JPH02219002A - Diffraction grating and its production - Google Patents

Diffraction grating and its production

Info

Publication number
JPH02219002A
JPH02219002A JP4050089A JP4050089A JPH02219002A JP H02219002 A JPH02219002 A JP H02219002A JP 4050089 A JP4050089 A JP 4050089A JP 4050089 A JP4050089 A JP 4050089A JP H02219002 A JPH02219002 A JP H02219002A
Authority
JP
Japan
Prior art keywords
photosensitive layer
grating
diffraction grating
shape
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4050089A
Other languages
Japanese (ja)
Other versions
JP2599455B2 (en
Inventor
Masanori Iida
正憲 飯田
Kiyokazu Hagiwara
萩原 清和
Hiroyuki Asakura
宏之 朝倉
Minoru Nishioka
稔 西岡
Koichi Murase
宏一 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1040500A priority Critical patent/JP2599455B2/en
Publication of JPH02219002A publication Critical patent/JPH02219002A/en
Application granted granted Critical
Publication of JP2599455B2 publication Critical patent/JP2599455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To enhance diffraction efficiency and to decrease the difference in efficiency by the polarization direction of incident light by having a substrate, a photosensitive layer provided on the substrate and a reflecting film to be provided on the photosensitive layer and specifying the grating groove shape and the wave length region and the disposition to be used, respectively. CONSTITUTION:The photosensitive layer 12 is provided on the substrate 11 and periodic grooves are inscribed on the photosensitive layer 12 by holographic exposing. The reflecting film 13 as thin as not to impair the shape inscribed on the interference exposing layer 12 is thereafter provided to constitute the diffraction grating. The parameters h, gamma, phi have the shape satisfying the range of equation II when the spacing between the gratings is designated as d, k=2pi/d, the coordinates perpendicular to the groove direction of the gratings as x and the shape eta (x) of the grating grooves is expressed by formula I. The wavelength region to be used is standardized by the inter-grid spacing d and is expressed by formula III. Further, the disposition to be used is executed in the range satisfying equation IV where the incident angle is designated as theta and the first order retroangle as thetaL. The diffraction efficiency in non- polarization is enhanced in this way and the difference in the diffraction efficiency by the polarization direction of the incident light is decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は分光機器および光通信機器等に使用する回折格
子とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a diffraction grating used in spectroscopic equipment, optical communication equipment, etc., and a method for manufacturing the same.

従来の技術 従来、回折格子は光の波長分散素子として主に分光測定
用機器に使用され、ある波長域から所望の波長を選択し
て取り出す用途に用いられている。
BACKGROUND OF THE INVENTION Conventionally, diffraction gratings have been used as optical wavelength dispersion elements mainly in spectroscopic measurement equipment, and are used to select and extract a desired wavelength from a certain wavelength range.

しかしながら回折格子は一般に入射する光の波長、偏光
方向、入射角度によって回折される光の強度、即ち回折
効率が著しく影響を受けることが知られている。
However, it is known that the intensity of diffracted light, that is, the diffraction efficiency, of diffraction gratings is generally significantly affected by the wavelength, polarization direction, and angle of incidence of incident light.

以下、従来の回折格子およびその製造方法について説明
する。
Hereinafter, a conventional diffraction grating and its manufacturing method will be explained.

例えば、ビー、ブリーフ、アール、プラウイル、エム、
プライドゥン アンド デイ−、メイストゥル:マイク
ロウェーブ ベリフィケイションオブ ア ニューメリ
カル オプティマイゼイション オプ フーリエ グレ
ーティングズ、アプライド フィツクス、24.Nα2
.P、14(1981)  CP、B11ek、R,D
eleuil、M、Breidneand  D、Ma
ystre:Microwave verificat
ion of  anumerical  optim
ization of  Fourior grati
ngs。
For example, B, BRIEF, R, PRAUIL, M,
Prydon and Day, Maystr: Microwave Verification of a Numerical Optimization Op Fourier Gratings, Applied Fixtures, 24. Nα2
.. P, 14 (1981) CP, B11ek, R,D
eleuil, M., Breidneand D., Ma.
ystre: Microwave verificat
ion of numerical optim
Ization of Fourior grati
ngs.

Applied Physics、24. Nα2.P
、147 (1981)]では、基本周波数と2次のバ
ーモミツクの組み合わせによってプロファイルを合成す
るフーリエ格子の製造がホログラフィック露光技術によ
って可能であることから、局所的な理論的最適化によっ
てフーリエ格子の効率を、広波長域用のエシェレット格
子の効率より太き(でき、この理論的予言をマイクロ波
領域で実験的に実証している。
Applied Physics, 24. Nα2. P
, 147 (1981)], the efficiency of the Fourier grating can be improved by local theoretical optimization, since it is possible to produce a Fourier grating that synthesizes a profile by a combination of the fundamental frequency and the second-order vermomicks using holographic exposure technology. is thicker than the efficiency of the echelette grating for a wide wavelength range, and this theoretical prediction has been experimentally verified in the microwave region.

ここで、フーリエ格子は一般に格子溝方向と垂直な座標
をx、格子間隔をdとして格子溝形状η(x)は基本周
波数k(=2π/d)と2次のバーモミツク2にの組み
合わせ ’I (x)−h  {sin(kx)+ 1 sin
  (2Kx−φ) )であられされ、h、γ、φが形
状を決めるパラメーターである。
Here, in general, the Fourier grating is defined by the combination 'I (x)−h {sin(kx)+1 sin
(2Kx-φ)), and h, γ, and φ are parameters that determine the shape.

なお、文献で示されている回折格子形状は、この場合、 h=0.42.r=0.286.農−90゜に相当する
Note that the diffraction grating shape shown in the literature is h=0.42 in this case. r=0.286. Corresponds to -90°.

次に、製造方法においては従来のコヒーレント光を用い
た三光束干渉露光法が用いられているが、基板上に設け
る感光層の感度特性は、露光量に対して現像後の感光層
の膜厚残存量がほぼ線型な関係の範囲で製造されている
Next, the manufacturing method uses the conventional three-beam interference exposure method using coherent light, but the sensitivity characteristics of the photosensitive layer provided on the substrate depend on the amount of exposure and the thickness of the photosensitive layer after development. Manufactured within a range where the residual amount has a nearly linear relationship.

第16図に露光量と現像後の感光層の膜厚残存率の関係
、即ち感度曲線を表した図を示す、ここでは感光層にポ
ジ型感光材、即ち露光されたところが現像により除去さ
れるような感光材について示している。16aは露光干
渉縞の強度分布、16bは現像後の格子の断面形状、1
6cは感度曲線である。
Figure 16 shows the relationship between the exposure amount and the remaining film thickness of the photosensitive layer after development, that is, the sensitivity curve. In this case, the photosensitive layer is a positive type photosensitive material, that is, the exposed area is removed by development. It shows the photosensitive material. 16a is the intensity distribution of exposure interference fringes, 16b is the cross-sectional shape of the grating after development, 1
6c is a sensitivity curve.

これによれば、感度曲線は線型であるためもし仮にフー
リエ格子を形成するなら、例えばエム。
According to this, since the sensitivity curve is linear, if a Fourier grating is formed, for example, M.

プライドゥン、ニス、ジ町ハンソン、エルーイーニルソ
ン アンド エイチ、アーレン:プレーズド ホログラ
フィック グレーティングズ、オプティカ アクタ、2
6.述11.P、1427(1979)  (M、Br
eidne、S、Johansson、L−E Ni1
sson and H,Ahlen:Blazed h
olographic gratings。
Prydun, Niss, Jimachi Hanson, Elouinilsson & H, Arlen: Plased Holographic Gratings, Optica Acta, 2
6. Statement 11. P, 1427 (1979) (M, Br
eidne, S., Johansson, L-E Ni1.
sson and H, Ahlen: Blazed h
olographic gratings.

0ptica Acta、26. kll、P、142
7(1979) )のように2回の露光工程と精密な位
置あわせが必要であった。
Optica Acta, 26. kll, P, 142
7 (1979)), two exposure steps and precise positioning were required.

発明が解決しようとする課題 しかしながら、この文献で示されている局所的最適化は
分光機器で用いられることを念頭において、回折格子に
入射する角度と1次回折光が反射される角度の差が17
°という条件でなされている。これは、例えばλ/d=
1で、リトロ−角より8.5°離れた角度から光を入射
させたことと同じことを意味する。
Problem to be Solved by the Invention However, keeping in mind that the local optimization shown in this document is used in spectroscopic instruments, the difference between the angle of incidence on the diffraction grating and the angle at which the first-order diffracted light is reflected is 17
This is done on the condition that: This is, for example, λ/d=
1 means that the light is incident from an angle 8.5 degrees away from the Littrow angle.

光通信用に回折格子を使用する場合にはりドロー配置付
近で用いることが多く、17°の角度差を維持したまま
で使用することはない。従って、この場合に対しての局
所最適化によるフーリエ格子の優位性は定量的には述べ
られていない。これが第1の問題点である。
When using a diffraction grating for optical communication, it is often used near the beam draw arrangement, and is not used while maintaining an angular difference of 17°. Therefore, the superiority of Fourier lattice based on local optimization in this case has not been quantitatively stated. This is the first problem.

事た、マイクロ波領域で理論的予見の実証を行っている
が実際に行った回折格子の格子形状が局所最適化された
形状とかなりの相違がある。一般に光通信においては使
用する波長域がマイクロ波領域に比べかなり短い0.8
μmから1.55μm帯といった波長域になる。これよ
り、局所最適化された格子形状の優位性がマイクロ波領
域での実証のみですべての波長域で実証されたと結論づ
けることはできない。これが第2の問題点である。
In fact, although we have verified our theoretical predictions in the microwave region, the shape of the actual diffraction grating is quite different from the locally optimized shape. In general, the wavelength range used in optical communications is 0.8
The wavelength range is from μm to 1.55 μm band. From this, it cannot be concluded that the superiority of locally optimized grating shapes has been demonstrated in all wavelength ranges, only in the microwave region. This is the second problem.

さらに、計算によって得られた格子形状は反射面が完全
導体としており、反射表面の誘電率を考慮していない。
Furthermore, the lattice shape obtained by calculation assumes that the reflective surface is a perfect conductor, and does not take into account the dielectric constant of the reflective surface.

偏光については、格子溝方向と垂直な偏光方向をTM波
、平行な偏光方向をTE波とすると、エム ジー、モハ
ラム アンド ティーケー ゲイロード:リガラス カ
ップルドウェーブ アナリシス オブ メタリック サ
ーフイス レリーフ グレーティングズ、ジャーナルオ
ブ オプティカル ソサイアティ オブ アメリカ ニ
ー、31階、LIP、1780(1986)  CM、
G、Moharaa and γ、に、Gaylord
:Rigorous coupled−@ave an
alysis of metallicsurface
−relief gratings、Journal 
of Optical5ociety of A+ee
rica A、3.  Na11. P、1780(1
986))によれば格子形状が方形波状であるものの、
回折格子表面の金属の持つ誘電率により、入射角による
効率の変化は完全導体の時に比べ、特に波長域が数μm
以下の領域でTM波の効率の変化がTE波のそれよりも
急激であると述べている。これが第3の問題点である。
Regarding polarization, assuming that the polarization direction perpendicular to the grating groove direction is the TM wave, and the polarization direction parallel to the grating groove direction is the TE wave, M.G., Moharram and T.K. Of America Knee, 31st Floor, LIP, 1780 (1986) CM,
G,Moharaa and γ,Ni,Gaylord
:Rigorous coupled-@ave an
lysis of metallic surface
-relief gratings, Journal
of Optical5ociety of A+ee
rica A, 3. Na11. P, 1780 (1
According to 986)), although the lattice shape is square wave-like,
Due to the dielectric constant of the metal on the surface of the diffraction grating, the efficiency changes depending on the angle of incidence compared to when it is a perfect conductor, especially in the wavelength range of several μm.
It is stated that the change in efficiency of TM waves is more rapid than that of TE waves in the following regions. This is the third problem.

また、フーリエ格子を実際に製造する際には、上記した
ように大規模な装置で2回の露光工程と精密な位置合わ
せをせねばならないという問題点を有していた。
Furthermore, when actually manufacturing a Fourier grating, there is a problem in that, as described above, two exposure steps and precise positioning must be performed using a large-scale apparatus.

本発明は上記問題点に鑑み、光通信に用いるために、特
にリトロ−配置で回折効率が高く、入射光の偏光方向に
よる効率の差異が小さくなる格子溝形状を有する回折格
子とこの回折格子を製造する方法を提供するものである
In view of the above problems, the present invention provides a diffraction grating and a diffraction grating having a grating groove shape that has a high diffraction efficiency especially in a retro arrangement and reduces the difference in efficiency depending on the polarization direction of incident light, for use in optical communication. The present invention provides a method for manufacturing.

課題を解決するだめの手段 上記目的を達成するために本発明の回折格子は基板と基
板上に設けた感光層と感光層の上に設ける反射膜とを有
し、格子溝方向と垂直な座標をx、格子間隔をd、k=
2π/dとして、格子゛溝形状η(x)が η(x) −h (sln(Kx)+ysin (2K
x−90” ) )で表されるとき、パラメーターh、
γ、φが0.05≦γ≦0.32 0.26≦2 h/d≦0.52 の範囲を満たし、使用する波長域を格子間隔で規格化し
て 0.67≦λ/d≦1.15 とし、使用する配置が、回折格子への入射角をθL1次
のりドロー角がθLとして θ −5° ≦θ≦θL+5゜ し を満たすものである。
Means for Solving the Problems In order to achieve the above objects, the diffraction grating of the present invention has a substrate, a photosensitive layer provided on the substrate, and a reflective film provided on the photosensitive layer. x, grid spacing d, k=
2π/d, the grating groove shape η(x) is η(x) −h (sln(Kx)+ysin (2K
x-90")), the parameter h,
γ and φ satisfy the following ranges: 0.05≦γ≦0.32 0.26≦2 h/d≦0.52, and the wavelength range to be used is normalized by the lattice spacing to be 0.67≦λ/d≦1. .15, and the arrangement used satisfies θ −5° ≦θ≦θL+5°, where θL is the angle of incidence on the diffraction grating and the first-order cross-draw angle is θL.

好ましくはr、2h/d、  λ/4がそれぞれ0.1
≦γ≦0.25 0.35≦2h/d≦0.45 0.70≦λ/d≦1.1 を満たすものであればよい。
Preferably r, 2h/d, and λ/4 are each 0.1
Any material that satisfies ≦γ≦0.25, 0.35≦2h/d≦0.45, 0.70≦λ/d≦1.1 is sufficient.

製造方法としては感光層が露光量と現像後の感光層の膜
厚残存率を表す曲線の2次微分値が正値で、かつ3次の
変曲点が存在しない感度特性を持つ範囲で干渉露光すれ
ばよい。
As for the manufacturing method, the photosensitive layer interferes within the range where the second derivative of the curve representing the exposure amount and the remaining film thickness of the photosensitive layer after development has a positive value and the sensitivity characteristic does not have a third-order inflection point. All you have to do is expose it to light.

露光強度分布をI (x)、露光する範囲での感度曲線
を2次曲線近似して2次および1次の係数をそれぞれa
、bとすると、 1(x)=io+I、s In (kx)として 2h/d”l、l b+2a l0 7=a II /2 l b+2 a I。
The exposure intensity distribution is I (x), the sensitivity curve in the exposure range is approximated as a quadratic curve, and the quadratic and linear coefficients are respectively a
, b, then 1(x)=io+I, s In (kx), 2h/d"l, l b+2a l0 7=a II /2 l b+2 a I.

の関係式が成り立っていればよい。It is sufficient if the relational expression holds true.

好ましくは例えばポジ型感光材では、 1、−tl、 < l b/2a また、ネガ型感光材では、b<oで、 10+l、>lb/2a を満たしていればよい。Preferably, for example, in a positive photosensitive material, 1, -tl, < l b/2a In addition, in negative photosensitive materials, b<o, 10+l, >lb/2a It is sufficient if it satisfies the following.

作用 本発明は上記構成により回折格子の格子形状を特殊なも
のにして、リトロ−配置において無偏光での回折効率が
85%以上あり、入射光の偏光方向による回折効率の差
異が10%以内の回折格子を得ることができ、また、1
回の露光でこの様な回折格子を製造できる。
Effect The present invention has a special grating shape of the diffraction grating with the above configuration, and has a diffraction efficiency of 85% or more for non-polarized light in the Littrow arrangement, and a difference in diffraction efficiency depending on the polarization direction of the incident light is within 10%. A diffraction grating can be obtained, and 1
Such a diffraction grating can be manufactured by multiple exposures.

実施例 以下本発明の一実施例の回折格子およびその製造方法に
ついて図面を参照しながら説明する。
EXAMPLE Hereinafter, a diffraction grating and a method for manufacturing the same according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における回折格子の格子断面
図を示すものである。第1図においてlaは基板、1b
は感光層、ICは反射膜である。
FIG. 1 shows a cross-sectional view of a diffraction grating in one embodiment of the present invention. In Fig. 1, la is the substrate, 1b
is a photosensitive layer, and IC is a reflective film.

基板la上に感光層1bを設け、ホログラフィック露光
によって感光層lb上に周期的溝を刻印する。その後、
感光層1bに刻印された形状を損なわない程度の薄い反
射膜ICを設け1回折格子を構成する。
A photosensitive layer 1b is provided on a substrate la, and periodic grooves are imprinted on the photosensitive layer 1b by holographic exposure. after that,
A reflective film IC that is thin enough not to damage the shape engraved on the photosensitive layer 1b is provided to constitute one diffraction grating.

第2図は回折格子の斜視図である。21は基板、22は
感光層、23は反射膜である。図では基板が平面で四角
であるが、基板の形状はこれに限定されるものではない
FIG. 2 is a perspective view of the diffraction grating. 21 is a substrate, 22 is a photosensitive layer, and 23 is a reflective film. In the figure, the substrate is flat and square, but the shape of the substrate is not limited to this.

第3図は本発明の一実施例の回折格子の製造方法の概念
図を示したものである。第3図において、31は露光す
る干渉光の強度分布、32はポジ型の感光層、即ち露光
された感光層の部分が現像後に除去されるような感光層
の感度曲線、33は現像後の格子形状である。
FIG. 3 shows a conceptual diagram of a method for manufacturing a diffraction grating according to an embodiment of the present invention. In FIG. 3, 31 is the intensity distribution of the interference light to be exposed, 32 is the sensitivity curve of a positive photosensitive layer, that is, the exposed portion of the photosensitive layer is removed after development, and 33 is the sensitivity curve after development. It has a lattice shape.

感光層上にホログラフィック露光される光の強度分布は
コヒーレント光の二光束干渉露光法の場合、一般に三角
関数となっておりこれをそのまま感光層に転写すれば正
弦波形状となるため、感光層の感度特性に非線形性を持
たせることにより現像後の格子形状を正弦波状から歪ん
だ形状とすることができる。図ではフーリエ格子におい
てT=0.2,2h/d=0.435を実現するための
実施例の一つで、強度分布を 1(x)=I。+I、s in (kx)として l0=2.32mJ、I、=1.74mJ。
In the case of the two-beam interference exposure method using coherent light, the intensity distribution of the light holographically exposed on the photosensitive layer is generally a trigonometric function, and if this is directly transferred to the photosensitive layer, it will have a sine wave shape. By imparting nonlinearity to the sensitivity characteristics, the lattice shape after development can be changed from a sinusoidal shape to a distorted shape. The figure shows one example for realizing T=0.2, 2h/d=0.435 in a Fourier lattice, and the intensity distribution is 1(x)=I. +I, s in (kx), l0 = 2.32 mJ, I, = 1.74 mJ.

d=0.348μm また、露光する範囲での感光層の膜厚残存率1/10を
示す感度曲線を2次近似した曲線を1/l。=aE2+
bE+c として a=1.0.  b−−0,899,c”0.25であ
る条件のものを示している。露光する範囲で2次曲線に
近似できれば3次の変曲点は持っていないことになる。
d=0.348 μm In addition, 1/l is a curve obtained by quadratic approximation of the sensitivity curve showing the remaining thickness of the photosensitive layer in the exposed range of 1/10. =aE2+
bE+c and a=1.0. It shows the conditions where b--0,899, c"0.25. If it can be approximated to a quadratic curve in the exposed range, it does not have a third-order inflection point.

干渉光の強度分布31は三角関数になっており、また感
度曲線32は2次の微分係数が露光する範囲で常に正の
値であるような感度特性となっていることから、露光量
が多くなるにつれてそれに対する感光層の膜厚残存率の
変化は小さくなっている。従って、強度分布31で露光
すると現像後の格子形状33は、格子溝の山の部分が細
く、谷の部分が丸(なるような正弦波からは歪んだ形状
となる。そして、この感光層上に格子形状を損なわない
程度に薄い反射膜を設けて回折格子を構成することがで
きる。上に示した実施例はポジ型の感光材について述べ
たが、ネガ型の感光材、即ち露光されなかった感光層が
現像後に除去されるような感光材についても同様のこと
が言えることは容易に類推できる。従って上に示した数
値例はこれに限定されるものではない。
The intensity distribution 31 of the interference light is a trigonometric function, and the sensitivity curve 32 has a sensitivity characteristic in which the second-order differential coefficient is always a positive value within the exposure range. As the thickness increases, the change in the remaining thickness of the photosensitive layer becomes smaller. Therefore, when exposed with the intensity distribution 31, the grating shape 33 after development becomes a distorted shape from a sine wave in which the peaks of the grating grooves are thin and the valleys are round. A diffraction grating can be constructed by providing a reflective film as thin as possible without damaging the grating shape.Although the embodiments shown above are for positive-type photosensitive materials, negative-type photosensitive materials, that is, those that are not exposed to light, can be constructed. It can be easily inferred that the same thing can be said about a photosensitive material whose photosensitive layer is removed after development.Therefore, the numerical examples shown above are not limited thereto.

第4図は本発明の第1の実施例の回折格子の回折効率を
示したものである。第4図において形状はγ=0.05
.  λ/d=0.7である。実験で示した曲線41は
TE波成分に対する回折効率であり、−点鎖線で示した
曲線42はTM波成分に対する回折効率である。破線で
示した曲線43は無偏光な光が入射したときの回折効率
である。回折格子はりドロー配置の条件で、数値計算は
 ワイ、オクノ アンド ティー、マツダ:エフィシェ
ントテクニーク フォーサ ニューメリカル ソリュー
ション オブ デイフラクション バイ アフーリエ 
グレーティング、ジャーナル オブオブティ力ル ソサ
イアティ オブ アメリカニー、4.Nn3.P、46
5 (19B?)(Y。
FIG. 4 shows the diffraction efficiency of the diffraction grating according to the first embodiment of the present invention. In Figure 4, the shape is γ = 0.05
.. λ/d=0.7. A curve 41 shown in the experiment is the diffraction efficiency for the TE wave component, and a curve 42 shown by a - dotted chain line is the diffraction efficiency for the TM wave component. A curve 43 shown by a broken line is the diffraction efficiency when unpolarized light is incident. Under the conditions of the diffraction grating beam draw arrangement, numerical calculations were performed by Y., Okuno & T., Mazda: Efficient Technique Forsa Numerical Solution of Diffraction by Afourie
Grating, Journal of the American Society of America, 4. Nn3. P, 46
5 (19B?) (Y.

okuno and γ、Matsuda:Effic
ient technique forthe nu+
weflcal 5olution of diffr
action by aFoqrier graLln
g、Journal of 0pLical 5oci
etyof America A、 4.P、465(
1987) )に記載されている手法を用い、回折格子
表面は完全導体としている。
okuno and γ, Matsuda: Effic
ient technique forthe nu+
weflcal 5 solution of diffr
action by aFoqrier graLln
g, Journal of 0pLical 5oci
etyof America A, 4. P, 465 (
The diffraction grating surface was made to be a perfect conductor using the method described in (1987)).

以上のようにすれば、無偏光での回折効率43が85%
以上ある範囲は、 0.26≦2 h/d≦0.46 である。偏光方向による回折効率の違いは特に、0.2
6≦2 h/d≦0.44 において10%以内で偏光依存性が小さい。第5図に数
値計算を行った回折格子の格子形状を示した。51が格
子形状である。図では 2 h/d=0.383での形状に相当する。
If you do the above, the diffraction efficiency 43 for non-polarized light will be 85%.
The above ranges are 0.26≦2 h/d≦0.46. In particular, the difference in diffraction efficiency depending on the polarization direction is 0.2
The polarization dependence is small within 10% when 6≦2 h/d≦0.44. Figure 5 shows the grating shape of the diffraction grating that was numerically calculated. 51 is a grid shape. In the figure, this corresponds to the shape at 2 h/d=0.383.

2次のハーモニックが加わっている分、わずかに正弦波
溝形状よりも歪んだ形状となっている。
Due to the addition of the second harmonic, the shape is slightly more distorted than the sine wave groove shape.

第6図は本発明の第2の実施例の回折格子の回折効率を
示したものである。第6図において形状はγ−0,32
,λ/ d =0.9である。
FIG. 6 shows the diffraction efficiency of the diffraction grating according to the second embodiment of the present invention. In Figure 6, the shape is γ-0,32
, λ/d = 0.9.

この場合、無偏光での回折効率63が85%以上ある範
囲は、 0.31≦2 h/d≦0.46 である、この範囲では偏光方向による回折効率の差異は
8%以内である。第7図は数値計算を行った回折格子の
格子形状を示す0図で71は2 h/d =0.40で
の形状に相当する。正弦波形状からの歪みが大きくなっ
ていくに従い回折効率が高い範囲は2 h/dの大きい
ほうへとシフトしている。
In this case, the range in which the diffraction efficiency 63 for unpolarized light is 85% or more is 0.31≦2 h/d≦0.46. In this range, the difference in diffraction efficiency depending on the polarization direction is within 8%. FIG. 7 is a diagram showing the grating shape of the diffraction grating for which numerical calculations were performed, and 71 corresponds to the shape when 2 h/d =0.40. As the distortion from the sinusoidal shape increases, the range of high diffraction efficiency shifts toward the larger 2 h/d.

第8図は第3の実施例を示したものである。第8図にお
いて形状はr =0.1 、  λ/d=0.67であ
る。
FIG. 8 shows a third embodiment. In FIG. 8, the shape is r = 0.1 and λ/d = 0.67.

この場合、無偏光での回折効率83が85%以上ある範
囲は、 0.26≦2 h/d≦0.43 である。この範囲では偏光方向による回折効率の差異は
5%以内で偏光依存性が特に小さい、第9図に数値計算
を行った回折格子の格子形状を示す。
In this case, the range in which the diffraction efficiency 83 for non-polarized light is 85% or more is 0.26≦2 h/d≦0.43. In this range, the difference in diffraction efficiency depending on the polarization direction is within 5%, and the polarization dependence is particularly small. FIG. 9 shows the grating shape of the diffraction grating that was numerically calculated.

図で91は2 h/d −0,35での形状に相当する
In the figure, 91 corresponds to the shape at 2 h/d -0.35.

第10図は第4の実施例を示したものである。FIG. 10 shows a fourth embodiment.

第10図において形状はγ−0.2.λ/d=0.8で
ある。
In FIG. 10, the shape is γ-0.2. λ/d=0.8.

この場合、無偏光での回折効率10cが85%以上ある
範囲は、 0.29≦2/hd≦0.48 とかなり広範囲の2h/dで維持している。この範囲で
は偏光方向による回折効率の差異も10%以内である。
In this case, the range in which the diffraction efficiency 10c for non-polarized light is 85% or more is maintained at 2h/d, which is a fairly wide range of 0.29≦2/hd≦0.48. In this range, the difference in diffraction efficiency depending on the polarization direction is also within 10%.

第11図は第1O図において2 h/d =0.47に
おける波長依存性を表したグラフである。
FIG. 11 is a graph showing the wavelength dependence at 2 h/d =0.47 in FIG. 1O.

このような場合では無偏光での回折効率11cが85%
以上ある範囲は、 0.78≦λ/d≦1.15 であるが、 0.88≦λ/d≦1.0 の範囲では両偏光での回折効率の差異が大きくなってい
る。第12図に数値計算を行った回折格子の格子形状を
示す。図で12aは2h/d=0.47での形状に相当
する。
In such a case, the diffraction efficiency 11c for unpolarized light is 85%.
The above range is 0.78≦λ/d≦1.15, but in the range 0.88≦λ/d≦1.0, the difference in diffraction efficiency between both polarized lights becomes large. FIG. 12 shows the grating shape of the diffraction grating that was numerically calculated. In the figure, 12a corresponds to the shape when 2h/d=0.47.

第13図は第10図において両偏光での回折効率が等し
い2 h/d=0.435における波長依存性を表した
グラフである。
FIG. 13 is a graph showing the wavelength dependence when the diffraction efficiencies for both polarized lights are equal in 2 h/d=0.435 in FIG. 10.

この場合は無偏光での回折効率13cが85%以上ある
範囲は、 0.70≦λ/d≦1.15 である、特に、 0.73λ/d≦1.07 を満たす広い波長範囲で偏光方向による回折効率の差異
は10%以内である。
In this case, the range in which the diffraction efficiency 13c for non-polarized light is 85% or more is 0.70≦λ/d≦1.15, especially in a wide wavelength range that satisfies 0.73λ/d≦1.07. The difference in diffraction efficiency depending on the direction is within 10%.

第14図は実際にガラス基板上に感光層を設は一回のホ
ログラフィック露光で製作した回折格子を用いて入射角
依存性を測定した結果である。格子溝間隔は1.3μm
表面は反射率が99%以上あ、る金を蒸着しており測定
光は1.3μm帯の半導体レーザー光を用いている0図
で入射角30°がリトロ−角に相当する。曲線14aが
TE波、曲線14bがTMI、曲線14cが無偏光での
回折効率で、Δおよび口印はそれぞれTE波成分14a
FIG. 14 shows the results of measuring the dependence on the incident angle using a diffraction grating that was actually fabricated by providing a photosensitive layer on a glass substrate and performing one holographic exposure. Grating groove spacing is 1.3μm
The surface is vapor-deposited with gold having a reflectance of 99% or more, and a semiconductor laser beam in the 1.3 μm band is used as the measurement light. In Figure 0, the incident angle of 30° corresponds to the Littrow angle. The curve 14a is the TE wave, the curve 14b is the TMI, the curve 14c is the diffraction efficiency in unpolarized light, and Δ and the mouth mark are the TE wave component 14a, respectively.
.

TM波成分14bの測定点である。This is the measurement point of the TM wave component 14b.

一般にλ/d=1の条件では1次のりドロー配置で回折
効率は高くなり、入射角がりドロー角から離れるに従い
低くなる。図においても両偏光とも回折効率が最大にな
っているのはりドロー配置のときで無偏光で95%と高
い回折効率を有している。その時の回折効率は第13図
での計算値とほぼ一敗している。図かられかるようにリ
トロ−角から5°の範囲内での入射角に対しては回折効
率は無偏光で85%以上を維持しており、また偏光によ
る効率の差異も10%以内と小さい。リトロ−角から5
゛ずれた場合の入射角と1次回折光の反射角との角度差
は10°に相当し、これより離れた角度から入射させる
とTM波成分の回折効率14bが回折格子表面の誘電率
により、E波成分14aに比べ急激に低くなることが図
かられかる1例えば、リトロ−角から10°離れた角度
では両偏光の回折効率は20%以上の差異が生まれ、従
って無偏光での回折効率14cも低くなる。第15図は
、測定して回折格子の格子断面形状を、SEMを使用し
て撮影したものである。格子形状はこの場合、r =0
.2 、λ/d=1.0,2 h/d=0.435に相
当する形状を有している。なおパラメーター2 h/d
、  γ、λ/dの組み合わせを変えることにより多く
の形状が考えられるので、これまで上げた実施例に限定
されるものではない。
Generally, under the condition of λ/d=1, the diffraction efficiency increases in a first-order beam-draw arrangement, and decreases as the incident angle moves away from the draw angle. In the figure, the diffraction efficiency for both polarized lights is at its maximum in the draw arrangement, which has a high diffraction efficiency of 95% for non-polarized light. The diffraction efficiency at that time was almost completely inferior to the calculated value in FIG. As can be seen from the figure, for incident angles within 5 degrees from the Littrow angle, the diffraction efficiency is maintained at over 85% for unpolarized light, and the difference in efficiency due to polarization is small, within 10%. . 5 from the corner of Retro
``The angular difference between the incident angle and the reflection angle of the first-order diffracted light in the case of deviation corresponds to 10 degrees, and if the incident angle is farther from this, the diffraction efficiency 14b of the TM wave component will change due to the dielectric constant of the diffraction grating surface. It can be seen from the figure that the E-wave component 14a becomes sharply lower than that of the E-wave component 14a.1 For example, at an angle 10° away from the Littrow angle, the diffraction efficiency of both polarized lights differs by more than 20%, and therefore the diffraction efficiency of unpolarized light 14c also becomes lower. FIG. 15 is a photograph of the measured grating cross-sectional shape of the diffraction grating using an SEM. In this case, the grid shape is r = 0
.. 2, λ/d=1.0, 2h/d=0.435. Furthermore, parameter 2 h/d
, γ, and λ/d, many shapes can be considered by changing the combinations of , γ, and λ/d, so the present invention is not limited to the examples given above.

発明の効果 以上のように本発明は基板と基板上に設けた惑光層と感
光層の上に設ける反射膜とを有し、格子溝間隔をd、k
=2π/d、格子溝方向と垂直な座標をXとして、格子
溝形状η(x)が、η(x)=h 1sin(にx)+
 y sin (2にに一90’ ) )で表されると
き、パラメーターh、r、  φが、0.26≦2 h
/d≦0.52 0.05≦γ≦0.32 の範囲を満たす形状を有し、使用する波長域を格子間隔
d”il’規格化して、 0.67≦λ/d≦1.15 とし、さらに使用する配置を、入射角をθL1次のリト
ロ−角をθLとして、 θ −5′ ≦θ≦θL+5゜ を満たす範囲で行うことにより、無偏光での回折効率が
85%以上あり、入射光の偏光方向による回折効率の差
異が10%以内にすることができる。
Effects of the Invention As described above, the present invention includes a substrate, a light-transmitting layer provided on the substrate, and a reflective film provided on the photosensitive layer, and the lattice groove spacing is set to d, k.
=2π/d, and the coordinate perpendicular to the grating groove direction is X, the grating groove shape η(x) is η(x)=h 1sin(x)+
y sin (2 to 90'), the parameters h, r, and φ are 0.26≦2 h
/d≦0.52 0.05≦γ≦0.32, and the wavelength range used is normalized to the lattice spacing d"il', and 0.67≦λ/d≦1.15 By setting the incident angle to θL and setting the Littrow angle of the first order to θL, the diffraction efficiency in non-polarized light can be 85% or more by arranging the incident angle in a range that satisfies θ −5′ ≦θ≦θL+5°. The difference in diffraction efficiency depending on the polarization direction of incident light can be kept within 10%.

また、感光層が、露光量と現像後の感光層の膜厚残存率
を表す曲線の2次微分値が正値で、かつ3次の変曲点が
存在しない感度特性を持ち、露光する干渉縞の方向と垂
直な座標をx、縞間隔をd、k−2π/dとして、露光
強度分布r (x)を、1(x)=。4+11 s i
n (kx)感光層の感度特性の曲線を露光する強度範
囲内で2次曲線近似した際の2次の係数および1次の係
数をそれぞれa、bとして、 2h/d=I、|b+2al。
In addition, the photosensitive layer has sensitivity characteristics in which the second-order differential value of the curve representing the exposure amount and the remaining film thickness of the photosensitive layer after development is a positive value, and there is no third-order inflection point, and the exposure interference Letting the coordinate perpendicular to the direction of the stripes be x, the stripe interval d, and k-2π/d, the exposure intensity distribution r(x) is 1(x)=. 4+11 s i
n (kx) When the curve of the sensitivity characteristic of the photosensitive layer is approximated to a quadratic curve within the exposure intensity range, the quadratic coefficient and the first-order coefficient are respectively a and b, 2h/d=I, |b+2al.

r−a 11 /2 l b+2 a、Ioを満たすよ
うにして製造することにより同様の効果を有する回折格
子を一回の露光により実現することができる。
A diffraction grating having a similar effect can be realized by one exposure by manufacturing so as to satisfy r−a 11 /2 l b+2 a, Io.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における回折格子の断面形状
図、第2図は第1図の回折格子の斜視図、第3図はポジ
型の感光層での感度曲線とそれによってできる回折格子
の格子形状を表す概念図、第4図は本発明の第1の実施
例における回折格子のr=0.05.r/d=0.67
、リトロ−配置での2 h/dに対する回折効率の計算
図、第5図はr=0.05. 2 h/d=0.383
での格子形状図、第6図は本発明の第2の実施例におけ
る回折格子のγ=0.32.  γ/d−0,9、リト
ロ−配置での2 h/dに対する回折効率の計算図、第
7図はγ−0.32,2h/d=0.40での格子形状
図、第8図は本発明の第3の実施例における回折格子の
r =0.1 、  λ/ d −0,7、リトロ−配
置での2 h/dに対する回折効率の計算図、第9図は
r=0.1,2 h/d=0.35での格子形状図、第
10図は本発明の第4の実施例における回折格子の7=
0.32.  λ/d=0.8、リトロ−配置での2 
h/d対にする回折効率の計算図、第11図はr=0.
2,2h/d=0.47、リトロ−配置でのλ/4に対
する回折効率の計算図、第12図はγ−0.2,2h/
d=0.47での格子形状図、第13図はγ=0.2,
2h/d=0.435、リトロ−配置でのλ/4に対す
る回折効率の計算図、第14図はγ−〇、2.λ/d=
1.0,2h/d=0.435、に相当する形状を持つ
回折格子の回折効率の入射角依存性の測定図、第15図
は測定回折格子のSEM写真図、第16図は従来の回折
格子の製造方法のポジ型の感光層での感度曲線とそれに
よってできる回折格子の格子形状を表す概念図である。 la、21・・・・・・基板、lb、22・・・・・・
感光層、lc、23・・・・・・反射膜、31・・・・
・・露光干渉縞の強度分布、32・・・・・・感度曲線
、33・・・・・・現像後の格子形状、41,61,8
1.lOa、11a、13a。 14a・・・・・・TE波成分の回折効率、42,62
゜82、lob、llb、13b、14b・・・・・・
TM波成分の回折効率、43,63,83 10c11
c、13c、14c・・・・・・無偏光での回折効率。 代理人の氏名 弁理士 粟野重孝 はか1名嘉 図 富 図 13−及射煩 2h/l:l 第 図 第 図 、91−−− 千 t=1りL−;C:、のヨ「111ノ111ル)%Ω−
F1a才の格子形状 乙1 2h/cl 第 図 2h/d 第10図 2A /d 回 幻 咲 釡 +4−−− TEiff成分の回折効牟 4c− wfif&*、での回折カ卓 第14図 第15図 λ 射 内 θ (de+3]
Fig. 1 is a cross-sectional diagram of a diffraction grating in an embodiment of the present invention, Fig. 2 is a perspective view of the diffraction grating shown in Fig. 1, and Fig. 3 is a sensitivity curve in a positive type photosensitive layer and the resulting diffraction. A conceptual diagram showing the grating shape of the grating, FIG. 4, shows r=0.05 of the diffraction grating in the first embodiment of the present invention. r/d=0.67
, a calculation diagram of the diffraction efficiency for 2 h/d in the Littrow configuration, FIG. 5 shows r=0.05. 2 h/d=0.383
FIG. 6 is a diagram showing the grating shape of the diffraction grating in the second embodiment of the present invention, where γ=0.32. γ/d-0.9, calculation diagram of diffraction efficiency for 2 h/d in Littrow configuration, Figure 7 is a grating shape diagram at γ-0.32, 2h/d = 0.40, Figure 8 is a calculation diagram of the diffraction efficiency for 2 h/d of the diffraction grating in the third embodiment of the present invention with r = 0.1, λ/d -0,7, and Littrow configuration. .1,2 Grating shape diagram at h/d=0.35, Fig. 10 shows the 7= of the diffraction grating in the fourth embodiment of the present invention.
0.32. λ/d=0.8, 2 in Retro-configuration
A calculation diagram of diffraction efficiency for h/d pairing, FIG. 11 shows r=0.
2,2h/d=0.47, calculation diagram of diffraction efficiency for λ/4 in Littrow configuration, Figure 12 is γ-0.2,2h/
The lattice shape diagram at d=0.47, Fig. 13 is γ=0.2,
2h/d=0.435, calculation diagram of diffraction efficiency for λ/4 in Littrow configuration, FIG. 14 is γ-〇, 2. λ/d=
1.0,2 h/d = 0.435, Figure 15 is an SEM photograph of the measured diffraction grating, Figure 16 is the conventional one. FIG. 2 is a conceptual diagram showing a sensitivity curve in a positive photosensitive layer in a method for manufacturing a diffraction grating and a grating shape of a diffraction grating formed thereby. la, 21... board, lb, 22...
Photosensitive layer, lc, 23... Reflective film, 31...
... Intensity distribution of exposure interference fringes, 32 ... Sensitivity curve, 33 ... Grid shape after development, 41, 61, 8
1. lOa, 11a, 13a. 14a...Diffraction efficiency of TE wave component, 42, 62
゜82, lob, llb, 13b, 14b...
Diffraction efficiency of TM wave component, 43, 63, 83 10c11
c, 13c, 14c... Diffraction efficiency with non-polarized light. Name of agent Patent attorney Shigetaka Awano 1 person Kazutomi 13-Kaishaku 2h/l:l Fig. 111)%Ω-
F1a lattice shape Otsu 1 2h/cl Fig. 2h/d Fig. 10 2A /d Diffraction effect of TEiff component 4c- wfif&*, Diffraction table Fig. 14 Fig. 15 Figure λ Intrajective θ (de+3]

Claims (1)

【特許請求の範囲】 (1)基板と前記基板上に設けた感光層と前記感光層の
上に設ける反射膜とを有し、格子溝間隔をd、k=2π
/d、格子溝方向と垂直な座標をxとして、格子溝形状
η(x)が、 η(x)=h{sin(kx)+γsin(2kx−9
0゜)}で表されるとき、パラメーターh、γ、φが、
0.26≦2h/d≦0.52 0.05≦γ≦0.32 の範囲を満たす形状を有し、使用する波長域を格子間隔
dで規格化して、 0.67≦λ/d≦1.15 とし、さらに使用する配置を、入射角をθ、1次のリト
ロ−角をθ_Lとして、 θ_L−5゜≦θ≦θ_L+5゜ を満たす範囲で行うことを特徴とする回折格子(2)基
板と前記基板上に設けた感光層と前記感光層の上に設け
る反射膜とを有し、格子溝間隔をd、k=2π/d、格
子溝方向と垂直な座標をxとして、格子溝形状η(x)
が、 η(x)=h{sin(kx)+γsin(2kx−9
0゜)}で表されるとき、パラメーターh、γ、φが、
0.35≦2h/d≦0.45 0.10≦γ≦0.25 の範囲を満たす形状を有し、使用する波長域を格子間隔
dで規格化して、 0.67≦λ/d≦1.15 とし、さらに使用する配置を、入射角をθ、1次のリト
ロ−角をθ_Lとして、 θ_L−5゜≦θ≦θ_L+5゜ を満たす範囲で行うことを特徴とする回折格子。 (3)基板と前記基板上に設けた感光層と前記感光層の
上に設ける反射膜とを有し、前記感光層が、露光量と現
像後の前記感光層の膜厚残存率を表す曲線の2次微分値
が正値で、かつ3次の変曲点が存在しない感度特性を持
つ範囲で干渉露光させることを特徴とする回折格子。 (4)使用する波長λを格子間隔dで規格化して、0.
67≦λ/d≦1.15 とし、使用する配置を、入射角をθ、1次のリトロー角
をθ_Lとして、 θ_L−5゜≦θ≦θ_L+5゜ を満たす範囲で行うことを特徴とする請求項(3)記載
の回折格子。 (5)露光する干渉縞の方向と垂直な座標をx、縞間隔
をd、k=2π/dとして、露光強度分布I(x)を、 I(x)=I_0+I_1sin(kx) 感光層の感度特性の曲線を露光する強度範囲内で2次曲
線近似した際の2次の係数および1次の係数をそれぞれ
a、bとし、回折格子の格子形状η(x)を、 η(x)=h{sin(kx)+γsin(2kx−9
0゜)}とすると、 2h/dI_1、|b+2aI_0| γ=aI_1/2|b+2aI_0| を満たしていることを特徴とする請求項(3)記載の回
折格子。 (6)感光層にポジ型感光材を使用し、 I_1+I_0<|b/2a| を満たすことを特徴とする請求項(5)記載の回折格子
。 (7)感光層にネガ型感光材を使用し、b<0の場合、 I_0+I_1>|b+2a| を満たすことを特徴とする請求項(5)記載の回折格子
。 (8)基板上に感光層を設け、前記感光層が露光量と現
像後の前記感光層の膜厚残存率を表す曲線の2次微分値
が正値で、かつ3次の変曲点が存在しない感度特性を持
つ範囲で干渉露光させ、その上に反射膜を設けることを
特徴とする回折格子の製造方法。 (9)露光する干渉縞の方向と垂直な座標をx、縞間隔
をd、k=2π/dとして、露光強度分布I(x)を、 I(x)=I_0+I_1sin(kx) 感光層の感度特性の曲線を露光する強度範囲内で2次曲
線近似した際の2次の係数および1次の係数をそれぞれ
a、bとし、回折格子の格子形状をη(x)を、 η(x)=h{sin(kx)+γsin(2kx−9
0゜)}とすると、 2h/d=I_1|b+2aI_0| γ=aI_1/2|b+2aI_0| を満たしていることを特徴とする請求項(8)記載の回
折格子の製造方法。 (10)感光層にポジ型感光材を使用し、 I_0+I_1<|b/2a| を満たすことを特徴とする請求項(9)記載の回折格子
の製造方法。 (11)感光層にネガ型感光材を使用し、b<0の場合
、 I_0+I_1>|b/2a| を満たすことを特徴とする請求項(9)記載の回折格子
の製造方法。
Scope of Claims: (1) A substrate, a photosensitive layer provided on the substrate, and a reflective film provided on the photosensitive layer, the grating groove spacing being d, k=2π
/d, and the coordinate perpendicular to the grating groove direction is x, and the grating groove shape η(x) is η(x)=h{sin(kx)+γsin(2kx−9
0゜)}, the parameters h, γ, φ are
It has a shape that satisfies the range of 0.26≦2h/d≦0.52 0.05≦γ≦0.32, and the wavelength range to be used is normalized by the grating spacing d, and 0.67≦λ/d≦ 1.15, and furthermore, the diffraction grating (2) is arranged in a range that satisfies θ_L−5°≦θ≦θ_L+5°, where the incident angle is θ and the first-order Littrow angle is θ_L. It has a substrate, a photosensitive layer provided on the substrate, and a reflective film provided on the photosensitive layer, and the grating grooves are arranged such that the grating groove interval is d, k=2π/d, and the coordinate perpendicular to the grating groove direction is x. Shape η(x)
But, η(x)=h{sin(kx)+γsin(2kx−9
0゜)}, the parameters h, γ, φ are
It has a shape that satisfies the range of 0.35≦2h/d≦0.45 0.10≦γ≦0.25, and the wavelength range to be used is normalized by the grating spacing d, and 0.67≦λ/d≦ 1.15, and the diffraction grating is used in a range that satisfies θ_L−5°≦θ≦θ_L+5°, where the incident angle is θ and the first-order Littrow angle is θ_L. (3) The photosensitive layer has a substrate, a photosensitive layer provided on the substrate, and a reflective film provided on the photosensitive layer, and the photosensitive layer has a curve representing the amount of exposure and the residual rate of film thickness of the photosensitive layer after development. A diffraction grating characterized in that interference exposure is performed in a range having a sensitivity characteristic in which a second-order differential value of is a positive value and a third-order inflection point does not exist. (4) The wavelength λ to be used is normalized by the grating spacing d, and 0.
67≦λ/d≦1.15, and the arrangement used is performed within a range that satisfies θ_L−5°≦θ≦θ_L+5°, where the incident angle is θ and the first-order Littrow angle is θ_L. Diffraction grating according to item (3). (5) When the coordinate perpendicular to the direction of the interference fringes to be exposed is x, the fringe interval is d, and k = 2π/d, the exposure intensity distribution I(x) is: I(x) = I_0+I_1sin(kx) Sensitivity of the photosensitive layer When the characteristic curve is approximated to a quadratic curve within the exposure intensity range, the quadratic coefficient and first-order coefficient are a and b, respectively, and the grating shape η(x) of the diffraction grating is expressed as η(x)=h {sin(kx)+γsin(2kx-9
0°)}, then 2h/dI_1, |b+2aI_0| γ=aI_1/2|b+2aI_0| The diffraction grating according to claim (3), wherein the following is satisfied. (6) The diffraction grating according to claim (5), wherein a positive photosensitive material is used for the photosensitive layer, and the following is satisfied: I_1+I_0<|b/2a|. (7) The diffraction grating according to claim (5), wherein a negative photosensitive material is used for the photosensitive layer, and when b<0, I_0+I_1>|b+2a| is satisfied. (8) A photosensitive layer is provided on a substrate, and the second derivative of the curve representing the exposure amount and the remaining film thickness of the photosensitive layer after development is a positive value, and the third inflection point is a positive value. A method for producing a diffraction grating, which comprises performing interference exposure in a range having non-existent sensitivity characteristics and providing a reflective film thereon. (9) Assuming that the coordinate perpendicular to the direction of the interference fringes to be exposed is x, the fringe interval is d, and k = 2π/d, the exposure intensity distribution I(x) is: I(x) = I_0+I_1sin(kx) Sensitivity of the photosensitive layer When the characteristic curve is approximated to a quadratic curve within the exposure intensity range, the quadratic and first order coefficients are a and b, respectively, and the grating shape of the diffraction grating is η(x), η(x)= h{sin(kx)+γsin(2kx-9
0°)}, then 2h/d=I_1|b+2aI_0| γ=aI_1/2|b+2aI_0| The method for manufacturing a diffraction grating according to claim 8, wherein the following is satisfied. (10) The method for manufacturing a diffraction grating according to claim (9), characterized in that a positive photosensitive material is used for the photosensitive layer, and I_0+I_1<|b/2a| is satisfied. (11) The method for manufacturing a diffraction grating according to claim (9), wherein a negative photosensitive material is used for the photosensitive layer, and when b<0, I_0+I_1>|b/2a| is satisfied.
JP1040500A 1989-02-20 1989-02-20 Diffraction grating and method for producing the same Expired - Fee Related JP2599455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040500A JP2599455B2 (en) 1989-02-20 1989-02-20 Diffraction grating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040500A JP2599455B2 (en) 1989-02-20 1989-02-20 Diffraction grating and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02219002A true JPH02219002A (en) 1990-08-31
JP2599455B2 JP2599455B2 (en) 1997-04-09

Family

ID=12582282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040500A Expired - Fee Related JP2599455B2 (en) 1989-02-20 1989-02-20 Diffraction grating and method for producing the same

Country Status (1)

Country Link
JP (1) JP2599455B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365675A (en) * 2001-06-04 2002-12-18 Stanley Electric Co Ltd Optical member and display device
KR100397166B1 (en) * 2001-06-18 2003-09-13 손광현 Reflex reflector
JP2004053992A (en) * 2002-07-22 2004-02-19 Hitachi Cable Ltd Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
JP2006113464A (en) * 2004-10-18 2006-04-27 Hitachi Cable Ltd Demultiplexer and multi-wavelength optical transmission module
CN102998730A (en) * 2012-12-24 2013-03-27 四川省宜宾普什集团3D有限公司 Stereo grating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454357U (en) * 1977-09-24 1979-04-14
JPS54121150A (en) * 1978-03-13 1979-09-20 Nec Corp Optical production of blaze grating
JPS58182604A (en) * 1982-04-20 1983-10-25 Sumitomo Electric Ind Ltd Manufacture of diffraction grating
JPS59100404A (en) * 1982-11-30 1984-06-09 Ricoh Co Ltd Reflection type triangular-shaped relief diffraction grating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454357U (en) * 1977-09-24 1979-04-14
JPS54121150A (en) * 1978-03-13 1979-09-20 Nec Corp Optical production of blaze grating
JPS58182604A (en) * 1982-04-20 1983-10-25 Sumitomo Electric Ind Ltd Manufacture of diffraction grating
JPS59100404A (en) * 1982-11-30 1984-06-09 Ricoh Co Ltd Reflection type triangular-shaped relief diffraction grating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365675A (en) * 2001-06-04 2002-12-18 Stanley Electric Co Ltd Optical member and display device
KR100397166B1 (en) * 2001-06-18 2003-09-13 손광현 Reflex reflector
JP2004053992A (en) * 2002-07-22 2004-02-19 Hitachi Cable Ltd Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
JP2006113464A (en) * 2004-10-18 2006-04-27 Hitachi Cable Ltd Demultiplexer and multi-wavelength optical transmission module
CN102998730A (en) * 2012-12-24 2013-03-27 四川省宜宾普什集团3D有限公司 Stereo grating

Also Published As

Publication number Publication date
JP2599455B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US5007709A (en) Diffraction grating and manufacturing method thereof
US20010053023A1 (en) Wire grid type polarizer and method of manufacturing the same
CN104765086B (en) A kind of trapezoidal primitive grating with single diffraction order characteristic
JPH04212105A (en) Holograph filter
Veldkamp et al. Developments in fabrication of binary optical elements
JPH02219002A (en) Diffraction grating and its production
JP3675314B2 (en) Diffraction grating
Babin et al. Artificial index surface relief diffraction optical elements
CN111580205A (en) Wide-spectrum pulse width compression grating for 54-62 degree incidence
JP4178583B2 (en) Anti-reflection coating
JP5170401B2 (en) Diffraction grating phase mask
JP2019133000A (en) Method for designing diffraction element
US7619820B2 (en) Dot matrix holograms with spatially varying period
JPH031641B2 (en)
US5372900A (en) Method of reproducing reflecting type hologram and apparatus therefor
CN115657182B (en) Transflective double-sided diffraction optical element and manufacturing method thereof
Rallison Holographic optical elements (HOES) in dichromated gelatin (DCG): progress
Turunen et al. Diffraction gratings
Richter et al. Threshold and resonance effects in diffraction gratings
JP4389643B2 (en) Diffraction grating
Saleem et al. Effect of waveguide thickness layer on spectral resonance of a guided mode resonance filter
Kim et al. Investigation of the diffraction efficiencies in binary surface-relief gratings with rounded corners
Zhao et al. Phase-probability shaping for speckle-free holographic lithography
Tarjányi et al. Photopolymer film-based holographic optical element for modification of LED radiation pattern
CN117295615A (en) Security devices and methods of producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees