a phase detection value by a sine wave signal is set to 1 according to the phase advance / delay between the square wave pulse and the sine wave pulse. It is designed to increase or decrease by the amount of pulses, and has the following configuration.

(1)回転体に結合されて位相差π/2のA,B相の正弦波信号を得る正弦波エンコーダと、
前記A,B相の正弦波信号のゼロクロス点をエッジとする方形波パルスに変換し、これら方形波パルスのパルス数をパルスカウンタで計数したパルス数、およびパルスエッジを起点とする時刻カウンタの計数でパルス幅に対応するパルス位相を求めるパルスカウンタ・時刻カウンタと、
前記パルスカウンタ・時刻カウンタで求めた方形波パルスのパルス数から回転体の位相・速度を検出する方形波パルスによる位相・速度検出回路と、
前記A,B相の正弦波信号からノイズ成分を除去し、これら正弦波信号をA/D変換データに変換し、これらA/D変換データから位相を求める位相変換器と、
前記位相変換器で求めたアナログ位相から回転体の位相・速度を検出し前記パルス位相と前記アナログ位相との間に位相ずれが発生した時に、このアナログ位相の上位桁を前記パルス位相が存在するパルス象限と前記アナログ位相が存在するアナログ象限が一致するパルス位相に補正する正弦波信号による位相・速度検出回路と、
回転体の速度が予め設定した速度を超えた高速度領域では前記方形波パルスによる位相・速度検出回路の出力を位相・速度検出値とし、回転体の速度が前記設定した速度以下になる低速度領域では前記正弦波信号による位相・速度検出回路の出力を位相・速度検出値とする切替スイッチと、
を備えたことを特徴とする。
(1) a sine wave encoder coupled to a rotating body to obtain A and B phase sine wave signals having a phase difference of π / 2;
Conversion to square wave pulses having an edge at the zero cross point of the A and B phase sine wave signals, the number of pulses counted by the pulse counter, and the counting of the time counter starting from the pulse edge With the pulse counter and time counter to obtain the pulse phase corresponding to the pulse width,
A phase / velocity detection circuit using a square wave pulse for detecting the phase / velocity of the rotating body from the number of square wave pulses obtained by the pulse counter / time counter;
A phase converter for removing noise components from the A and B phase sine wave signals, converting these sine wave signals into A / D conversion data, and obtaining a phase from the A / D conversion data;
The phase / velocity of the rotating body is detected from the analog phase obtained by the phase converter, and when a phase shift occurs between the pulse phase and the analog phase, the pulse phase is present in the higher-order digits of the analog phase. A phase / velocity detection circuit based on a sine wave signal that corrects the pulse phase to match a pulse phase in which the analog quadrant in which the analog phase exists exists ,
In the high-speed region where the speed of the rotating body exceeds the preset speed, the output of the phase / speed detection circuit by the square wave pulse is used as the phase / speed detection value, and the speed of the rotating body is lower than the set speed. In the region, a changeover switch that uses the output of the phase / speed detection circuit based on the sine wave signal as a phase / speed detection value,
It is provided with.

(2)前記正弦波信号による位相・速度検出回路は、前記方形波パルスによる前記パルス位相と、前記正弦波信号による前記アナログ位相との間に位相進み/遅れがある場合、前記位相進み/遅れに応じて前記アナログ位相の前記上位桁を正弦波信号の1周期分だけ増減する手段を備えたことを特徴とする。 (2) The phase / velocity detection circuit based on the sine wave signal has the phase advance / delay when there is a phase advance / delay between the pulse phase based on the square wave pulse and the analog phase based on the sine wave signal. In accordance with the above, there is provided means for increasing or decreasing the upper digit of the analog phase by one cycle of the sine wave signal.

以上のとおり、本発明によれば、回転体が高速回転領域では方形波パルスによる位相・速度検出を行い、低速回転領域では正弦波信号による位相・速度検出を行う切り替え、正弦波信号による位相検出には回転体の1回転以上の位相分を方形波パルスにより設定し、この方形波パルスと正弦波パルスとの間での位相進み/遅れに応じて正弦波信号による位相検出値を1パルス分だけ増減するようにしたため、方形波パルスと正弦波信号による位相・速度検出の切り替えにより広い速度範囲で位相・速度検出の精度を高めることができ、しかも検出回路の信号処理で発生する位相ずれを補償した位相・速度検出ができる。   As described above, according to the present invention, when the rotator is in the high-speed rotation region, phase / speed detection is performed using a square wave pulse, and in the low-speed rotation region, phase / speed detection is performed using a sine wave signal. The phase for one rotation or more of the rotating body is set by a square wave pulse, and the phase detection value by the sine wave signal is set for one pulse according to the phase advance / delay between the square wave pulse and the sine wave pulse. Therefore, the accuracy of phase / speed detection can be improved over a wide speed range by switching between phase / speed detection using a square wave pulse and sine wave signal, and the phase shift caused by the signal processing of the detection circuit can be improved. Compensated phase / speed detection is possible.

図1は、本発明の実施形態を示す位相・速度検出装置の構成図であり、基本的には正弦波信号と方形波パルスによる位相・速度検出を切り替える方式とする。   FIG. 1 is a configuration diagram of a phase / velocity detection apparatus showing an embodiment of the present invention. Basically, a phase / velocity detection method using a sine wave signal and a square wave pulse is switched.

モータ等の回転体に結合される正弦波エンコーダ1は、図6と同様に、回転体の回転速度と位置に応じた周波数と位相差π/2をもつ2つのA,B相正弦波を発生する。コンバレータ2A、2Bは、ヒステリシス特性を有して、A,B相正弦波のゼロクロス点をエッジとする方形波パルスに変換する。   The sine wave encoder 1 coupled to a rotating body such as a motor generates two A and B phase sine waves having a frequency and a phase difference of π / 2 according to the rotational speed and position of the rotating body, as in FIG. To do. The converters 2A and 2B have hysteresis characteristics and convert them into square-wave pulses having edges at the zero cross points of the A and B phase sine waves.

パルスカウンタ・時刻カウンタ3は、コンパレータ2A、2Bから出力される方形波パルスのパルス数をパルスカウンタで計数したパルス数、およびパルスエッジを起点とする時刻カウンタの計数でパルス幅に対応するパルス位相を求める。位相・速度検出器4は、パルスカウンタ・時刻カウンタ3で求めるパルス数から回転体の位相・速度を検出する。 The pulse counter / time counter 3 is a pulse phase corresponding to the pulse width by counting the number of square wave pulses output from the comparators 2A and 2B by the pulse counter and counting by the time counter starting from the pulse edge. Ask for. The phase / speed detector 4 detects the phase / speed of the rotating body from the number of pulses obtained by the pulse counter / time counter 3.

ローパスフィルタ5A、5Bは、エンコーダ1からのA,B相正弦波に対してノイズカットを行う。これらローパスフィルタ5A、5BはCRのフィルタでもよいし、OPアンプを用いたフィルタでもよく、十分にノイズがカットできる時定数をもつものを選択する(ただし、速度検出による切替え速度までは影響を及ぼさない値とする)。   The low-pass filters 5A and 5B perform noise cut on the A and B phase sine waves from the encoder 1. These low-pass filters 5A and 5B may be CR filters or filters using an OP amplifier, and those having a time constant that can sufficiently cut noise are selected (however, the switching speed by speed detection is not affected. No value).

A/D変換器6は、ローパスフィルタ5A、5Bを介して入力したA,B相正弦波信号のサンプル値を交互に切り替えてデジタル信号に変換する。位相変換器7は、A/D変換器6からの位相差π/2をもつ2つのA,B相正弦波データから、位相θ=tan-1(B/A)を求める。 The A / D converter 6 converts the sample values of the A and B phase sine wave signals input via the low-pass filters 5A and 5B alternately into a digital signal. The phase converter 7 obtains the phase θ = tan −1 (B / A) from the two A and B phase sine wave data having the phase difference π / 2 from the A / D converter 6.

位相・速度検出器8は、位相変換器7からの位相θからアナログ値による回転体の位相および速度を検出する。このときの位相は、回転体の1回転毎に0°にリセットされることから、パルスカウンタ・時刻カウンタ3で計数するパルス数により上位桁補正(360°単位の桁設定)を行うことで、回転数に合わせた回転位置を求める。 The phase / speed detector 8 detects the phase and speed of the rotating body based on the analog value from the phase θ from the phase converter 7. Since the phase at this time is reset to 0 ° for each rotation of the rotating body, by performing upper digit correction (digit setting in units of 360 °) by the number of pulses counted by the pulse counter / time counter 3, Find the rotational position according to the rotational speed.

切替スイッチ9は、回転体が高速回転時にはパルスによる位相・速度検出器4からの検出値に切り替え、低速回転時にはアナログ値による位相・速度検出器8からの検出値に切り替える。この切り替えは、予め設定する速度を境にして制御される。   The change-over switch 9 switches to a detection value from the phase / speed detector 4 by pulse when the rotating body rotates at high speed, and switches to a detection value from the phase / speed detector 8 by analog value at low speed rotation. This switching is controlled with a preset speed as a boundary.

以下、本実施形態による特徴的事項を説明する。   Hereinafter, characteristic items according to the present embodiment will be described.

(1)ローパスフィルタによる位相ずれ補償
図1の構成において、アナログ検出部分にノイズカット用のローパスフィルタ5A、5Bやコンパレータ2A,2Bを介挿するため、これらフィルタにより方形波パルスと正弦波パルスとの間に位相ずれが発生するが、この位相ずれによる検出精度への影響を切替スイッチ9による切替えで回避する。
(1) Compensation of phase shift by low-pass filter In the configuration of FIG. 1, since a low-pass filter 5A, 5B for noise cut and comparators 2A, 2B are inserted in the analog detection portion, a square wave pulse and a sine wave pulse are generated by these filters. In this case, a phase shift occurs, but the influence on the detection accuracy due to this phase shift is avoided by switching by the selector switch 9.

フィルタ5A、5Bにより、アナログ値による検出位相に遅れが生じるが、大きな遅れを生じるのは高速回転時のみである。低速回転時では、以下の理由により低速でも高精度なアナログ検出値を使用できる。   The filters 5A and 5B cause a delay in the detection phase based on the analog value, but a large delay occurs only during high-speed rotation. During low-speed rotation, highly accurate analog detection values can be used even at low speeds for the following reasons.

(a)低速時はローパスフィルタの遅れ時間による位相ずれが小さいため、位相検出精度への影響が小さい。   (A) Since the phase shift due to the delay time of the low-pass filter is small at low speed, the influence on the phase detection accuracy is small.

(b)低速のため、制御周期間に多くパルスが来ることはなく、制御周期間の1パルス以上への拡張は不要。   (B) Because of the low speed, many pulses do not come between control cycles, and there is no need to expand to more than one pulse between control cycles.

よって、低速域ではアナログ値による速度検出を用いる。高回転域になると、上記(a)及び(b)が問題になるため、パルスによる速度検出に切替える。高回転域ではパルスが十分な個数だけ入ってくるため、パルスによる速度検出の方が安定に検出できる。   Therefore, speed detection based on analog values is used in the low speed range. In the high rotation range, the above (a) and (b) become problems, so the speed is switched to pulse detection. Since a sufficient number of pulses enter in the high rotation range, speed detection using pulses can be detected more stably.

上記のように、パルスによる速度検出とアナログによる速度検出を所定の速度で切替えることで、低速でも高速でも精度のよい検出をすることが可能となる。   As described above, switching between speed detection using pulses and speed detection using analog at a predetermined speed enables accurate detection at both low and high speeds.

特に、エレベータやダイナモメータのように低速域での速度制御性能が求められる分野において有効である。   In particular, it is effective in a field where speed control performance in a low speed region is required, such as an elevator or a dynamometer.

(2)アナログ検出とパルス検出の位相ずれ補償
アナログ値による位相・速度検出において、パルスカウンタ・時刻カウンタ3で計数するパルス数により位相・速度検出器8の上位桁補正を行うことで、なるべく精度のよいアナログ検出値を高い回転数まで安定に得ることができる。
(2) Phase shift compensation between analog detection and pulse detection In phase / velocity detection based on analog values, the upper digits of the phase / velocity detector 8 are corrected with the number of pulses counted by the pulse counter / time counter 3 to achieve as much accuracy as possible. A good analog detection value can be stably obtained up to a high rotational speed.

ここで、コンパレータ2A、2Bは、正弦波パルスを方形波パルスに変換するため、ゼロクロス付近でのチャタリングを防止するため、通常はヒステリシスコンパレータが用いられる。しかし、ヒステリシスがあると、方形波パルスによる検出位相と、正弦波信号による検出位相との間にずれが生じる。図2の(a)はヒステリシスが無い場合のコンパレータの入力正弦波信号と出力パルス信号の関係を示し、図2の(b)はヒステリシスがある場合の関係を示すように、正負のパルスエッジ位置で位相ずれが生じる。 Here, since the comparators 2A and 2B convert a sine wave pulse into a square wave pulse, a hysteresis comparator is usually used to prevent chattering near the zero cross. However, if there is hysteresis, a shift occurs between the detection phase by the square wave pulse and the detection phase by the sine wave signal . 2A shows the relationship between the input sine wave signal and the output pulse signal of the comparator when there is no hysteresis, and FIG. 2B shows positive and negative pulse edge positions so as to show the relationship when there is hysteresis. Causes a phase shift.

この位相ずれは、位相・速度検出器8での上位桁補正のタイミングのずれとなって現れ、検出位相の精度に影響する。この位相ずれを防止するために、位相・速度検出器8ではずれたパルス位相を用いて、ずれたパルス位相をアナログ位相に一致させることで、アナログ位相の上位桁を補正する。この補正アルゴリズムを以下詳細に説明する。 This phase shift appears as a shift in the timing of upper digit correction in the phase / speed detector 8 and affects the accuracy of the detected phase. In order to prevent this phase shift, the phase / velocity detector 8 uses the shifted pulse phase to match the shifted pulse phase with the analog phase, thereby correcting the upper digit of the analog phase. This correction algorithm will be described in detail below.

図3は、位相ずれ発生による検出位相のずれの例を波形で示す。A,B相の正弦波の位相関係を象限0〜3で表すと図4に示すようになり、このA,B相の正弦波に対してコンパレータ2A,2Bによる位相ずれが無ければ方形波パルスは0°、90°、180°270°、360°にエッジをもつことになる。この位相ずれが無い場合、位相変換器7の出力は、図3に示すように、A相の位相と、アナログ象限(0〜3)の情報を出力し、パルスカウンタ・時刻カウンタ3では、アナログ値による位相・速度検出器8に送るパルス象限とパルス位相の情報を生成する。   FIG. 3 shows an example of a detection phase shift due to the occurrence of a phase shift in waveform. The phase relationship between the A and B phase sine waves is represented by quadrants 0 to 3 as shown in FIG. 4. If there is no phase shift by the comparators 2A and 2B with respect to the A and B phase sine waves, a square wave pulse is obtained. Will have edges at 0 °, 90 °, 180 ° 270 °, 360 °. When there is no phase shift, the output of the phase converter 7 outputs the phase A phase and analog quadrant (0-3) information as shown in FIG. The information of the pulse quadrant and pulse phase to be sent to the phase / velocity detector 8 by value is generated.

ここで、コンパレータ2A,2Bにヒステリシスがある場合、図3に示すように、出力にそれぞれ遅れまたは進みの位相ズレが発生すると、カウンタ3の桁出力が位相変換器7のアナログ位相出力に対してp(+)、p(−)だけずれる。この結果、位相・速度検出器8の検出位相は360°分だけ低下または上昇する。   Here, when there is hysteresis in the comparators 2A and 2B, as shown in FIG. 3, when a delay or advance phase shift occurs in the output, the digit output of the counter 3 is compared with the analog phase output of the phase converter 7. It is shifted by p (+) and p (−). As a result, the detection phase of the phase / velocity detector 8 decreases or increases by 360 °.

このヒステリシスによる位相ずれ補償には、位相・速度検出目的がアナログ検出値を高い回転数まで適用することを目的とするため、位相変換器7の出力になるアナログ位相を基準とし、カウンタ3の出力になるパルスにより検出位相補正を行う。この補正アルゴリズムを説明する。   In the phase shift compensation by hysteresis, the purpose of phase / velocity detection is to apply an analog detection value up to a high rotation speed, so the output of the counter 3 is based on the analog phase output from the phase converter 7 as a reference. The detected phase is corrected by the pulse that becomes. This correction algorithm will be described.

(A)位相の定義
まず、アナログ象限の定義を図4に示すものとし、パルス象限はパルスエッジにより決められた図3に示すような象限とする。図3ではパルス位相のずれにより、アナログ象限とパルス象限とが一致しない場合が生じている。
(A) Definition of Phase First, the definition of the analog quadrant is as shown in FIG. 4, and the pulse quadrant is a quadrant as shown in FIG. 3 determined by the pulse edge. In FIG. 3, there is a case where the analog quadrant and the pulse quadrant do not coincide with each other due to the deviation of the pulse phase.

図4に示すように、1f(正弦波信号の1周期)のパルス基準で位相1.0を定義し、アナログ位相の360°分を位相1.0として、アナログ位相の0〜360°を1.0未満で表現する。つまり360°=検出位相1.0とする。例えば、検出位相が450°は1.25(360°×1.25=450°)であると表現する。パルス位相は4f(4つ)のパルスでカウントされ、4fの4パルス=アナログ検出位相1.0とする。また、パルス位相検出時、正転でパルスエッジが発生したか逆転でパルスエッジが発生したかが分かるものとする。 As shown in FIG. 4, the phase 1.0 is defined on the basis of a pulse of 1f ( one cycle of the sine wave signal ), the analog phase 360 ° is defined as the phase 1.0, and the analog phase 0 to 360 ° is set to 1. Expressed with less than 0.0. That is, 360 ° = detection phase 1.0. For example, a detection phase of 450 ° is expressed as 1.25 (360 ° × 1.25 = 450 °). The pulse phase is counted by 4f (four) pulses, and 4f of 4f = analog detection phase 1.0. Further, it is assumed that when the pulse phase is detected, it can be determined whether a pulse edge is generated by forward rotation or a pulse edge is generated by reverse rotation.

(B)位相検出方式
検出位相値は、4fでカウントされた検出位相を整数部分(0,1,2・・)とし、アナログ検出位相を小数部分として位相を得る。例えば 図3のPではパルス位相が1でアナログ位相が0.25であるので検出位相としては1.25となる。
(B) Phase detection method The detection phase value is obtained by setting the detection phase counted at 4f as the integer part (0, 1, 2,...) And the analog detection phase as the decimal part. For example, in P of FIG. 3, since the pulse phase is 1 and the analog phase is 0.25, the detection phase is 1.25.

(C)補正アルゴリズム
位相ずれは象限0と象限3の境目部分で発生する。原因はパルス位相のずれであるため、象限0と象限3の境目ではアナログ位相を優先する。以下の補正は以下の条件の場合のみ補正し、条件が成立しなくなった場合(例えばパルス象限とアナログ象限が一致した場合)には補正しなくなるものとする。
(C) Correction algorithm A phase shift occurs at the boundary between quadrant 0 and quadrant 3. Since the cause is a pulse phase shift, the analog phase is given priority at the boundary between quadrant 0 and quadrant 3. The following correction is performed only under the following conditions, and is not performed when the conditions are not satisfied (for example, when the pulse quadrant and the analog quadrant coincide).

図3のAの領域では、パルス象限とアナログ象限があっているため、補正は行わない。   In the region A in FIG. 3, there is a pulse quadrant and an analog quadrant, and therefore no correction is performed.

図3のBの領域では、パルス象限が3で、アナログ象限が0の場合で、正転エッジのためパルス象限の検出位相を+1補正する。また、パルス象限が3で、アナログ象限が0の場合で、逆転エッジならばパルス象限の検出位相を+1補正する。 In the region B of FIG. 3, when the pulse quadrant is 3 and the analog quadrant is 0, the detection phase of the pulse quadrant is corrected by +1 because of the forward rotation edge. Further, when the pulse quadrant is 3 and the analog quadrant is 0, the detected phase of the pulse quadrant is corrected by +1 if it is a reverse edge.

パルス象限が0で、アナログ象限が3の場合で、逆転エッジならばパルス象限の検出位相を−1補正する。また、図3のCの領域では、パルス象限が0で、アナログ象限が3の場合で、正転エッジならばパルス象限の検出位相を−1補正する。 If the pulse quadrant is 0 and the analog quadrant is 3, and if it is a reverse edge, the detection phase of the pulse quadrant is corrected by -1. Further, in the region C of FIG. 3, when the pulse quadrant is 0 and the analog quadrant is 3, if the edge is a forward rotation edge, the detection phase of the pulse quadrant is corrected by −1.

したがって、アナログ検出とパルス検出の位相誤差が発生した場合でも、象限0と象限3の境目で発生する誤差を補正して高精度なアナログを用いた位相検出ができる。   Therefore, even when a phase error between analog detection and pulse detection occurs, the error generated at the boundary between quadrant 0 and quadrant 3 can be corrected to perform phase detection using high-precision analog.

本発明の実施形態を示す位相・速度検出装置の構成図。The block diagram of the phase and speed detection apparatus which shows embodiment of this invention. 正弦波信号とパルス信号の位相ずれの例。An example of a phase shift between a sine wave signal and a pulse signal. 位相ずれ発生による検出位相の波形図。The wave form diagram of the detection phase by phase shift generation | occurrence | production. A,B相の正弦波位相と象限0〜3の関係図。The relationship figure of the sine wave phase of A, B phase and quadrants 0-3. 方形波パルスによる位相・速度検出の説明図。Explanatory drawing of the phase and speed detection by a square wave pulse. 正弦波パルスによる位相・速度検出の説明図。Explanatory drawing of the phase and speed detection by a sine wave pulse. 従来のエンコーダと位相・速度検出回路の構成図。The block diagram of the conventional encoder and a phase and speed detection circuit.

符号の説明Explanation of symbols

1 正弦波エンコーダ
2A,2B コンパレータ
3 パルスカウンタ・時刻カウンタ
4 パルスによる位相・速度検出器
5A,5B ローパスフィルタ
6 A/D変換器
7 位相変換器
8 アナログ値による位相・速度検出器
9 切替スイッチ
1 Sine Wave Encoder 2A, 2B Comparator 3 Pulse Counter / Time Counter 4 Pulse Phase / Speed Detector 5A, 5B Low Pass Filter 6 A / D Converter 7 Phase Converter 8 Analog / Phase Detector / Speed Detector 9 Changeover Switch

Claims (2)

回転体に結合されて位相差π/2のA,B相の正弦波信号を得る正弦波エンコーダと、
前記A,B相の正弦波信号のゼロクロス点をエッジとする方形波パルスに変換し、これら方形波パルスのパルス数をパルスカウンタで計数したパルス数、およびパルスエッジを起点とする時刻カウンタの計数でパルス幅に対応するパルス位相を求めるパルスカウンタ・時刻カウンタと、
前記パルスカウンタ・時刻カウンタで求めた方形波パルスのパルス数から回転体の位相・速度を検出する方形波パルスによる位相・速度検出回路と、
前記A,B相の正弦波信号からノイズ成分を除去し、これら正弦波信号をA/D変換データに変換し、これらA/D変換データから位相を求める位相変換器と、
前記位相変換器で求めたアナログ位相から回転体の位相・速度を検出し前記パルス位相と前記アナログ位相との間に位相ずれが発生した時に、このアナログ位相の上位桁を前記パルス位相が存在するパルス象限と前記アナログ位相が存在するアナログ象限が一致するパルス位相に補正する正弦波信号による位相・速度検出回路と、
回転体の速度が予め設定した速度を超えた高速度領域では前記方形波パルスによる位相・速度検出回路の出力を位相・速度検出値とし、回転体の速度が前記設定した速度以下になる低速度領域では前記正弦波信号による位相・速度検出回路の出力を位相・速度検出値とする切替スイッチと、
を備えたことを特徴とする回転体の位相・速度検出装置。
A sine wave encoder coupled to a rotating body to obtain A and B phase sine wave signals with a phase difference of π / 2;
Conversion to square wave pulses having an edge at the zero cross point of the A and B phase sine wave signals, the number of pulses counted by the pulse counter, and the counting of the time counter starting from the pulse edge With the pulse counter and time counter to obtain the pulse phase corresponding to the pulse width,
A phase / velocity detection circuit using a square wave pulse for detecting the phase / velocity of the rotating body from the number of square wave pulses obtained by the pulse counter / time counter;
A phase converter for removing noise components from the A and B phase sine wave signals, converting these sine wave signals into A / D conversion data, and obtaining a phase from the A / D conversion data;
The phase / velocity of the rotating body is detected from the analog phase obtained by the phase converter, and when a phase shift occurs between the pulse phase and the analog phase, the pulse phase is present in the higher-order digits of the analog phase. A phase / velocity detection circuit based on a sine wave signal that corrects the pulse phase to match a pulse phase in which the analog quadrant in which the analog phase exists exists ,
In the high-speed region where the speed of the rotating body exceeds the preset speed, the output of the phase / speed detection circuit by the square wave pulse is used as the phase / speed detection value, and the speed of the rotating body is lower than the set speed. In the region, a changeover switch that uses the output of the phase / velocity detection circuit based on the sine wave signal as the phase / velocity detection value,
A device for detecting a phase / speed of a rotating body.
前記正弦波信号による位相・速度検出回路は、前記方形波パルスによる前記パルス位相と、前記正弦波信号による前記アナログ位相との間に位相進み/遅れがある場合、前記位相進み/遅れに応じて前記アナログ位相の前記上位桁を正弦波信号の1周期分だけ増減する手段を備えたことを特徴とする請求項1に記載の回転体の位相・速度検出装置。 When the phase / velocity detection circuit based on the sine wave signal has a phase advance / delay between the pulse phase based on the square wave pulse and the analog phase based on the sine wave signal, the phase / velocity detection circuit 2. The phase / velocity detection device for a rotating body according to claim 1, further comprising means for increasing or decreasing the upper digit of the analog phase by one period of a sine wave signal.
JP2008038305A 2008-02-20 2008-02-20 Rotating body phase / speed detector Expired - Fee Related JP4835606B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008038305A JP4835606B2 (en) 2008-02-20 2008-02-20 Rotating body phase / speed detector
PCT/JP2009/052636 WO2009104576A1 (en) 2008-02-20 2009-02-17 Rotor phase and velocity detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038305A JP4835606B2 (en) 2008-02-20 2008-02-20 Rotating body phase / speed detector

Publications (2)

Publication Number Publication Date
JP2009198231A JP2009198231A (en) 2009-09-03
JP4835606B2 true JP4835606B2 (en) 2011-12-14

Family

ID=40985456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038305A Expired - Fee Related JP4835606B2 (en) 2008-02-20 2008-02-20 Rotating body phase / speed detector

Country Status (2)

Country Link
JP (1) JP4835606B2 (en)
WO (1) WO2009104576A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129224B2 (en) * 2009-10-30 2013-01-30 オークマ株式会社 Position detection device
JP2011257167A (en) * 2010-06-07 2011-12-22 Meidensha Corp Phase of rotor and speed detector
JP5664895B2 (en) * 2010-06-28 2015-02-04 富士電機株式会社 Electric motor control device
JP5638310B2 (en) * 2010-08-11 2014-12-10 Ntn株式会社 Wheel bearing with sensor
JP5932285B2 (en) * 2011-10-14 2016-06-08 キヤノン株式会社 Encoder and device equipped with the same
CN102707083B (en) * 2012-07-02 2013-10-09 株洲南车时代电气股份有限公司 Motor speed calculating method
CN102914665B (en) * 2012-09-25 2014-07-02 上海交通大学 Motor revolving speed measurement and fault state detection system
JP6193000B2 (en) * 2013-06-12 2017-09-06 株式会社日立製作所 Encoder abnormality detection device and elevator apparatus using encoder abnormality detection device
KR101540176B1 (en) * 2014-03-13 2015-07-28 엘에스산전 주식회사 Apparatus for detecting speed of moror
CN104793008A (en) * 2015-03-20 2015-07-22 哈尔滨汽轮机厂有限责任公司 Revolution speed transducer for turbine
CN106330016B (en) * 2016-10-27 2018-08-14 重庆华数机器人有限公司 A kind of speed detection method and system of AC servo motor
CN111141926B (en) * 2019-12-27 2022-06-03 宁波三星智能电气有限公司 Method for detecting rotating speed of fan in charging pile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127762A (en) * 2003-10-22 2005-05-19 Canon Inc Sensor signal processing apparatus
JP4289983B2 (en) * 2003-11-21 2009-07-01 東洋電機製造株式会社 Phase velocity detector
JP2006234688A (en) * 2005-02-25 2006-09-07 Victor Co Of Japan Ltd Rotation angle detector and rotation angle controlling device for motor

Also Published As

Publication number Publication date
WO2009104576A1 (en) 2009-08-27
JP2009198231A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4835606B2 (en) Rotating body phase / speed detector
US6389373B1 (en) Resolver signal processing system
EP3483563B1 (en) Resolver device
JP5173962B2 (en) Resolver / digital conversion apparatus and resolver / digital conversion method
EP2522958B1 (en) Resolver signal conversion device and method
JP5148394B2 (en) Microcomputer, motor control system
JPS62162968A (en) Speed detecting device
JP5149820B2 (en) Controller and processing equipment
JP5092847B2 (en) Deviation detection device, deviation detection method, and method of manufacturing electric motor with position detection sensor
CN110806224B (en) Incremental encoder position correction system and method
JP2005024493A (en) Abnormality detector for resolver
JP2013198229A (en) Δς modulation a/d converter and motor controller including the same
KR101018713B1 (en) Method for processing output signal of encoder
US8872565B2 (en) Signal processing apparatus and signal processing method
JP2005140737A (en) Magnetic encoder device
WO2014010063A1 (en) Motor controller
JP4867534B2 (en) Motor speed detection device
JP2010014410A (en) Rotational position detecting apparatus of rotator
JP2011257167A (en) Phase of rotor and speed detector
JP2022098537A (en) Electronic control device and method for detecting operation of motor
JPH0466288B2 (en)
JP2019158667A (en) Speed and position detector
JP5097012B2 (en) Encoder signal processing circuit
JP2005017000A (en) Encoder
JP2012220476A (en) Position detector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees