JP2006113464A - Demultiplexer and multi-wavelength optical transmission module - Google Patents

Demultiplexer and multi-wavelength optical transmission module Download PDF

Info

Publication number
JP2006113464A
JP2006113464A JP2004303032A JP2004303032A JP2006113464A JP 2006113464 A JP2006113464 A JP 2006113464A JP 2004303032 A JP2004303032 A JP 2004303032A JP 2004303032 A JP2004303032 A JP 2004303032A JP 2006113464 A JP2006113464 A JP 2006113464A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
demultiplexer
wavelength
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004303032A
Other languages
Japanese (ja)
Other versions
JP4759973B2 (en
Inventor
Mitsuki Hirano
光樹 平野
Tomiya Abe
富也 阿部
Yuzo Ito
雄三 伊藤
Tatsuya Sugita
辰哉 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004303032A priority Critical patent/JP4759973B2/en
Publication of JP2006113464A publication Critical patent/JP2006113464A/en
Application granted granted Critical
Publication of JP4759973B2 publication Critical patent/JP4759973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical wavelength multiplexer/demultiplexer and an optical transmission module that have a high diffraction efficiency in a desired wavelength range and that can reduce change in characteristic caused by polarization. <P>SOLUTION: The demultiplexer 10 is equipped with a light incident part 12 on which a signal light L1 is made incident, a diffraction grating 13 which diffracts the signal light L1 made incident from the light incident part 12, and a light receiving part 14 which has a plurality of photodetectors for detecting diffracted signal light L2. In this demultiplexer 10, in a prescribed wavelength range, the difference of diffraction efficiency between the TE polarization and TM polarization of the diffraction grating 13 is made smaller on the short wavelength side and larger on the long wavelength side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、波長多重光信号を波長ごとに分波、または異なる波長の光信号を合波する光学デバイスに関し、特に、回折格子を用いて波長を分離するデマルチプレクサ及び波長多重光伝送モジュールに関する。   The present invention relates to an optical device that demultiplexes a wavelength-multiplexed optical signal for each wavelength or combines optical signals of different wavelengths, and particularly relates to a demultiplexer and a wavelength-multiplexed optical transmission module that separate wavelengths using a diffraction grating.

光通信の分野では、高速、大容量の情報を伝送するため、一本の光ファイバに複数の波長の光信号を多重化して伝送する波長多重光通信が行われている。波長多重光通信に用いられる重要なデバイスの一つに光分波器がある。光分波器は、複数の波長が多重化された光を略単一の波長とみなせる狭帯域の波長の光に分波するものである。   In the field of optical communication, in order to transmit high-speed and large-capacity information, wavelength division multiplexing optical communication is performed in which optical signals of a plurality of wavelengths are multiplexed and transmitted on a single optical fiber. One of the important devices used for wavelength division multiplexing communication is an optical demultiplexer. The optical demultiplexer demultiplexes light in which a plurality of wavelengths are multiplexed into light of a narrow band wavelength that can be regarded as a substantially single wavelength.

例えば、光ファイバと回折格子を備えた光分波器において、入射光における回折格子の溝に対して垂直方向の偏光成分(TM偏光)と、平行方向の偏光成分(TE偏光)の回折効率が異なるため、外乱等によって変化する入射光の偏光状態に影響を受けて分波した光の光強度が変化する。分波した光の光強度を安定させるために、入射光の波長に対してTE偏光とTM偏光との各回折効率が等しくなるようなブレーズ波長の回折格子を用いることで、光ファイバから回折格子に入射する光の偏光状態による影響を防いだ光分波器がある(例えば、特許文献1参照)。   For example, in an optical demultiplexer including an optical fiber and a diffraction grating, the diffraction efficiency of the polarization component (TM polarization) perpendicular to the diffraction grating groove in the incident light and the polarization component (TE polarization) in the parallel direction are Since they are different, the light intensity of the demultiplexed light changes under the influence of the polarization state of the incident light that changes due to disturbance or the like. In order to stabilize the light intensity of the demultiplexed light, the diffraction grating from the optical fiber is used by using a diffraction grating having a blaze wavelength such that the diffraction efficiencies of the TE polarized light and the TM polarized light are equal to the wavelength of the incident light. There is an optical demultiplexer that prevents the influence of the polarization state of the light incident on (see, for example, Patent Document 1).

特開2001−201654号公報JP 2001-201654 A

しかしながら、上述の光分波器においても、入射光の波長がTE、TM偏光間の回折効率が等しくなる波長以外では、偏波依存性が生じるという問題点があった。特に、TE偏光とTM偏光の回折効率が等しくなる波長よりも短波長側においては、TM偏光の回折効率が大きく低下する所謂アノーマリが生じやすく、大きな偏光依存性が発生しやすかった。そのため、光分波器における回折効率が、回折格子での偏光依存損失によって低くなってしまい、光分波器の波長分波性能を制限してしまうという問題点があった。   However, the above-described optical demultiplexer also has a problem that polarization dependency occurs when the wavelength of the incident light is other than the wavelength at which the diffraction efficiency between the TE and TM polarized light is equal. In particular, on the shorter wavelength side than the wavelength at which the diffraction efficiency of TE-polarized light and TM-polarized light are equal, so-called anomaly in which the diffraction efficiency of TM-polarized light is greatly reduced is likely to occur, and large polarization dependency is likely to occur. Therefore, the diffraction efficiency in the optical demultiplexer is lowered due to the polarization dependent loss in the diffraction grating, and there is a problem that the wavelength demultiplexing performance of the optical demultiplexer is limited.

また、従来の光分光器では、格子定数が一定である等間隔の回折格子を用いており、光ファイバからの入射光をコリメータレンズにより平行光としている。そのため、入射光の回折格子への入射角は一定であった。   In addition, the conventional optical spectrometer uses a uniform diffraction grating having a constant lattice constant, and the incident light from the optical fiber is converted into parallel light by a collimator lens. Therefore, the incident angle of incident light to the diffraction grating is constant.

回折格子には回折格子自身に集光作用を持たせるため、格子定数の異なるチャープ型回折格子がある。チャープ型回折格子では、光分波器の位置により光線の入射角、出射角及び格子定数が変化するため、場所によって回折効率の波長依存性、偏波依存性が異なってくる。そのため、チャープ型回折格子においては、波長変化に伴う偏光依存性の変動を制御することが難しいという問題点があった。   As the diffraction grating, there is a chirped diffraction grating having a different lattice constant in order to give the diffraction grating itself a condensing function. In the chirped diffraction grating, since the incident angle, the emission angle, and the grating constant of the light beam change depending on the position of the optical demultiplexer, the wavelength dependency and polarization dependency of the diffraction efficiency differ depending on the location. For this reason, the chirped diffraction grating has a problem that it is difficult to control the variation in polarization dependence accompanying the change in wavelength.

そこで、本発明の目的は、上記課題を解決し、所望の波長範囲において、回折効率が高く、かつ偏光による特性変動を低減したデマルチプレクサ及び波長多重光伝送モジュールを提供することにある。   Accordingly, an object of the present invention is to provide a demultiplexer and a wavelength division multiplexing optical transmission module which solves the above-described problems and has high diffraction efficiency and reduced characteristic variation due to polarization in a desired wavelength range.

また、本発明の別の目的は、チャープ型回折格子においても偏光による回折効率の変動を低減したデマルチプレクサ及び波長多重光伝送モジュールを提供することにある。   Another object of the present invention is to provide a demultiplexer and a wavelength division multiplexing optical transmission module in which fluctuations in diffraction efficiency due to polarization are reduced even in a chirped diffraction grating.

上記目的を達成するために、請求項1の発明は、信号光を入射する光入射部と、光入射部から入射した信号光を回折する回折格子と、回折した信号光を検出する光検出器を複数有する受光部とを備えるデマルチプレクサにおいて、所定の波長範囲において、回折格子のTE偏光とTM偏光との回折効率の差が短波長側で小さく、長波長側で大きいデマルチプレクサである。   In order to achieve the above object, the invention of claim 1 is directed to a light incident part for receiving signal light, a diffraction grating for diffracting signal light incident from the light incident part, and a photodetector for detecting diffracted signal light. In a demultiplexer including a plurality of light receiving units, a difference in diffraction efficiency between TE polarized light and TM polarized light of the diffraction grating is small on the short wavelength side and large on the long wavelength side in a predetermined wavelength range.

請求項2の発明は、信号光を入射する光入射部と、光入射部から入射した信号光を回折する回折格子と、回折した信号光を検出する光検出器を複数有する受光部とを備えるデマルチプレクサにおいて、回折格子のTE偏光における損失の最大値よりもTM偏光における損失の最大値が小さいデマルチプレクサである。   According to a second aspect of the present invention, a light incident portion that receives signal light, a diffraction grating that diffracts the signal light incident from the light incident portion, and a light receiving portion that includes a plurality of photodetectors that detect the diffracted signal light are provided. In the demultiplexer, the maximum value of the loss in the TM polarization is smaller than the maximum value of the loss in the TE polarization of the diffraction grating.

請求項3の発明は、回折格子の最も長波長のTE偏光の損失よりも、最も短波長でのTM偏光の損失が大きい請求項2記載のデマルチプレクサである。   The invention of claim 3 is the demultiplexer according to claim 2, wherein the loss of the TM polarization at the shortest wavelength is larger than the loss of the TE polarization of the longest wavelength of the diffraction grating.

請求項4の発明は、回折格子のTM偏光の損失の最大値が、TE偏光の損失の最大値よりも小さく、TE偏光の損失の最小値よりも大きい請求項2記載のデマルチプレクサである。   The invention of claim 4 is the demultiplexer according to claim 2, wherein the maximum value of the TM polarization loss of the diffraction grating is smaller than the maximum value of the TE polarization loss and larger than the minimum value of the TE polarization loss.

請求項5の発明は、信号光を入射する光入射部と、光入射部から入射した信号光を回折する回折格子と、回折した信号光を検出する光検出器を複数有する受光部とを備えるデマルチプレクサにおいて、光入射部に、回折格子に入射する信号光のTM偏光を減光する偏光フィルタを設けたデマルチプレクサである。   According to a fifth aspect of the present invention, a light incident portion that receives signal light, a diffraction grating that diffracts the signal light incident from the light incident portion, and a light receiving portion that includes a plurality of photodetectors that detect the diffracted signal light are provided. The demultiplexer is a demultiplexer in which a light filter is provided with a polarizing filter for reducing TM polarization of signal light incident on the diffraction grating.

請求項6の発明は、回折格子が、格子周期が異なるチャープ型回折格子である請求項1から5いずれかに記載のデマルチプレクサである。   The invention of claim 6 is the demultiplexer according to any one of claims 1 to 5, wherein the diffraction grating is a chirped diffraction grating having a different grating period.

請求項7の発明は、回折格子が、エシュレット型の回折格子であって、その回折格子を溝に沿って複数の領域に分割し、ブレーズ角が各領域毎に異なる請求項5または6記載のデマルチプレクサである。   According to a seventh aspect of the present invention, the diffraction grating is an Eschlet type diffraction grating, the diffraction grating is divided into a plurality of regions along the groove, and the blaze angle is different for each region. Demultiplexer.

請求項8の発明は、回折格子の領域の数が4〜9である請求項7記載のデマルチプレクサである。   The invention of claim 8 is the demultiplexer according to claim 7, wherein the number of regions of the diffraction grating is 4-9.

請求項9の発明は、回折格子が、エシュレット型の回折格子であって、ブレーズ角が連続的に変化している請求項5または6記載のデマルチプレクサである。   The invention according to claim 9 is the demultiplexer according to claim 5 or 6, wherein the diffraction grating is an Eschlet type diffraction grating, and the blaze angle continuously changes.

請求項10の発明は、所定の波長範囲の短波長側において、回折格子のブレーズ角が、回折格子へ入射する信号光が格子面で正反射する方向とその信号光の回折方向とが略一致する角である正反射ブレーズ角よりも大きく、かつTE偏光の回折効率が最大となる角度よりも小さい請求項7〜9いずれかに記載のデマルチプレクサである。   In the invention of claim 10, on the short wavelength side of the predetermined wavelength range, the blaze angle of the diffraction grating is such that the direction in which the signal light incident on the diffraction grating is regularly reflected on the grating surface and the diffraction direction of the signal light are substantially the same. The demultiplexer according to any one of claims 7 to 9, wherein the demultiplexer is larger than a specular reflection blaze angle that is an angle to be transmitted and smaller than an angle at which the diffraction efficiency of TE polarized light is maximized.

請求項11の発明は、回折格子が、所定の波長範囲にある信号光の波長をλ、格子定数をd、信号光の回折格子への入射角をi、信号光の回折格子の回折角をθとしたとき、   In the eleventh aspect of the invention, the diffraction grating has a wavelength of signal light in a predetermined wavelength range λ, a grating constant d, an incident angle of the signal light to the diffraction grating i, and a diffraction angle of the diffraction grating of the signal light. When θ is

Figure 2006113464
かつ、
Figure 2006113464
And,

Figure 2006113464
Figure 2006113464

を満たす請求項5〜10いずれかに記載のデマルチプレクサである。 It is a demultiplexer in any one of Claims 5-10 which satisfy | fills.

請求項12の発明は、請求項1〜11いずれかに記載のデマルチプレクサを備え、受光部と外部の光伝送路と接続する接合部を形成し、デマルチプレクサの受光部に、受光部からの信号を増幅、波形成形する受信回路を接続した波長多重光伝送モジュールである。   The invention of claim 12 is provided with the demultiplexer according to any one of claims 1 to 11, and forms a joint portion connected to the light receiving portion and an external optical transmission line, and the light receiving portion of the demultiplexer is connected to the light receiving portion from This is a wavelength division multiplexing optical transmission module to which a receiving circuit for amplifying and shaping a signal is connected.

請求項13の発明は、複数の光源と、それらの光源に接続され、光源を駆動、制御する送信回路と、複数の光源に接続され、複数の光源からの信号光を合波する波長合波デバイスとを備えた請求項12記載の波長多重光伝送モジュールである。   According to a thirteenth aspect of the present invention, there are provided a plurality of light sources, a transmission circuit connected to these light sources for driving and controlling the light sources, and wavelength multiplexing connected to the plurality of light sources to multiplex signal light from the plurality of light sources. 13. The wavelength division multiplexing optical transmission module according to claim 12, further comprising a device.

請求項14の発明は、接合部とデマルチプレクサとをマルチモードの光伝送路で接続し、接合部と波長合波デバイスとをシングルモードの光伝送路で接続した請求項13記載の波長多重光伝送モジュールである。   The invention according to claim 14 is the wavelength multiplexed light according to claim 13, wherein the junction and the demultiplexer are connected by a multimode optical transmission line, and the junction and the wavelength multiplexing device are connected by a single mode optical transmission line. It is a transmission module.

本発明によれば、所望の波長範囲において、回折効率を高く、かつ偏光依存性損失を低減できるといった優れた効果を発揮する。   According to the present invention, excellent effects such as high diffraction efficiency and reduced polarization-dependent loss can be achieved in a desired wavelength range.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係るデマルチプレクサの好適な実施の形態を示した上面図であり、図2は図1の側面図である。   FIG. 1 is a top view showing a preferred embodiment of a demultiplexer according to the present invention, and FIG. 2 is a side view of FIG.

図1及び図2に示すように、デマルチプレクサ10は、基材(ベース)11上に固定して設けられた光入射部12、回折格子13及び受光部14を備える。   As shown in FIGS. 1 and 2, the demultiplexer 10 includes a light incident portion 12, a diffraction grating 13, and a light receiving portion 14 that are fixedly provided on a base material (base) 11.

光入射部12は、デマルチプレクサ10に信号光L1を導入し、回折格子13に向けて信号を入射する部材であり、光源や外部の光学素子に接続された光伝送路を備える。ここで、光伝送路とは信号光を伝搬させる手段であり、光ファイバや光導波路等を示しており、本実施の形態では、その光伝送路として入射用光ファイバ15が基材11にファイバ保持台16を介して接着固定されている。   The light incident part 12 is a member that introduces the signal light L1 into the demultiplexer 10 and enters a signal toward the diffraction grating 13, and includes a light transmission path connected to a light source and an external optical element. Here, the optical transmission line is a means for propagating signal light, and indicates an optical fiber, an optical waveguide, or the like. In this embodiment, the incident optical fiber 15 is a fiber on the substrate 11 as the optical transmission line. It is bonded and fixed via a holding table 16.

入射用光ファイバ15には、コア径62.5μm、開口数0.275のグレーテッドインデックス(GI)型マルチモード光ファイバ(MMF)を用いた。マルチモード光ファイバは開口数が大きく、信号光L1の拡がり角が大きい。本実施の形態の光ファイバ15では、開口数から求まる拡がり角が±16°となる。   The incident optical fiber 15 was a graded index (GI) type multimode optical fiber (MMF) having a core diameter of 62.5 μm and a numerical aperture of 0.275. The multimode optical fiber has a large numerical aperture and a large divergence angle of the signal light L1. In the optical fiber 15 of the present embodiment, the divergence angle obtained from the numerical aperture is ± 16 °.

光ファイバ15の出射端17側には、シリンドリカルレンズ18及び偏光フィルタ19が光学系固定台21上に固定して設けられている。シリンドリカルレンズ18は、光ファイバ15から出射された信号光L1を平行ビームにするレンズであり、円柱状のものを用いた。   A cylindrical lens 18 and a polarizing filter 19 are fixedly provided on the optical system fixing base 21 on the emission end 17 side of the optical fiber 15. The cylindrical lens 18 is a lens that converts the signal light L1 emitted from the optical fiber 15 into a parallel beam, and a cylindrical lens is used.

偏光フィルタ19は、信号光L1の直交偏光(p偏光、s偏光)成分のうち、一方の偏光成分の透過光量を制限するものである。偏光フィルタ19は、フィルタ面としての誘電体多層膜22がプリズム23内に形成され、プリズム23の入出射面24a,24bに反射防止コートが施されたものである。   The polarizing filter 19 limits the amount of light transmitted through one of the orthogonally polarized light (p-polarized light and s-polarized light) components of the signal light L1. The polarizing filter 19 is formed by forming a dielectric multilayer film 22 as a filter surface in a prism 23 and applying an antireflection coating to the incident / exit surfaces 24 a and 24 b of the prism 23.

ここで、図3に本実施の形態のフィルタ19の波長特性を示す。フィルタ19は、信号光の使用波長範囲内において、p偏光(TE偏光)についてはほぼ100%透過し、s偏光(TM偏光)については、使用波長の短波長側でほぼ100%透過し、長波長側にかけて透過率が低下するようにしている。   Here, FIG. 3 shows the wavelength characteristics of the filter 19 of the present embodiment. The filter 19 transmits almost 100% of p-polarized light (TE-polarized light) and transmits almost 100% of s-polarized light (TM-polarized light) on the short wavelength side of the used wavelength within the usable wavelength range of the signal light. The transmittance decreases toward the wavelength side.

回折格子13は、図2に示す矢印の方向に直線格子溝が形成され、その格子間隔が位置によって異なるチャープ型、かつ、格子溝の断面形状が多数の直角三角形が連続した鋸状であるエシュレット型の平面回折格子である。   The diffraction grating 13 is an echelette in which straight grating grooves are formed in the direction of the arrow shown in FIG. 2, the grating interval is different depending on the position, and the grating groove has a sawtooth shape in which a plurality of right-angled triangles are continuous. This is a plane diffraction grating of a mold.

受光部14は、光検出器アレイ26、受光用光導波路27及びシリンドリカルレンズ28を備え、それぞれ保持台を介して各部材の高さが調整され、基材11に固定されている。   The light receiving unit 14 includes a photodetector array 26, a light receiving optical waveguide 27, and a cylindrical lens 28, and the height of each member is adjusted via a holding base and is fixed to the base material 11.

光検出器アレイ26は、光検出素子を複数備え、それぞれ異なる位置で信号光を検出するべく複数の光検出素子を一列に配置したアレイ型の光検出器である。   The photo detector array 26 is an array type photo detector provided with a plurality of photo detector elements and arranged in a row in order to detect signal light at different positions.

受光用光導波路27は、光検出器アレイ26の前方(回折格子13側)に配置され、回折格子13側に設けられたスラブ導波路部29と、そのスラブ導波路部29の後段に接続され、光検出器アレイ26に接着固定された複数のテーパ導波路部31とで構成される。   The light receiving optical waveguide 27 is disposed in front of the photodetector array 26 (on the diffraction grating 13 side), and is connected to a slab waveguide portion 29 provided on the diffraction grating 13 side and a subsequent stage of the slab waveguide portion 29. , And a plurality of tapered waveguide portions 31 that are bonded and fixed to the photodetector array 26.

スラブ導波路部29は、横断面の形状が直角三角形をしており、スラブ導波路部29の出射端(直角三角形の斜辺)32から複数のテーパー導波路部31が、徐々に導波路幅を狭められて光検出器アレイ26に向かって延出形成されている。   The cross section of the slab waveguide portion 29 is a right triangle, and the plurality of tapered waveguide portions 31 gradually increase the waveguide width from the emission end (the hypotenuse of the right triangle) 32 of the slab waveguide portion 29. It is narrowed and formed to extend toward the photodetector array 26.

受光用光導波路27の厚さ(コア厚さ)は、光検出器アレイ26に信号光が効率よく結合するように 光検出器アレイ26の受光径を考慮して決定した。   The thickness (core thickness) of the light receiving optical waveguide 27 is determined in consideration of the light receiving diameter of the photodetector array 26 so that the signal light is efficiently coupled to the photodetector array 26.

テーパ導波路部31は、入射側(スラブ導波路部29との接続部分)33から光検出器アレイ26側にかけてコアの幅が減少するテーパ形状とし、光検出素子に光を絞り込む構造としている。効率よく光検出器アレイ26まで光信号を伝搬するためには、スラブ導波路部29の開口数NA、特に側面の開口数は大きいほうが望ましく、NA0.5以上とすることが望ましい。そのため、テーパ導波路部31の側面にはクラッドを設けずに、コアを空気に直接接するようにして開口数を大きくしている。   The tapered waveguide portion 31 has a tapered shape in which the width of the core decreases from the incident side (connection portion with the slab waveguide portion 29) 33 to the photodetector array 26 side, and has a structure for narrowing light to the photodetector. In order to efficiently propagate an optical signal to the photodetector array 26, it is desirable that the numerical aperture NA of the slab waveguide portion 29, particularly the numerical aperture of the side surface is large, and it is desirable to set NA to 0.5 or more. For this reason, the numerical aperture is increased so that the core is in direct contact with air without providing a clad on the side surface of the tapered waveguide portion 31.

テーパ導波路部31の入射側の幅は、スラブ導波路部29と接合される側で光検出器アレイ26の光検出素子のピッチと同じくし、光検出器アレイ26側で光検出素子に効率良く結合できる幅とした。このように、分波された各波長の信号光L2を光検出素子に絞り込むことにより、応答速度の速い受光面積の小さな光検出素子を用いることができ、高速な光通信に適用することができる。   The width of the tapered waveguide portion 31 on the incident side is the same as the pitch of the light detection elements of the photodetector array 26 on the side joined to the slab waveguide portion 29, and the efficiency of the light detection elements on the photodetector array 26 side. The width is such that it can be combined well. In this way, by narrowing down the signal light L2 of each wavelength that has been demultiplexed to the light detection element, it is possible to use a light detection element with a fast response speed and a small light receiving area, and it can be applied to high-speed optical communication. .

シリンドリカルレンズ28は、光入射部12のシリンドリカルレンズ18と同じものであり、スラブ導波路部29の入射端32に平行に配置されている。   The cylindrical lens 28 is the same as the cylindrical lens 18 of the light incident portion 12, and is disposed in parallel to the incident end 32 of the slab waveguide portion 29.

さて、本実施の形態のデマルチプレクサ10の回折格子13について詳細に説明する。   Now, the diffraction grating 13 of the demultiplexer 10 of the present embodiment will be described in detail.

回折格子13は、光ファイバ15から拡がって入射された信号光L1を反射、回折し、回折した信号光L2を受光部14に集光するように格子間隔をチャープさせている。図4及び図5に示すように、回折格子13は、信号光L2を所望の位置に集光させられるように、格子周期(格子定数)を位置の関数としてチャープさせてある(グラフ51)。ここで、図4中の回折格子の横方向xと、図5中の格子位置xが対応している。   The diffraction grating 13 chirps the grating interval so as to reflect and diffract the signal light L1 that is spread from the optical fiber 15 and collects the diffracted signal light L2 on the light receiving unit 14. As shown in FIGS. 4 and 5, the diffraction grating 13 is chirped with a grating period (lattice constant) as a function of position so that the signal light L2 can be condensed at a desired position (graph 51). Here, the lateral direction x of the diffraction grating in FIG. 4 corresponds to the grating position x in FIG.

個々の格子溝の位置は、信号光L1の出射位置及び信号光L2の受光位置、即ち、光入射部12及び受光部14との位置関係から決定される。回折格子13は、格子周期のチャープに加えて、回折効率を大きくするためにブレーズ角も各格子位置での光入射部12及び受光部14との位置関係から決定されている。   The position of each grating groove is determined from the emission position of the signal light L1 and the light receiving position of the signal light L2, that is, the positional relationship between the light incident part 12 and the light receiving part 14. In addition to the chirping of the grating period of the diffraction grating 13, the blaze angle is also determined from the positional relationship between the light incident part 12 and the light receiving part 14 at each grating position in order to increase the diffraction efficiency.

図4及び図5に示すように、エシュレット型の回折格子13は、複数の領域41a〜fに分割され、同一領域内ではブレーズ角を一定とし、領域毎にブレーズ角を異ならせている(グラフ52)。   As shown in FIGS. 4 and 5, the Eschlet type diffraction grating 13 is divided into a plurality of regions 41a to 41f, the blaze angle is constant in the same region, and the blaze angle is different for each region (graph). 52).

具体的には、分割数(領域数)を6とし、ブレーズ角を、図4中左側の領域41aで最も小さくし、図4中右側の領域になるにつれて大きくなるようにした。   Specifically, the number of divisions (the number of regions) was set to 6, and the blaze angle was made the smallest in the region 41a on the left side in FIG. 4 and increased as the region on the right side in FIG.

格子定数は、グラフ51のように、領域41a〜dでは図中左側から連続的に間隔を狭くし、領域41e〜fでも図中左側から連続的に間隔を狭くしている。さらに、回折効率を高くかつ偏光依存性を小さくするように領域ごとに利用する回折次数も選定しており、回折格子の図中左側の領域41a〜dでは回折次数を1次とし、図中右側の領域41eと41fでは2次回折光を用いるように領域41dと41eの境界で不連続に格子定数を2倍とした。   As in the graph 51, the lattice constant is continuously narrowed from the left side in the drawing in the regions 41a to 41d, and the spacing is continuously narrowed from the left side in the drawing also in the regions 41e to f. Further, the diffraction order to be used for each region is selected so as to increase the diffraction efficiency and reduce the polarization dependence. In the regions 41a to 41d on the left side of the diffraction grating, the diffraction order is the first order, and the right side in the diagram. In the regions 41e and 41f, the lattice constant is doubled discontinuously at the boundary between the regions 41d and 41e so that the second-order diffracted light is used.

一般に、格子定数が小さい場合には、高次の回折光を用いることが望ましく、入射波長と同程度或いはそれ以下の格子定数で高次の回折光を用いることが望ましい。本実施の形態に対応させると、単調にチャープさせた場合に格子定数が小さくなる領域41e,41fで、高次の回折光を用いるべく格子定数を大きくした。   In general, when the grating constant is small, it is desirable to use high-order diffracted light, and it is desirable to use high-order diffracted light with a grating constant that is comparable to or less than the incident wavelength. Corresponding to the present embodiment, the lattice constant is increased in order to use higher-order diffracted light in the regions 41e and 41f where the lattice constant decreases when the chirp is made monotonously.

また、本実施の形態では、所望の位置に回折ビームが集光されるように、回折光の回折次数を同じくする複数の領域においても、領域を跨って連続的に格子周期をチャープさせて加工している。さらに、回折次数の切替えをブレーズ角度の切替え位置で行うことにより、回折格子の分割数を増やすことなく格子定数を切り替えることができる。   In this embodiment, even in a plurality of regions having the same diffraction order of diffracted light, processing is performed by continuously chirping the grating period across the regions so that the diffracted beam is focused at a desired position. is doing. Furthermore, by switching the diffraction order at the blaze angle switching position, the grating constant can be switched without increasing the number of divisions of the diffraction grating.

ブレーズ角は、信号光L1の波長範囲のうち短波長側においてTE偏光(電界方向が刻線方向に平行な偏光)の回折効率とTM偏光(電界方向が刻線方向に垂直な偏光)の回折効率との差が小さくなるように領域ごとに決定されている。TM偏光では、ブレーズ角が正反射条件を満たす正反射ブレーズ角のときに回折効率が最大となる。正反射条件とは、回折格子13に入射する信号光L1が格子面(ブレーズ面)34で正反射する方向と信号光L2の回折方向とが一致するときを示す。また、TE偏光では、正反射ブレーズ角よりも大きなブレーズ角度で回折効率が最大となる。正反射ブレーズ角αは、入射角度i(図1参照)、格子定数d、回折次数m、光導波部の屈折率nとすると、   The blaze angle is the diffraction efficiency of TE-polarized light (polarized light whose electric field direction is parallel to the marking direction) and TM-polarized light (polarized light whose electric field direction is perpendicular to the marking direction) on the short wavelength side in the wavelength range of the signal light L1. It is determined for each region so that the difference from the efficiency is small. With TM polarized light, the diffraction efficiency is maximized when the blaze angle is a specular reflection blaze angle that satisfies the specular reflection condition. The regular reflection condition indicates when the direction in which the signal light L1 incident on the diffraction grating 13 is regularly reflected by the grating surface (blazed surface) 34 coincides with the diffraction direction of the signal light L2. In TE polarization, the diffraction efficiency is maximized at a blaze angle larger than the specular reflection blaze angle. The specular reflection blaze angle α is defined as an incident angle i (see FIG. 1), a grating constant d, a diffraction order m, and a refractive index n of the optical waveguide.

Figure 2006113464
により求まる(グラフ53)。
Figure 2006113464
(Graph 53).

そこで、図5に示すグラフ52のように、各領域の中心付近において、ブレーズ角を正反射ブレーズ角αよりも大きく、TE偏光が最大となるブレーズ角度よりも小さくなるように決定する。これにより、TE偏光の回折効率の最大値とTM偏光の回折効率の最大値とが近づき、偏光間の回折効率の差が小さくなるので、回折格子13による偏光依存損失を低減することができる。   Therefore, as shown in the graph 52 in FIG. 5, near the center of each region, the blaze angle is determined to be larger than the specular reflection blaze angle α and smaller than the blaze angle at which TE polarization becomes maximum. Thereby, the maximum value of the diffraction efficiency of TE-polarized light approaches the maximum value of the diffraction efficiency of TM-polarized light, and the difference in diffraction efficiency between the polarized lights becomes small, so that the polarization-dependent loss due to the diffraction grating 13 can be reduced.

また、領域41a〜fの分割数については、多くするほど、信号光の波長に対してより細かくブレーズ角を決定でき、より偏光依存損失を低減できるブレーズ角度分布とすることができる。   As the number of divisions of the regions 41a to 41f increases, the blaze angle distribution can be determined more finely with respect to the wavelength of the signal light, and the polarization dependent loss can be further reduced.

分割数は4〜9がよく、より好ましくは6〜9がよい。なぜなら、領域の分割数を4以上とすると損失が低下し、6以上でほぼ損失は一定となり、分割数を大きくしても、ある一定の分割数を超えると損失の低下は顕著ではなくなる。しかも、分割数を多くし過ぎると、回折格子作製の際にブレーズ角を変更する回数も増え、領域間のつなぎ部の加工精度が落ちて損失が低下する可能性がある。本実施の形態では、回折格子の溝を平面上に加工しているため、回折格子溝の加工において領域のつなぎ部での平面方向及び垂直方向の位置ずれが生じにくく、精度良く加工することができる。それでも、領域の分割数を9より多くするとつなぎ部での誤差が積み重なり集光特性の劣化が顕著となるからである。   The number of divisions is preferably 4-9, more preferably 6-9. This is because if the number of divisions of the region is 4 or more, the loss is reduced, and if it is 6 or more, the loss is substantially constant. Even if the number of divisions is increased, the loss is not significantly reduced when the number of divisions exceeds a certain number. Moreover, if the number of divisions is increased too much, the number of times that the blaze angle is changed during the production of the diffraction grating is increased, and the processing accuracy of the connecting portion between the regions may be reduced, and the loss may be reduced. In the present embodiment, since the grooves of the diffraction grating are processed on a flat surface, positional displacement in the plane direction and the vertical direction at the connecting portions of the regions hardly occurs in the processing of the diffraction grating grooves, and the processing can be performed with high accuracy. it can. Even so, if the number of divisions of the area is greater than 9, errors at the joints accumulate and the condensing characteristics deteriorate significantly.

本実施の形態では回折格子13を、ルーリングエンジンを用いて機械的に溝を形成した金型を作製し、その金型を用いて成形した。格子溝は領域ごとに一定のブレーズ角度で格子定数を変化させながら加工した。すなわち、回折格子13は、この金型をマスターとして作製したレプリカである。加工方法によっては領域のつなぎ部にずれが生じ、チャープ型回折格子の格子定数が若干不連続となる可能性があるが、所望の集光性能が得られる場合には実質的に連続とみなすことができる。   In the present embodiment, the diffraction grating 13 is formed by using a die that is mechanically formed with a groove using a ruling engine. The lattice grooves were processed while changing the lattice constant at a constant blaze angle for each region. That is, the diffraction grating 13 is a replica produced using this mold as a master. Depending on the processing method, there may be a shift in the connecting part of the region, and the grating constant of the chirped diffraction grating may be slightly discontinuous. However, if the desired light collection performance can be obtained, it is considered to be substantially continuous. Can do.

エシュレット型の回折格子では、波長λ、格子定数dとしたとき、λ/dを   In the Eschlett type diffraction grating, when the wavelength is λ and the lattice constant is d, λ / d is

Figure 2006113464
Figure 2006113464

を満たし、かつブレーズ角度を25°〜35°の範囲に選択すると、特に偏光依存性を小さく、回折効率を大きくすることができる。このとき、信号光L1の入射角iと出射角θ(図1参照)とを、 And the blaze angle is selected in the range of 25 ° to 35 °, the polarization dependency can be particularly reduced and the diffraction efficiency can be increased. At this time, the incident angle i and the outgoing angle θ (see FIG. 1) of the signal light L1 are

Figure 2006113464
Figure 2006113464

とする必要がある。入射角iと出射角θとの間には、 It is necessary to. Between the incident angle i and the outgoing angle θ,

Figure 2006113464
Figure 2006113464

の関係がある。ただしns は回折格子の屈折率である。 There is a relationship. Where n s is the refractive index of the diffraction grating.

つまり、信号光L1の光強度の強い主光線の当たる付近において、格子定数を(2)式及び(3)式を満たし、ブレーズ角を25〜35°の範囲を満たすように回折格子を形成、配置するとさらに回折損失及び偏光依存性による損失を低減することができる。   That is, the diffraction grating is formed so that the lattice constant satisfies the formulas (2) and (3) and the blaze angle is in the range of 25 to 35 ° in the vicinity of the principal ray having the strong light intensity of the signal light L1. When arranged, the loss due to diffraction loss and polarization dependence can be further reduced.

次に、本実施の形態の作用について説明する。   Next, the operation of the present embodiment will be described.

入射用光ファイバ15に波長多重光として伝送してきた信号光L1は、出射端17から拡がって出射されると、シリンドリカルレンズ18に回折格子13の刻線方向について拡がりが低減されてほぼ平行光となり、フィルタ19を透過して回折格子13に入射する。   When the signal light L1 transmitted to the incident optical fiber 15 as wavelength multiplexed light is spread and emitted from the emitting end 17, the spreading of the cylindrical lens 18 in the direction of the engraving direction of the diffraction grating 13 is reduced, and the light becomes substantially parallel light. , Passes through the filter 19 and enters the diffraction grating 13.

フィルタ19では、フィルタ面22がp偏光をほぼ100%透過し、s偏光の一部を反射するので、s偏光の光量を制限している。そのため、回折格子13に入射する光L1の光量は、フィルタ19により回折格子13の溝と垂直な偏光(TM偏光)の光量が減少することになる。   In the filter 19, the filter surface 22 transmits almost 100% of the p-polarized light and reflects a part of the s-polarized light, so that the amount of s-polarized light is limited. Therefore, the amount of light L1 incident on the diffraction grating 13 is reduced by the filter 19 in the amount of polarized light (TM polarized light) perpendicular to the grooves of the diffraction grating 13.

信号光L1は回折格子13で反射、回折し、回折された信号光(出射光線)L2は波長毎に回折角が異なって反射する。信号光L2は、シリンドリカルレンズ28により絞り込まれ、スラブ導波路部29の入射端32に集光される。   The signal light L1 is reflected and diffracted by the diffraction grating 13, and the diffracted signal light (emitted light beam) L2 is reflected with different diffraction angles for each wavelength. The signal light L <b> 2 is narrowed down by the cylindrical lens 28 and condensed on the incident end 32 of the slab waveguide portion 29.

スラブ導波路部29に入射した光は、導波路面内(横断面内)においては自由伝搬し、回折格子13により波長毎に異なる角度で分波されているため、それぞれの位置に設けられたテーパ導波路部31に集光される。その信号光L2は、波長毎に対応するテーパ導波路部31に入射し、それぞれ光検出器アレイ26の光検出素子で検出される。   The light incident on the slab waveguide portion 29 propagates freely in the waveguide plane (in the cross section), and is split at different angles for each wavelength by the diffraction grating 13, and thus is provided at each position. The light is focused on the tapered waveguide portion 31. The signal light L2 enters the tapered waveguide portion 31 corresponding to each wavelength, and is detected by the light detection element of the photodetector array 26, respectively.

本実施の形態のデマルチプレクサ10は回折格子13及びフィルタ19によって回折効率の高効率化と偏光依存損失の低減化を図っている。ここで、偏光依存損失を低減するためのTM、TE偏光の条件について説明する。   In the demultiplexer 10 of the present embodiment, the diffraction grating 13 and the filter 19 are used to increase the diffraction efficiency and reduce the polarization dependent loss. Here, conditions for TM and TE polarization for reducing the polarization-dependent loss will be described.

偏光した信号光が入射する場合には、回折格子に入射する偏光が変化するため、最大損失条件(最悪条件)は、TE偏光、TM偏光の損失の大きい方となる条件となる。最大損失条件での損失が低いことが望ましい。   When polarized signal light is incident, the polarization incident on the diffraction grating changes, so the maximum loss condition (worst condition) is a condition that results in the greater loss of TE-polarized light and TM-polarized light. It is desirable that the loss under the maximum loss condition is low.

TM偏光は、TE偏光に比べピークの回折効率は大きいが、波長依存性が大きい。一方、TE偏光は、ピークの回折効率において波長依存性が小さい。また、TM偏光の回折効率がピークとなる波長は、TE偏光の回折効率がピークになる波長に比べて長波長側にある。そのため、最大損失条件での損失を小さくするには、デマルチプレクサ10で使用する信号光の波長範囲において、TE偏光の損失の最大値よりもTM偏光の最大値を小さくするとよい。このような信号光の特性を得るために、回折格子の格子定数、ブレーズ形状は数値計算等により最適化されて決定される。   TM polarized light has higher peak diffraction efficiency than TE polarized light, but has a large wavelength dependency. On the other hand, TE-polarized light has a small wavelength dependency in peak diffraction efficiency. Further, the wavelength at which the diffraction efficiency of TM polarized light reaches a peak is on the longer wavelength side than the wavelength at which the diffraction efficiency of TE polarized light reaches a peak. Therefore, in order to reduce the loss under the maximum loss condition, it is preferable to make the maximum value of the TM polarized light smaller than the maximum value of the TE polarized light loss in the wavelength range of the signal light used in the demultiplexer 10. In order to obtain such signal light characteristics, the grating constant and blaze shape of the diffraction grating are optimized and determined by numerical calculation or the like.

さらに、TM偏光の損失の最大値が、TE偏光の損失の最小値よりも大きくすることが望ましい。ここでの回折格子の損失は、チャープ型等格子位置により損失が異なる場合には、想定される光ファイバからの入射パターンにおける回折格子全体の損失とすればよい。   Furthermore, it is desirable that the maximum value of the TM polarized light loss is larger than the minimum value of the TE polarized light loss. Here, the loss of the diffraction grating may be the loss of the entire diffraction grating in the assumed incident pattern from the optical fiber when the loss varies depending on the chirped-type equal grating position.

光通信に用いられる波長帯においては、波長が長くなるとTE偏光の損失が増加し、TM偏光の損失が減少する傾向にある。したがって、所定の波長範囲のもっとも長波長でのTE偏光の損失よりも、最も短波長でのTM偏光の損失を小さくすることによってTE偏光の損失の最大値よりもTM偏光の最大値を小さくすればよい。   In the wavelength band used for optical communication, as the wavelength becomes longer, the loss of TE polarization tends to increase and the loss of TM polarization tends to decrease. Therefore, the maximum value of TM polarization is made smaller than the maximum value of loss of TE polarization by making the loss of TM polarization at the shortest wavelength smaller than the loss of TE polarization at the longest wavelength in a predetermined wavelength range. That's fine.

さらに、最も短波長でのTE偏光の損失よりも最も短波長でのTM偏光の損失を大きくしたほうが、偏光依存性が小さくなりより望ましい。   Furthermore, it is more desirable to increase the loss of the TM polarized light at the shortest wavelength than the loss of the TE polarized light at the shortest wavelength, because the polarization dependency is reduced.

加えて、本実施の形態のようにTM偏光の光量を減光するフィルタ19を用いることにより、さらに偏光依存損失を低減することができる。   In addition, the polarization dependent loss can be further reduced by using the filter 19 that reduces the amount of TM polarized light as in the present embodiment.

図6は本実施の形態のデマルチプレクサ10のTE、TM両偏光の波長損失特性を示した図であり、フィルタを設けていないデマルチプレクサの波長損失特性と比較したものである。   FIG. 6 is a diagram showing the wavelength loss characteristics of both TE and TM polarized light of the demultiplexer 10 of this embodiment, and is compared with the wavelength loss characteristics of a demultiplexer not provided with a filter.

図6に示すように、TE偏光成分の特性(グラフ61)は、フィルタ19の有無に関わらず、損失が波長に依存せず、どの波長帯でも略一定の光量が検出される。一方、TM偏光は、入射光L1をフィルタ19に透過させないときは、グラフ62のようになり、長波長側での損失が小さくなっている。よって、長波長側においては、TE偏光とTM偏光との間に損失差が生じ、偏光依存損失が大きくなっている。   As shown in FIG. 6, the characteristic of the TE polarization component (graph 61) is that the loss does not depend on the wavelength regardless of the presence or absence of the filter 19, and a substantially constant light amount is detected in any wavelength band. On the other hand, the TM polarized light is as shown in the graph 62 when the incident light L1 is not transmitted through the filter 19, and the loss on the long wavelength side is small. Therefore, on the long wavelength side, a loss difference occurs between the TE polarized light and the TM polarized light, and the polarization dependent loss is increased.

これに対し、信号光L1がフィルタ19を透過したTM偏光の損失は、波長に関係なくTE偏光の損失と略同じく一定となっている(グラフ63)。これは、回折格子13においては、TM偏光の長波長側で損失が小さくなるが、信号光L1をフィルタ19に透過させてTM偏光成分の長波長側を減衰させることで、異なる波長でも信号光L2の損失を略等しくしている。よって、フィルタ19を透過させることで、デマルチプレクサ10で分波される信号光L2の偏光依存性損失をより低減させることができる。   On the other hand, the loss of TM polarized light through which the signal light L1 has passed through the filter 19 is substantially the same as the loss of TE polarized light regardless of the wavelength (graph 63). In the diffraction grating 13, the loss is reduced on the long wavelength side of the TM polarized light, but the signal light L 1 is transmitted through the filter 19 and attenuated on the long wavelength side of the TM polarized component, so that the signal light can be obtained even at different wavelengths. The loss of L2 is made substantially equal. Therefore, by passing through the filter 19, it is possible to further reduce the polarization dependent loss of the signal light L2 demultiplexed by the demultiplexer 10.

以上、本実施の形態の回折格子13は、回折損失を小さく、偏光間の損失の差も小さくすることができる。具体的には、回折損失は1.5dB以下であり、70%以上の回折効率を得ることができると共に、波長85nmの範囲での偏波依存損失を0.5dB以下に低減することができる。   As described above, the diffraction grating 13 of the present embodiment can reduce the diffraction loss and also reduce the difference in loss between polarized light. Specifically, the diffraction loss is 1.5 dB or less, a diffraction efficiency of 70% or more can be obtained, and the polarization-dependent loss in the wavelength range of 85 nm can be reduced to 0.5 dB or less.

また、本実施の形態では、高次の回折光を用いることにより、格子定数を大きくすることができ、また格子溝の本数を少なくできるのでルーリングエンジンでの回折格子の加工が容易となる効果もある。しかし、ブレーズ角度の大きな領域で回折次数を大きくすると回折効率の波長依存性が大きくなるとともに、ピークの回折効率も低下するので、回折次数としては4以下が望ましい。   In this embodiment, the grating constant can be increased by using high-order diffracted light, and the number of grating grooves can be reduced, so that the diffraction grating can be easily processed by the ruling engine. is there. However, if the diffraction order is increased in a region where the blaze angle is large, the wavelength dependence of the diffraction efficiency increases and the peak diffraction efficiency also decreases. Therefore, the diffraction order is preferably 4 or less.

本発明は、以上説明した実施の形態には限定されない。   The present invention is not limited to the embodiment described above.

本実施の形態では、回折格子13をエシュレット型かつチャープ型に形成したがエシュレット型に限らず、溝の断面が正弦波形状である回折格子、矩形状のバイナリ回折格子の場合や、その他任意の溝形状の回折格子にも適用することができる。また回折格子については、平面型の回折格子に限らず、凹面回折格子についても同様に適用することができる。さらに、チャープ型の回折格子に限らず、等間隔の回折格子についても同様に偏光依存性の低減、損失の低減を実現することができる。   In the present embodiment, the diffraction grating 13 is formed in the eschlet type and the chirp type, but is not limited to the eschlet type, and in the case of a diffraction grating having a sinusoidal cross section, a rectangular binary diffraction grating, or any other arbitrary The present invention can also be applied to a groove-shaped diffraction grating. The diffraction grating is not limited to a planar diffraction grating, but can be similarly applied to a concave diffraction grating. Further, not only the chirped diffraction grating but also the equally spaced diffraction grating can similarly realize a reduction in polarization dependence and a reduction in loss.

回折格子13の格子溝パターンの加工は、3次元NC加工機を用いて加工してもよい。また、フォトリソグラフィ技術を用いて、Si等の半導体基板上に作製してもよい。   The grating groove pattern of the diffraction grating 13 may be processed using a three-dimensional NC processing machine. Further, it may be formed on a semiconductor substrate such as Si by using a photolithography technique.

また、入射用光ファイバ15を基材11に固定せずデマルチプレクサ10に挿抜される外部伝送用光ファイバを用いてもよい。その場合には、挿入ガイド等を用いることにより、光コネクタに固定された光ファイバ15が挿抜されても所定の位置に突き合わされるようにすればよい。但し、入射用光ファイバ15をベース11に固定することにより、特性の長期安定性に優れるといった効果がある。また、入射用光ファイバ15を固定した場合は、伝送用光ファイバを入射用光ファイバ15のもう一端側に突き合わせてデマルチプレクサ10に光を入射すればよい。その場合、伝送用光ファイバの開口数及び径は、入射用光ファイバ15のそれらと等しい、またはそれらより小さければよい。したがって、伝送用光ファイバには、入射用光ファイバ15と同じGI型マルチモード光ファイバを接続してもよく、ファイバ径及び開口数の小さなシングルモード光ファイバ(SMF)やコア径50μmのマルチモード光ファイバ(50MMF)を接続することもできる。   Alternatively, an external transmission optical fiber that is inserted into and removed from the demultiplexer 10 without fixing the incident optical fiber 15 to the base 11 may be used. In that case, an insertion guide or the like may be used so that the optical fiber 15 fixed to the optical connector is abutted to a predetermined position even if the optical fiber 15 is inserted or removed. However, fixing the incident optical fiber 15 to the base 11 has an effect of excellent long-term stability of characteristics. When the incident optical fiber 15 is fixed, the transmission optical fiber may be abutted against the other end side of the incident optical fiber 15 and light may be incident on the demultiplexer 10. In this case, the numerical aperture and the diameter of the transmission optical fiber may be equal to or smaller than those of the incident optical fiber 15. Therefore, the transmission optical fiber may be connected to the same GI type multimode optical fiber as that of the incident optical fiber 15, such as a single mode optical fiber (SMF) having a small fiber diameter and numerical aperture, and a multimode having a core diameter of 50 μm. An optical fiber (50 MMF) can also be connected.

光入射部12、回折格子13及び受光部14を、入射光に対して回折光が略もとの方向に反射するようなリトロー配置に近く配置した場合には、シリンドリカルレンズを1個にして、信号光L1、L2の集光を行うようにしてもよい。   When the light incident part 12, the diffraction grating 13, and the light receiving part 14 are arranged close to a Littrow arrangement in which the diffracted light is reflected in the substantially original direction with respect to the incident light, the number of cylindrical lenses is one, The signal lights L1 and L2 may be condensed.

本実施の形態では、信号光L1が空気中を伝搬して回折格子13に到達する構成としたが、ガラス、プラスチック等の光学部材に回折格子を形成し、さらに光学部材にシリンドリカルレンズを一体化し、その光学部材を光伝送路として信号光L1、L2を伝搬させてもよい。その場合は、光学部材の屈折率に合わせて格子定数及びブレーズ角を決定するのがよい。   In the present embodiment, the signal light L1 propagates through the air and reaches the diffraction grating 13. However, a diffraction grating is formed on an optical member such as glass or plastic, and a cylindrical lens is integrated with the optical member. The signal light L1, L2 may be propagated using the optical member as an optical transmission path. In that case, the lattice constant and the blaze angle are preferably determined in accordance with the refractive index of the optical member.

本実施の形態では、光入射部12にフィルタ19を設けたが、受光部14にフィルタ19を設けてもデマルチプレクサ10と同様の効果が得られる。また、フィルタ19の形式はプリズム型に限らず、平板基板上に形成した形式のものでもよい。   In this embodiment, the filter 19 is provided in the light incident part 12, but the same effect as the demultiplexer 10 can be obtained even if the filter 19 is provided in the light receiving part 14. The form of the filter 19 is not limited to the prism type, but may be a form formed on a flat substrate.

ここまで、デマルチプレクサ10について説明したが、受光部14の光検出器アレイ26の代わりに、レーザダイオードアレイ等の光源を設け、波長の異なる信号光を合波するマルチプレクサ(光合波器)として用いることもできる。その際、波長多重化された光を出射する光ファイバの入射端(例えば図1の出射端17)に、信号光を絞り込むように形成したテーパ導波路を設けることが望ましい。   Although the demultiplexer 10 has been described so far, a light source such as a laser diode array is provided instead of the photodetector array 26 of the light receiving unit 14 and is used as a multiplexer (optical multiplexer) for combining signal lights having different wavelengths. You can also. At this time, it is desirable to provide a tapered waveguide formed so as to narrow down the signal light at the incident end (for example, the emission end 17 in FIG. 1) of the optical fiber that emits the wavelength-multiplexed light.

次に他の実施の形態のデマルチプレクサについて説明する。   Next, a demultiplexer according to another embodiment will be described.

本実施の形態のデマルチプレクサは、上述した図1のデマルチプレクサ10とほぼ同様の構成をしており、回折格子13のみ異なるものである。   The demultiplexer of the present embodiment has almost the same configuration as the demultiplexer 10 of FIG. 1 described above, and only the diffraction grating 13 is different.

前実施の形態のデマルチプレクサ10が備える回折格子13は、分割された領域内ではブレーズ角を一定としたものであるが、図7に示すように、本実施の形態のデマルチプレクサの備える回折格子は、格子定数を略連続的に変化させる(グラフ71)のに加えて、ブレーズ角も連続的に変化させたものである(グラフ72)。本実施の形態では、回折格子における溝の位置が1mm点より左側の位置(図4の領域41a〜c)で回折次数を1次の回折光、位置1mmの点より右側(図4の領域41d〜f)では2次回折光を用いるように境界で不連続に格子定数を2倍とした。ブレーズ角は、領域41a〜c、領域41d〜fのそれぞれの領域内で図中右側から連続的に大きくなるように、かつ位置1mmの点(領域41cと領域41dの境界)で不連続になるように形成されている。   The diffraction grating 13 provided in the demultiplexer 10 of the previous embodiment has a constant blaze angle in the divided region, but as shown in FIG. 7, the diffraction grating provided in the demultiplexer of the present embodiment. In FIG. 5, in addition to changing the lattice constant substantially continuously (graph 71), the blaze angle is also changed continuously (graph 72). In the present embodiment, the position of the groove in the diffraction grating is a position to the left of the 1 mm point (regions 41a to c in FIG. 4), the diffraction order is the first order diffracted light, and the right side from the point of the position 1 mm (region 41d in FIG. 4). In f), the lattice constant was doubled discontinuously at the boundary so as to use the second-order diffracted light. The blaze angle becomes discontinuous so as to increase continuously from the right side in the drawing in each of the regions 41a to 41c and 41d to 41f and at a point of 1 mm (boundary between the region 41c and the region 41d). It is formed as follows.

前実施の形態と同じく、λ/dが0.6から1.0、ブレーズ角度を25°から35°の範囲にすることが望ましく、この場合、信号光の入射角度i及び出射角度θが(3)式を満たすようにする必要がある。   As in the previous embodiment, it is desirable that λ / d is in the range of 0.6 to 1.0 and the blaze angle is in the range of 25 ° to 35 °. In this case, the incident angle i and the outgoing angle θ of the signal light are ( 3) It is necessary to satisfy the equation.

本実施の形態の回折格子は、3次元NC加工機を用いて格子溝ごとに格子周期、ブレーズ角度を変えて加工した。   The diffraction grating of this embodiment was processed by changing the grating period and blaze angle for each grating groove using a three-dimensional NC processing machine.

本実施の形態の回折格子を用いたデマルチプレクサにおいても、分波された信号光の回折損失及び偏光依存損失を低減できる。さらに、前実施の形態と同様にフィルタを備えることで、より偏光依存損失を低減することができる。   Also in the demultiplexer using the diffraction grating of the present embodiment, the diffraction loss and polarization dependent loss of the demultiplexed signal light can be reduced. Furthermore, the polarization dependent loss can be further reduced by providing a filter as in the previous embodiment.

図8に示すように、上述の回折格子を用いてフィルタを用いないデマルチプレクサの損失の波長特性は、TE偏光においては波長による損失の変化はほとんどない(グラフ81)。TM偏光においては、使用波長の短波長側でTE偏光との損失の差がほとんどないが、長波長側では損失が小さくTE偏光の損失より小さい(グラフ82)。   As shown in FIG. 8, the wavelength characteristic of the loss of the demultiplexer using the above-mentioned diffraction grating and not using the filter has almost no change in the loss due to the wavelength in the TE polarized light (graph 81). In TM polarized light, there is almost no difference in loss from TE polarized light on the short wavelength side of the used wavelength, but the loss is small on the long wavelength side and smaller than the loss of TE polarized light (graph 82).

本実施の形態のデマルチプレクサの損失の波長特性は、TE偏光の損失はほとんど変化しない(グラフ82)。一方、TM偏光の損失は、回折格子では長波長側での損失は小さいが、入射光をフィルタを透過させているため、長波長側の入射光量を減少しており、TM偏光においても、波長による損失の依存性を低減している(グラフ83)。よって、フィルタと回折格子による損失(デマルチプレクサの損失)は、使用波長範囲内においてTE偏光とTM偏光との間で差を小さくしており、さらに偏波依存性損失を低減することができる。   The loss wavelength characteristic of the demultiplexer of the present embodiment hardly changes the loss of TE polarization (graph 82). On the other hand, the loss of TM polarized light is small on the long wavelength side in the diffraction grating, but the incident light on the long wavelength side is reduced because the incident light is transmitted through the filter. This reduces the loss dependency due to (graph 83). Therefore, the loss due to the filter and the diffraction grating (demultiplexer loss) reduces the difference between the TE-polarized light and the TM-polarized light within the usable wavelength range, and can further reduce the polarization-dependent loss.

次に図1のデマルチプレクサ10を備えた波長多重光伝送モジュールについて説明する。   Next, a wavelength division multiplexing optical transmission module including the demultiplexer 10 of FIG. 1 will be described.

図9に示すように、波長多重光伝送モジュール90は、筐体91内に、外部より波長多重光を分波して受信する受信部92と、各波長の信号光を合波して波長多重光として外部に送信する送信部93と、受信部92及び送信部93を外部の伝送用光ファイバ94,95にそれぞれ接続する接合部96とを備える。   As shown in FIG. 9, the wavelength division multiplexing optical transmission module 90 includes a receiving unit 92 that demultiplexes and receives wavelength division multiplexed light from the outside, and a wavelength division multiplexing unit that multiplexes the signal light of each wavelength. A transmission unit 93 that transmits to the outside as light, and a joint unit 96 that connects the reception unit 92 and the transmission unit 93 to external transmission optical fibers 94 and 95, respectively.

受信部92は、図1に示したデマルチプレクサ10と、受信回路97とを備える。デマルチプレクサ10の入射用光ファイバ15が接合部96で伝送用光ファイバ94と接続されている。受信回路97は、検出された電気信号の増幅及び波形整形を行う回路であり、デマルチプレクサ10の光検出器アレイ26に電気的に接続されている。また、受信回路97は、パラレル−シリアル変換回路98を介して外部の電子デバイスに接続されている。   The receiving unit 92 includes the demultiplexer 10 illustrated in FIG. The incident optical fiber 15 of the demultiplexer 10 is connected to the transmission optical fiber 94 at the joint 96. The receiving circuit 97 is a circuit that performs amplification and waveform shaping of the detected electric signal, and is electrically connected to the photodetector array 26 of the demultiplexer 10. The receiving circuit 97 is connected to an external electronic device via a parallel-serial conversion circuit 98.

送信部93は、波長合波デバイス99と、光源と、送信回路101とを備える。波長合波デバイス99は、複数の入射端102と一つの出射端103を有し、各入射端102より延出する光導波路同士が結合する光カプラを形成して、一本の光導波路に結合する光導波路素子である。出射端103には接合部96で伝送用光ファイバ95に接続される出射用光ファイバ104が接続され、複数の入射端102には光源が接続されている。光源は光合波デバイス99の入射端102に光学的に接続され、光源を駆動するための送信回路101に電気的に接続されている。光源として複数のレーザダイオードをアレイ状に配置してなるレーザダイオードアレイ105を用いた。送信回路101はレーザダイオードアレイ105を駆動、制御するための回路であり、シリアル−パラレル変換回路106を介して外部の電子デバイスに接続されている。   The transmission unit 93 includes a wavelength multiplexing device 99, a light source, and a transmission circuit 101. The wavelength multiplexing device 99 has a plurality of incident ends 102 and one output end 103, and forms an optical coupler in which optical waveguides extending from the respective incident ends 102 are coupled to each other, and coupled to one optical waveguide. It is an optical waveguide device. An outgoing optical fiber 104 connected to the transmission optical fiber 95 is connected to the outgoing end 103 at the joint 96, and a light source is connected to the multiple incoming ends 102. The light source is optically connected to the incident end 102 of the optical multiplexing device 99 and electrically connected to the transmission circuit 101 for driving the light source. A laser diode array 105 in which a plurality of laser diodes are arranged in an array is used as a light source. The transmission circuit 101 is a circuit for driving and controlling the laser diode array 105, and is connected to an external electronic device via a serial-parallel conversion circuit 106.

接合部96は、受信用の伝送用光ファイバ94と入射用光ファイバ15とを接合し、送信用の伝送用光ファイバ95と出射用光ファイバ104とを接合するものである。本実施の形態では接合部96として着脱可能な光コネクタを設け、その光コネクタにおいて、送信用及び受信用の伝送用光ファイバ94,95が、それぞれ入射用光ファイバ及び出射用光ファイバ15,104と突き合わされている。伝送用光ファイバ94,95はシングルモード光ファイバと用いた。   The joining part 96 joins the transmission optical fiber 94 for reception and the incident optical fiber 15, and joins the transmission optical fiber 95 for transmission and the outgoing optical fiber 104. In this embodiment, a detachable optical connector is provided as the joint portion 96, and in the optical connector, transmission optical fibers 94 and 95 for transmission and reception optical fibers 15 and 104, respectively. It is matched. The transmission optical fibers 94 and 95 were used as single mode optical fibers.

受信用の伝送用光ファイバ94を伝搬してきた波長多重光信号は、入射用光ファイバ15に入射し、デマルチプレクサ10で各波長毎に分波されて光検出器アレイ26で検出される。検出された信号光が受信回路97にて増幅、波形整形される。次に、パラレル−シリアル変換回路98により、並列に受信したパラレル信号をシリアル信号に変換して逐次出力する。   The wavelength multiplexed optical signal propagated through the receiving transmission optical fiber 94 enters the incident optical fiber 15, is demultiplexed for each wavelength by the demultiplexer 10, and is detected by the photodetector array 26. The detected signal light is amplified and shaped by the receiving circuit 97. Next, the parallel-serial conversion circuit 98 converts parallel signals received in parallel into serial signals and sequentially outputs them.

一方、信号光を送信する場合には、シリアル−パラレル変換回路106に入力された信号がパラレル信号に分離され、各信号は送信回路101で電気信号毎にダイオードアレイ105の各レーザダイオードを駆動し、それぞれ波長の異なる信号光が出射する。各信号光は波長合波デバイス99で波長多重化され、その信号が出射用光ファイバ104を伝搬して送信用の伝送用光ファイバ95へ出射される。   On the other hand, when transmitting signal light, the signal input to the serial-parallel conversion circuit 106 is separated into parallel signals, and each signal drives each laser diode of the diode array 105 for each electrical signal by the transmission circuit 101. , Signal lights having different wavelengths are emitted. Each signal light is wavelength-multiplexed by the wavelength multiplexing device 99, and the signal propagates through the outgoing optical fiber 104 and is emitted to the transmission optical fiber 95 for transmission.

本実施の形態においては、偏光依存性の小さく、損失の波長依存性の小さなデマルチプレクサ10を用いているため、シングルモード光ファイバである伝送用光ファイバ95より直線偏光が入射しても、偏光方向の変動による光学特性の変動を小さくすることができる。これにより、受信回路97においてより精密に信号を増幅、整形することができる。   In the present embodiment, since the demultiplexer 10 having small polarization dependence and small loss wavelength dependence is used, even if linearly polarized light is incident from the transmission optical fiber 95 that is a single mode optical fiber, Variations in optical characteristics due to variations in direction can be reduced. As a result, the signal can be amplified and shaped in the receiving circuit 97 more precisely.

接合部96は、光ファイバ同士の着脱可能な光コネクタが挙げられるが、伝送用光ファイバ94,95と入出射用光ファイバ15,104とを接着、或いは融着により突き合わせて着脱不可能に固定してもよい。   Examples of the joining portion 96 include optical connectors that can be attached to and detached from each other, but the transmission optical fibers 94 and 95 and the incoming and outgoing optical fibers 15 and 104 are bonded or fused together so that they cannot be attached or detached. May be.

入出射用光ファイバ15,104としてシングルモード光ファイバ及びマルチモードの光ファイバを用いて、それぞれ伝送用光ファイバ94,95と接続しているため、伝送用光ファイバ94,95にはマルチモードファイバ、シングルモードファイバのどちらでも用いてもよい。本実施の形態では、入射用光ファイバ15にコア径62.5μmのGI型マルチモードファイバを用いており、伝送用光ファイバ94として、光ファイバ15よりもコア径の小さいシングルモード光ファイバ、コア50μm及び62.5μmのマルチモード光ファイバ等を用いてもよい。   Since the single-mode optical fiber and the multi-mode optical fiber are used as the input / output optical fibers 15 and 104 and are connected to the transmission optical fibers 94 and 95, respectively, the transmission optical fibers 94 and 95 include a multi-mode fiber. Either a single mode fiber or a single mode fiber may be used. In the present embodiment, a GI type multimode fiber having a core diameter of 62.5 μm is used as the incident optical fiber 15, and a single mode optical fiber having a core diameter smaller than that of the optical fiber 15 is used as the transmission optical fiber 94. Multimode optical fibers of 50 μm and 62.5 μm may be used.

本実施の形態においては、多重化されて伝送されてきた中心波長1275.7,1300.2,1324.7,1349.2nmの4波長を分離する構成とした。これらの各中心波長は、光源の製造誤差、温度、スペクトル分布による波長ばらつきにより、最大±6.7nm変動するものとした。波長ばらつきは、光源の作製、特性により決まるものであり、特に厳しい光源の選別を必要としない範囲として必要なものである。   In the present embodiment, the four wavelengths of the central wavelengths 1275.7, 1300.2, 1324.7, and 1349.2 nm that have been multiplexed and transmitted are separated. Each of these center wavelengths is assumed to vary by a maximum of ± 6.7 nm due to wavelength variations due to light source manufacturing errors, temperature, and spectral distribution. The wavelength variation is determined by the production and characteristics of the light source, and is necessary as a range that does not require strict selection of the light source.

本実施の形態では、送信と受信の両方の機能を有する波長多重光伝送モジュール90について示したが、本実施の形態の特徴は、受信部92が備えるデマルチプレクサ10にあり、受信部92のみを有する波長多重光伝送モジュールとしても本発明の効果を得られるものである。また、上述のように、デマルチプレクサを光合波器として用い、送信部93の光合波デバイスの代わりに用いてもよい。   In the present embodiment, the wavelength division multiplexing optical transmission module 90 having both transmission and reception functions has been described. However, the present embodiment is characterized in the demultiplexer 10 included in the reception unit 92 and includes only the reception unit 92. The effect of the present invention can also be obtained as a wavelength division multiplexing optical transmission module. Further, as described above, a demultiplexer may be used as an optical multiplexer, and may be used instead of the optical multiplexing device of the transmission unit 93.

本実施の形態のデマルチプレクサの上面図である。It is a top view of the demultiplexer of this Embodiment. 図1のデマルチプレクサの側面図である。It is a side view of the demultiplexer of FIG. 図1のデマルチプレクサが備えるフィルタの透過率−波長特性を示す図である。It is a figure which shows the transmittance-wavelength characteristic of the filter with which the demultiplexer of FIG. 1 is provided. 図1のデマルチプレクサが備える回折格子の正面図である。It is a front view of the diffraction grating with which the demultiplexer of FIG. 1 is provided. 図4の回折格子の格子位置と格子周期及びブレーズ角との関係を示す図である。It is a figure which shows the relationship between the grating position of the diffraction grating of FIG. 4, a grating period, and a blaze angle. 図1のデマルチプレクサの損失の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the loss of the demultiplexer of FIG. 他の実施形態における回折格子の格子位置と格子周期及びブレーズ角との関係を示す図である。It is a figure which shows the relationship between the grating position of the diffraction grating in another embodiment, a grating period, and a blaze angle. 他の実施形態のデマルチプレクサの損失の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the loss of the demultiplexer of other embodiment. 本実施の形態の波長多重光伝送モジュールの構成図である。It is a block diagram of the wavelength division multiplexing optical transmission module of this Embodiment.

符号の説明Explanation of symbols

10 デマルチプレクサ
12 光入射部
13 回折格子
14 受光部
15 光ファイバ
18 シリンドリカルレンズ
19 フィルタ
26 光検出器アレイ
27 受光用光導波路
90 波長多重光伝送モジュール
96 接合部
97 受信回路
99 波長合波デバイス
101 送信回路
DESCRIPTION OF SYMBOLS 10 Demultiplexer 12 Light incident part 13 Diffraction grating 14 Light receiving part 15 Optical fiber 18 Cylindrical lens 19 Filter 26 Photodetector array 27 Optical waveguide for light reception 90 Wavelength multiplexing optical transmission module 96 Junction part 97 Receiving circuit 99 Wavelength multiplexing device 101 Transmission circuit

Claims (14)

信号光を入射する光入射部と、上記光入射部から入射した信号光を回折する回折格子と、回折した信号光を検出する光検出器を複数有する受光部とを備えるデマルチプレクサにおいて、所定の波長範囲において、上記回折格子のTE偏光とTM偏光との回折効率の差が短波長側で小さく、長波長側で大きいことを特徴とするデマルチプレクサ。   In a demultiplexer comprising: a light incident portion that receives signal light; a diffraction grating that diffracts the signal light incident from the light incident portion; and a light receiving portion that includes a plurality of photodetectors that detect the diffracted signal light. A demultiplexer characterized in that, in the wavelength range, a difference in diffraction efficiency between TE polarized light and TM polarized light of the diffraction grating is small on the short wavelength side and large on the long wavelength side. 信号光を入射する光入射部と、上記光入射部から入射した信号光を回折する回折格子と、回折した信号光を検出する光検出器を複数有する受光部とを備えるデマルチプレクサにおいて、上記回折格子のTE偏光における損失の最大値よりもTM偏光における損失の最大値が小さいことを特徴とするデマルチプレクサ。   In the demultiplexer, comprising: a light incident portion that receives signal light; a diffraction grating that diffracts the signal light incident from the light incident portion; and a light receiving portion that includes a plurality of photodetectors that detect the diffracted signal light. A demultiplexer characterized in that the maximum loss in TM polarization is smaller than the maximum loss in TE polarization of the grating. 上記回折格子の最も長波長のTE偏光の損失よりも、最も短波長でのTM偏光の損失が大きい請求項2記載のデマルチプレクサ。   The demultiplexer according to claim 2, wherein the loss of the TM polarized light at the shortest wavelength is larger than the loss of the TE polarized light of the longest wavelength of the diffraction grating. 上記回折格子のTM偏光の損失の最大値が、TE偏光の損失の最大値よりも小さく、TE偏光の損失の最小値よりも大きい請求項2記載のデマルチプレクサ。   3. The demultiplexer according to claim 2, wherein a maximum value of TM polarization loss of the diffraction grating is smaller than a maximum value of TE polarization loss and larger than a minimum value of TE polarization loss. 信号光を入射する光入射部と、上記光入射部から入射した信号光を回折する回折格子と、回折した信号光を検出する光検出器を複数有する受光部とを備えるデマルチプレクサにおいて、上記光入射部に、上記回折格子に入射する信号光のTM偏光を減光する偏光フィルタを設けたことを特徴とするデマルチプレクサ。   In the demultiplexer, comprising: a light incident portion that receives signal light; a diffraction grating that diffracts the signal light incident from the light incident portion; and a light receiving portion that includes a plurality of photodetectors that detect the diffracted signal light. A demultiplexer characterized in that a polarizing filter for reducing TM polarization of signal light incident on the diffraction grating is provided at an incident portion. 上記回折格子が、格子周期が異なるチャープ型回折格子である請求項1〜5いずれかに記載のデマルチプレクサ。   The demultiplexer according to claim 1, wherein the diffraction grating is a chirped diffraction grating having a different grating period. 上記回折格子が、エシュレット型の回折格子であって、その回折格子を溝に沿って複数の領域に分割し、ブレーズ角が各領域毎に異なる請求項5または6記載のデマルチプレクサ。   7. The demultiplexer according to claim 5, wherein the diffraction grating is an Eschlet type diffraction grating, and the diffraction grating is divided into a plurality of regions along the groove, and the blaze angle is different for each region. 上記回折格子の領域の数が4〜9である請求項7記載のデマルチプレクサ。   8. The demultiplexer according to claim 7, wherein the number of the diffraction grating regions is 4 to 9. 上記回折格子が、エシュレット型の回折格子であって、ブレーズ角が連続的に変化している請求項5または6記載のデマルチプレクサ。   7. The demultiplexer according to claim 5, wherein the diffraction grating is an Eschlet type diffraction grating, and the blaze angle is continuously changed. 所定の波長範囲の短波長側において、回折格子のブレーズ角が、回折格子へ入射する信号光が格子面で正反射する方向とその信号光の回折方向とが略一致する角である正反射ブレーズ角よりも大きく、かつTE偏光の回折効率が最大となる角度よりも小さい請求項7〜9いずれかに記載のデマルチプレクサ。   A specular reflection blaze in which the blaze angle of the diffraction grating is an angle at which the direction in which the signal light incident on the diffraction grating is specularly reflected by the grating surface and the diffraction direction of the signal light substantially coincide with each other on the short wavelength side of the predetermined wavelength range. The demultiplexer according to any one of claims 7 to 9, wherein the demultiplexer is larger than an angle and smaller than an angle at which the diffraction efficiency of TE polarized light is maximized. 上記回折格子が、所定の波長範囲にある信号光の波長をλ、格子定数をd、信号光の回折格子への入射角をi、信号光の回折格子の回折角をθとしたとき、
Figure 2006113464
かつ、
Figure 2006113464
を満たす請求項5〜10いずれかに記載のデマルチプレクサ。
When the wavelength of the signal light in the predetermined wavelength range is λ, the grating constant is d, the incident angle of the signal light to the diffraction grating is i, and the diffraction angle of the signal light diffraction grating is θ,
Figure 2006113464
And,
Figure 2006113464
The demultiplexer according to claim 5, wherein
請求項1〜11いずれかに記載のデマルチプレクサを備え、上記受光部と外部の光伝送路と接続する接合部を形成し、上記デマルチプレクサの受光部に、受光部からの信号を増幅、波形成形する受信回路を接続したことを特徴とする波長多重光伝送モジュール。   A demultiplexer according to any one of claims 1 to 11, comprising: a junction for connecting the light receiving unit and an external optical transmission line; a signal from the light receiving unit is amplified and waveformd at the light receiving unit of the demultiplexer; A wavelength division multiplexing optical transmission module, wherein a receiving circuit to be molded is connected. 複数の光源と、それらの光源に接続され、光源を駆動、制御する送信回路と、上記複数の光源に接続され、上記複数の光源からの信号光を合波する波長合波デバイスとを備えた請求項12記載の波長多重光伝送モジュール。   A plurality of light sources, a transmission circuit that is connected to the light sources, drives and controls the light sources, and a wavelength multiplexing device that is connected to the plurality of light sources and combines the signal lights from the plurality of light sources. The wavelength division multiplexing optical transmission module according to claim 12. 上記接合部と上記デマルチプレクサとをマルチモードの光伝送路で接続し、上記接合部と上記波長合波デバイスとをシングルモードの光伝送路で接続した請求項13記載の波長多重光伝送モジュール。
The wavelength division multiplexing optical transmission module according to claim 13, wherein the junction and the demultiplexer are connected by a multimode optical transmission line, and the junction and the wavelength multiplexing device are connected by a single mode optical transmission line.
JP2004303032A 2004-10-18 2004-10-18 Demultiplexer and wavelength division multiplexing optical transmission module Expired - Fee Related JP4759973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303032A JP4759973B2 (en) 2004-10-18 2004-10-18 Demultiplexer and wavelength division multiplexing optical transmission module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303032A JP4759973B2 (en) 2004-10-18 2004-10-18 Demultiplexer and wavelength division multiplexing optical transmission module

Publications (2)

Publication Number Publication Date
JP2006113464A true JP2006113464A (en) 2006-04-27
JP4759973B2 JP4759973B2 (en) 2011-08-31

Family

ID=36382013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303032A Expired - Fee Related JP4759973B2 (en) 2004-10-18 2004-10-18 Demultiplexer and wavelength division multiplexing optical transmission module

Country Status (1)

Country Link
JP (1) JP4759973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154078A (en) * 2010-01-26 2011-08-11 Hitachi Displays Ltd Liquid crystal display device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290042A (en) * 1985-10-15 1987-04-24 Nippon Telegr & Teleph Corp <Ntt> Demultiplexing circuit
JPH01172910A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Optical tuner
JPH02219002A (en) * 1989-02-20 1990-08-31 Matsushita Electric Ind Co Ltd Diffraction grating and its production
JPH11513138A (en) * 1996-07-02 1999-11-09 コーニング インコーポレイテッド Diffraction grating with reduced polarization sensitivity
JP2001305482A (en) * 2000-04-18 2001-10-31 Nippon Sheet Glass Co Ltd Optical system for polarization characteristic compensation
JP2001324653A (en) * 2000-05-16 2001-11-22 Nippon Sheet Glass Co Ltd Thin type optical communication module
JP2002267875A (en) * 2001-03-13 2002-09-18 Nippon Sheet Glass Co Ltd Optical module and method for manufacturing the same
JP2002267877A (en) * 2001-03-13 2002-09-18 Nippon Sheet Glass Co Ltd Optical module
JP2003084114A (en) * 2001-09-13 2003-03-19 Asahi Glass Co Ltd Reflection diffraction device
JP2004053992A (en) * 2002-07-22 2004-02-19 Hitachi Cable Ltd Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
JP2004510172A (en) * 2000-04-07 2004-04-02 ゾロ テクノロジーズ、インコーポレイテッド Apparatus and method for reducing polarization sensitivity with a diffraction grating used in an optical fiber communication device
WO2004074888A1 (en) * 2003-02-18 2004-09-02 Sumitomo Electric Industries, Ltd. Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element
JP2004258389A (en) * 2003-02-26 2004-09-16 Hitachi Cable Ltd Chirped diffraction grating, demultiplexer, and wavelength multiplexing optical transmission module

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290042A (en) * 1985-10-15 1987-04-24 Nippon Telegr & Teleph Corp <Ntt> Demultiplexing circuit
JPH01172910A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Optical tuner
JPH02219002A (en) * 1989-02-20 1990-08-31 Matsushita Electric Ind Co Ltd Diffraction grating and its production
JPH11513138A (en) * 1996-07-02 1999-11-09 コーニング インコーポレイテッド Diffraction grating with reduced polarization sensitivity
JP2004510172A (en) * 2000-04-07 2004-04-02 ゾロ テクノロジーズ、インコーポレイテッド Apparatus and method for reducing polarization sensitivity with a diffraction grating used in an optical fiber communication device
JP2001305482A (en) * 2000-04-18 2001-10-31 Nippon Sheet Glass Co Ltd Optical system for polarization characteristic compensation
JP2001324653A (en) * 2000-05-16 2001-11-22 Nippon Sheet Glass Co Ltd Thin type optical communication module
JP2002267875A (en) * 2001-03-13 2002-09-18 Nippon Sheet Glass Co Ltd Optical module and method for manufacturing the same
JP2002267877A (en) * 2001-03-13 2002-09-18 Nippon Sheet Glass Co Ltd Optical module
JP2003084114A (en) * 2001-09-13 2003-03-19 Asahi Glass Co Ltd Reflection diffraction device
JP2004053992A (en) * 2002-07-22 2004-02-19 Hitachi Cable Ltd Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
WO2004074888A1 (en) * 2003-02-18 2004-09-02 Sumitomo Electric Industries, Ltd. Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element
JP2004258389A (en) * 2003-02-26 2004-09-16 Hitachi Cable Ltd Chirped diffraction grating, demultiplexer, and wavelength multiplexing optical transmission module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154078A (en) * 2010-01-26 2011-08-11 Hitachi Displays Ltd Liquid crystal display device

Also Published As

Publication number Publication date
JP4759973B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
CN101438192A (en) Planar lightwave filter with mixed diffraction elements
JP4238600B2 (en) Demultiplexer and wavelength division multiplexing optical transmission module
JP4221965B2 (en) Diffraction grating, wavelength multiplexer / demultiplexer, and wavelength multiplexed signal optical transmission module using them
US6243513B1 (en) Wavelength division multiplexing/demultiplexing devices using diffractive optic lenses
JPH10307228A (en) Line monitor and optical amplifier using the monitor
JP2008170471A (en) Fibre lens, fibre lens array, fibre collimator, and optical module
JP4330560B2 (en) Optical demultiplexer and wavelength division multiplexing optical transmission module
US7397988B2 (en) Grating based multiplexer/demultiplexer component
JP4759973B2 (en) Demultiplexer and wavelength division multiplexing optical transmission module
JP4193518B2 (en) Demultiplexer and wavelength division multiplexing optical transmission module
JP2003066269A (en) Multi-wavelength demultiplexing optical device and wavelength multiplexed light transmission module
JPS6046682B2 (en) Optical multiplexing/demultiplexing circuit for optical beams
KR100617837B1 (en) Optical splitter with bragg grating and optical communication module using the same
JP2000131542A (en) Optical transmission and reception module
JP2007147740A (en) Multimode single core bidirectional device
JP4123519B2 (en) Optical waveguide and optical multiplexer / demultiplexer
JP2003066376A (en) Wavelength separation optical device and wavelength multiple optical transmission module
JP4552862B2 (en) Optical multiplexer
JP2006091315A (en) Optical multiplexer/demultiplexer and transmission module for wavelength multiplexed light
JP2005300954A (en) Bidirectional optical communication apparatus
JP2003232943A (en) Wavelength multiplex communication signal demultiplexer, and optical transmission and reception module using the same
US6621959B2 (en) Planar waveguide diffractive beam splitter/coupler
JPH0749430A (en) Optical circuit part
JP4696521B2 (en) Demultiplexer, optical waveguide, and wavelength division multiplexing optical transmission module
JP2006284767A (en) Optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees