JPH031641B2 - - Google Patents
Info
- Publication number
- JPH031641B2 JPH031641B2 JP57209999A JP20999982A JPH031641B2 JP H031641 B2 JPH031641 B2 JP H031641B2 JP 57209999 A JP57209999 A JP 57209999A JP 20999982 A JP20999982 A JP 20999982A JP H031641 B2 JPH031641 B2 JP H031641B2
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- grating
- diffraction
- angle
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1809—Diffraction gratings with pitch less than or comparable to the wavelength
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Description
【発明の詳細な説明】
(技術分野)
本発明は三角形状の反射型レリーフ回折格子に
関するもので、主な利用分野として、分光器の波
長分散素子、ホロスキヤナーのホログラム媒体、
光集積回路での回折格子、光導波路へのグレーテ
イング・カプラ、光通信での波長分割素子等を挙
げることができる。Detailed Description of the Invention (Technical Field) The present invention relates to a triangular reflection type relief diffraction grating, and its main fields of application include wavelength dispersion elements in spectrometers, hologram media in holoscanners,
Examples include diffraction gratings in optical integrated circuits, grating couplers for optical waveguides, and wavelength division elements in optical communications.
(従来技術)
反射型表面レリーフ回折格子では、回折格子形
状がブレーズ条件を満たす場合に高い回折効率が
得られることが知られている。(Prior Art) It is known that high diffraction efficiency can be obtained in a reflective surface relief diffraction grating when the shape of the diffraction grating satisfies a blaze condition.
ここで、ブレーズ条件は、回折格子に入射した
光の回折角を、ブレーズされた表面の、三角形の
斜面での入射角に一致させることで得られる。 Here, the blaze condition is obtained by making the diffraction angle of light incident on the diffraction grating match the incidence angle at the triangular slope of the blazed surface.
例えば、第1図において、回折格子間隔をdと
し、ブレーズ角θの直線格子1に波長λの光を入
射角αで入射させた場合を考えてみる。このと
き、1次回折光の回折角をβとすれば、ブレーズ
面2に対して入射角と回折光が正反射の関係(す
なわちα−θ=θ−β)にあるとき、ブレーズ条
件を満たすという。 For example, in FIG. 1, consider the case where the diffraction grating spacing is d and light with a wavelength λ is incident on the linear grating 1 with a blaze angle θ at an incident angle α. At this time, if the diffraction angle of the first-order diffracted light is β, then the blaze condition is satisfied when the incident angle and the diffracted light have a relationship of specular reflection with respect to the blazed surface 2 (i.e., α-θ = θ-β). .
例えば光導波路へのグレーテイング・カプラに
用いられる反射型ブレーズ回折格子では、回折格
子間隔dを狭くする必要があるが、上記のような
反射型ブレーズ格子では、回折格子間隔dが狭く
なるにつれて、入射光Lの偏光効果により、回折
光L1の回折効率が必ずしも高くはなくなる。そ
して、この傾向は特に、入射光Lの偏光方向が回
折格子溝に平行(第1図の紙面を貫く方向)な直
線偏光の場合に著しい。又、上記ブレーズ条件を
整えることが回折効率を向上する上でどこまで有
効か明らかでない。なお、第1図中、符号L0は
0次光を示す。 For example, in a reflective blazed diffraction grating used in a grating coupler for an optical waveguide, it is necessary to narrow the grating interval d, but in the above-mentioned reflective blazed grating, as the diffraction grating interval d becomes narrower, Due to the polarization effect of the incident light L, the diffraction efficiency of the diffracted light L1 is not necessarily high. This tendency is particularly remarkable when the polarization direction of the incident light L is linearly polarized light parallel to the diffraction grating grooves (direction penetrating the plane of the paper in FIG. 1). Furthermore, it is not clear to what extent adjusting the blaze conditions described above is effective in improving the diffraction efficiency. Note that in FIG. 1, the symbol L 0 indicates zero-order light.
(目 的)
この発明の目的は、回折格子溝に対し平行な電
気ベクトルを有する直線偏光が入射する場合に、
回折格子溝が狭くなつても高い回折効率を得るこ
とができるような反射型レリーフ回折格子を提供
することにある。(Purpose) The purpose of this invention is that when linearly polarized light having an electric vector parallel to the diffraction grating grooves is incident,
It is an object of the present invention to provide a reflection type relief diffraction grating that can obtain high diffraction efficiency even if the diffraction grating grooves are narrow.
本発明は上記の目的を達成させるため、回折格
子間隔がdの反射型表面レリーフ回折格子におい
て、波長がλがあつて回折格子溝と平行な電気ベ
クトルを有する直線偏光を、入射角α=sin-1
(λ/2d)の角度で入射させたとき、前記回折格
子間隔dと波長λがd/λ≦1.25の条件を満たし
かつ、回折格子形状を二等辺三角形で形成した事
を特徴としたものである。 In order to achieve the above object, the present invention uses a reflective surface relief diffraction grating with a grating spacing of d to transmit linearly polarized light having a wavelength λ and an electric vector parallel to the grating grooves at an angle of incidence α=sin. -1
When incident at an angle of (λ/2d), the diffraction grating spacing d and wavelength λ satisfy the condition of d/λ≦1.25, and the diffraction grating shape is formed in an isosceles triangle. be.
以下、本発明の一実施例に基づいて具体的に説
明する。 Hereinafter, a detailed explanation will be given based on one embodiment of the present invention.
(構 成)
第2図は反射型レリーフ回折格子を拡大した状
況を示すが、図中、回折格子間隔d及び回折格子
深さを一定として三角形の斜面(ブレーズ面)の
幅d1を変化させることで回折格子の三角形状が変
化する。例えばd1/d=0では左の直角三角形、
d1/d=0.5では二等辺三角形、d1/d=1では
右の直角三角形の形状となる。上記中、d1/d=
1のときがブレーズ条件を満たし得る回折格子形
状である。(Structure) Figure 2 shows an enlarged view of the reflection type relief diffraction grating. In the figure, the width d 1 of the triangular slope (blazed surface) is varied while the grating spacing d and the grating depth are constant. This changes the triangular shape of the diffraction grating. For example, when d 1 /d=0, the left right triangle,
When d 1 /d=0.5, the shape is an isosceles triangle, and when d 1 /d=1, the shape is a right-angled triangle. In the above, d 1 /d=
When it is 1, it is a diffraction grating shape that can satisfy the blaze condition.
第3図は反射型レリーフ格子でのブレーズ化の
効果を検討するために行なわれたシミユレーシヨ
ンの結果を示したもので、回折格子の三角形状を
変えたときの回折効率の変化を示している。第3
図に示す結果は、次の条件のもとに得られた。 Figure 3 shows the results of a simulation conducted to examine the effect of blaze on a reflective relief grating, and shows the change in diffraction efficiency when the triangular shape of the diffraction grating is changed. Third
The results shown in the figure were obtained under the following conditions.
(1) 入射光は波長λ=0.6328μmのHe−Neレーザ
光で、回折格子溝に平行な直線偏光を使用す
る。(1) The incident light is He-Ne laser light with a wavelength λ = 0.6328 μm, and linearly polarized light parallel to the diffraction grating grooves is used.
(2) 入射角は入射角と回折角が一致する所謂リト
ロー入射となるよう設定する。リトロー入射条
件は第1図でα=βの場合でありα=sin-1
(λ/2d)を満たす。(2) The angle of incidence is set so that the angle of incidence and the angle of diffraction match, so-called Littrow incidence. The Littrow incidence condition is α = β in Figure 1, and α = sin -1
(λ/2d) is satisfied.
(3) 回折格子の反射体は銀を蒸着したものを使用
する。(3) The reflector of the diffraction grating is made of vapor-deposited silver.
図示の如く、回折格子間隔により回折効率の変
化のしかたが異なつていることがわかる。即ちd
>1.00μmではブレーズ条件(d1/d=1.0)での
回折効率が最大となつているが、d≦0.80では二
等辺三角形状(d1/d=0.5)のときに回折効率
が最大となつている。つまり、波長λ=
0.6328μmの光が入射する場合には、回折格子間
隔が0.80μm以下の格子ではブレーズ条件を満た
し得るd1/d=1.0での回折効率が最大にならず
ブレーズ化の効果がないといえる。 As shown in the figure, it can be seen that the way the diffraction efficiency changes depends on the spacing of the diffraction gratings. That is, d
> 1.00 μm, the diffraction efficiency is maximum under the blaze condition (d 1 /d = 1.0), but when d≦0.80, the diffraction efficiency is maximum when the isosceles triangle shape (d 1 /d = 0.5) is used. It's summery. In other words, wavelength λ=
When light of 0.6328 μm is incident, it can be said that if the diffraction grating spacing is 0.80 μm or less, the diffraction efficiency at d 1 /d=1.0, which satisfies the blaze condition, is not maximized and there is no blaze effect.
一方、第3図を別の角度から見直すと第7図を
得る。即ち、第7図は回折格子間隔dを入射光の
波長λ(=0.6328μm)で規格化し各々のd/λで
最大の回折効率が得られるd1/dを求めた結果を
示している。この図で、
d/λ≧1.58はブレーズ角となるd1/d=1
で最大効率となる領域、
1.58>d/λ>1.25はブレーズ角形状及び二
等辺三角形以外で最大効率となる領域、
d/λ≦1.5は二等辺三角形状(d1/d=0.5)
で最大効率となる領域で、このが本発明の領
域に相当する。 On the other hand, if we look at FIG. 3 from another angle, we get FIG. 7. That is, FIG. 7 shows the results of normalizing the diffraction grating spacing d by the wavelength λ (=0.6328 μm) of the incident light and determining d 1 /d at which the maximum diffraction efficiency is obtained for each d/λ. In this figure, d/λ≧1.58 is the blaze angle, d 1 /d=1
1.58 > d/λ > 1.25 is the region where the maximum efficiency is other than blazed angle shapes and isosceles triangles, d/λ≦1.5 is the isosceles triangle shape (d 1 /d = 0.5)
This is the region where the efficiency is maximum, and this corresponds to the region of the present invention.
以上の検討より、回折格子間隔を入射光の波長
で規格化し、且つ、他のシミユレーシヨンの結果
等を総合して、d/λ≦1.25の場合、反射型レリ
ーフ回折格子では、格子形状を二等辺三角形とし
たときに高い回折効率が得られることになる。 From the above study, we normalized the grating spacing by the wavelength of the incident light, and by combining the results of other simulations, we found that when d/λ≦1.25, the grating shape is isosceles for reflective relief gratings. High diffraction efficiency can be obtained when the shape is triangular.
ここで、上記検討結果は、入射角α=sin-1
(λ/2d)としたものであるが、この入射角が最
適であること、すなわち、最大回折効率が得られ
ることを確認してみる。第4図は、三角形状の反
射型レリーフ回折格子の入射角変化に対する回折
効率変化を示している。図示の結果は、回折格子
間隔d=0.447μm、回折格子深さh=0.53μmの二
等辺三角形状を有し、回折格子表面には銀が蒸着
されている反射型レリーフ回折格子に、波長λ=
0.6328μmであつて回折格子溝に平行に直線偏光
するHe−Neレーザ光を入射させて得られた。図
示の如く、入射角α=45゜で回折効率が最大とな
つていることがわかる。即ち、これは、入射角α
=sin-1(λ/2d)のとき、回折効率が最大となる
ことを意味している。このようなことから、d/
λ≦1.25なる二等辺三角形状の反射型レリーフ回
折格子では、入射角α=sin-1(λ/2d)の角度で
光を入射させることにより回折効率が最大になる
ことが確認できた。 Here, the above study result is that the incident angle α=sin -1
(λ/2d), we will confirm that this angle of incidence is optimal, that is, that the maximum diffraction efficiency can be obtained. FIG. 4 shows the change in diffraction efficiency with respect to the change in the incident angle of a triangular reflection type relief diffraction grating. The results shown in the figure show that the reflection type relief diffraction grating has an isosceles triangular shape with a diffraction grating interval d = 0.447 μm and a diffraction grating depth h = 0.53 μm, and has silver deposited on the diffraction grating surface. =
It was obtained by injecting a He--Ne laser beam having a diameter of 0.6328 μm and linearly polarized parallel to the diffraction grating grooves. As shown in the figure, it can be seen that the diffraction efficiency is maximum at an incident angle α=45°. That is, this is the angle of incidence α
= sin -1 (λ/2d) means that the diffraction efficiency is maximum. For this reason, d/
It was confirmed that for an isosceles triangular reflective relief diffraction grating with λ≦1.25, the diffraction efficiency is maximized by making light incident at an angle of incidence α=sin −1 (λ/2d).
本発明に係る三角形状の反射型レリーフ回折格
子は公知のルーリングエンジンによりアルミニユ
ウム基板をけがくことで作製できる。上記けがき
により作製された回折格子形状を第5図に示す。 The triangular reflection type relief diffraction grating according to the present invention can be produced by marking an aluminum substrate using a known ruling engine. FIG. 5 shows the shape of the diffraction grating produced by the above marking.
又、ガラス基板上にホトレジスト等の感光性樹
脂を塗布し、2光束渉光で露光し、現像するホト
リングラフイー技術によつても作製できる。ホト
リングラフイー技術では一般に格子形状は正弦波
状であるが、過現像を行なうことで第6図に示す
如くガラス基板3上の感光性樹脂4を略二等辺三
角形状とすることができ、これに光反射性の金属
層を形成することで二等辺三角形状の反射型レリ
ーフ回折格子を得る。 Alternatively, it can be produced by a photolithography technique in which a photosensitive resin such as a photoresist is coated on a glass substrate, exposed to two-beam mixed light, and developed. In general, the lattice shape in photolithography technology is a sine wave shape, but by performing overdevelopment, the photosensitive resin 4 on the glass substrate 3 can be made into a substantially isosceles triangular shape as shown in FIG. By forming a light-reflecting metal layer on the surface, an isosceles triangular reflective relief diffraction grating is obtained.
更に、上記のけがいたアルミニユウム基板や、
ホトリングラフイー技術を施した感光性樹脂層を
マスターとして公知の複製技術を用いてレプリカ
を作製し、その表面に光反射性の金属層を形成し
て三角形状の反射型レリーフ回折格子を作製する
こともできる。 Furthermore, the above-mentioned scratched aluminum substrate,
A replica is created using a known duplication technique using a photosensitive resin layer treated with photolithography technology as a master, and a triangular reflective relief diffraction grating is created by forming a light-reflective metal layer on the surface of the replica. You can also.
(効 果)
このように本発明では、d/λ≦1.25の回折格
子間隔をもつ反射型レリーフ回折格子において、
回折格子形状を二等辺三角形とすることで、ブレ
ーズ条件を満たす回折格子よりも高い回折効率を
得ることができる。(Effect) As described above, in the present invention, in a reflection type relief diffraction grating having a diffraction grating interval of d/λ≦1.25,
By making the diffraction grating shape an isosceles triangle, it is possible to obtain higher diffraction efficiency than a diffraction grating that satisfies the blaze condition.
第1図は反射型レリーフ回折格子への入射光、
回折光の関係を説明した回折格子部の拡大断面
図、第2図は回折格子間隔と斜面幅の関係を説明
した反射型レリーフ回折格子部の拡大断面図、第
3図は回折格子間隔及び回折格子の三角形状と回
折効率との関係を説明した図、第4図は本発明に
係る三角形状の反射型レリーフ回折格子における
入射角と回折効率の関係を説明した図、第5図、
第6図は各々本発明に係る三角形状の反射型レリ
ーフ回折格子を製作する過程における回折格子部
の拡大断面図、第7図は各d/λに対する最大回
折効率を得るためのd1/dを求めたこれら両者の
関係説明図である。
Figure 1 shows the incident light on a reflective relief diffraction grating,
Fig. 2 is an enlarged cross-sectional view of the reflection type relief diffraction grating part explaining the relationship between diffraction grating spacing and slope width; Fig. 3 is an enlarged cross-sectional view of the diffraction grating portion explaining the relationship between diffraction grating spacing and slope width. FIG. 4 is a diagram illustrating the relationship between the triangular shape of the grating and diffraction efficiency, and FIG.
FIG. 6 is an enlarged cross-sectional view of the diffraction grating part in the process of manufacturing triangular reflection type relief diffraction gratings according to the present invention, and FIG. 7 is an enlarged cross-sectional view of the diffraction grating section in the process of manufacturing the triangular reflection type relief diffraction grating according to the present invention, and FIG . FIG. 2 is an explanatory diagram of the relationship between the two obtained.
Claims (1)
格子において、波長がλであつて回折格子溝と平
行な電気ベクトルを有する直線偏光を、入射角α
=sin-1(λ/2d)の角度で入射させたとき、前記
回折格子間隔dと波長λがd/λ≦1.25の条件を
満たしかつ、回折格子形状を二等辺三角形で形成
した事を特徴とする三角形状の反射型レリーフ回
折格子。1. In a reflective surface relief diffraction grating with a grating spacing of d, linearly polarized light having a wavelength λ and an electric vector parallel to the grating grooves is
When incident at an angle of = sin -1 (λ/2d), the diffraction grating spacing d and wavelength λ satisfy the condition of d/λ≦1.25, and the diffraction grating shape is formed into an isosceles triangle. A triangular reflective relief diffraction grating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20999982A JPS59100404A (en) | 1982-11-30 | 1982-11-30 | Reflection type triangular-shaped relief diffraction grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20999982A JPS59100404A (en) | 1982-11-30 | 1982-11-30 | Reflection type triangular-shaped relief diffraction grating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59100404A JPS59100404A (en) | 1984-06-09 |
JPH031641B2 true JPH031641B2 (en) | 1991-01-11 |
Family
ID=16582173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20999982A Granted JPS59100404A (en) | 1982-11-30 | 1982-11-30 | Reflection type triangular-shaped relief diffraction grating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59100404A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2599455B2 (en) * | 1989-02-20 | 1997-04-09 | 松下電器産業株式会社 | Diffraction grating and method for producing the same |
JPH04316002A (en) * | 1991-04-16 | 1992-11-06 | Matsushita Electric Ind Co Ltd | Polarizing element |
JPH06194123A (en) * | 1992-12-24 | 1994-07-15 | Canon Inc | Displacement detecting device |
JP5245521B2 (en) * | 2008-04-30 | 2013-07-24 | 凸版印刷株式会社 | Display body and printed information using the same |
WO2009135982A1 (en) * | 2008-05-05 | 2009-11-12 | Nanocomp Ltd | Light manipulation arrangement |
CN101770048A (en) * | 2010-03-11 | 2010-07-07 | 中国科学院上海光学精密机械研究所 | Polarization-independent high-efficiency quartz transmission triangular grating |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5515133A (en) * | 1978-07-18 | 1980-02-02 | Nippon Telegr & Teleph Corp <Ntt> | Production of plane diffraction grating |
-
1982
- 1982-11-30 JP JP20999982A patent/JPS59100404A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5515133A (en) * | 1978-07-18 | 1980-02-02 | Nippon Telegr & Teleph Corp <Ntt> | Production of plane diffraction grating |
Also Published As
Publication number | Publication date |
---|---|
JPS59100404A (en) | 1984-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5340637A (en) | Optical device diffraction gratings and a photomask for use in the same | |
US6754006B2 (en) | Hybrid metallic-dielectric grating | |
EP0000810B1 (en) | Method of and apparatus for forming focusing diffraction gratings for integrated optics | |
EP0126686B1 (en) | Optical waveguide employing a diffraction grating | |
US7676128B1 (en) | Etched surface grating having an effective blaze angle | |
KR890010590A (en) | Diffraction gratings, manufacturing method thereof and manufacturing system thereof | |
EP0386643A2 (en) | Beam splitter | |
JPH10142413A (en) | Production of continuously chirped phase mask | |
US5537252A (en) | Double blazed binary diffraction optical element beam splitter | |
US5566024A (en) | Beam separation control and beam splitting by single blazed binary diffraction optical element | |
US7139128B2 (en) | Diffraction grating having high throughput efficiency | |
JPH031641B2 (en) | ||
JPH0422481B2 (en) | ||
US6810176B2 (en) | Integrated transparent substrate and diffractive optical element | |
JPH0370201B2 (en) | ||
GB2079536A (en) | Process for producing an optical network | |
US4359373A (en) | Method of formation of a blazed grating | |
JP2000275415A (en) | Resonance-mode grating filter | |
JP2599455B2 (en) | Diffraction grating and method for producing the same | |
EP0674190A1 (en) | Binary diffraction optical element beam splitter | |
US7420734B2 (en) | Planar waveguide grating devices having controlled polarization dependent sensitivity and method of manufacturing thereof | |
JP3011140B2 (en) | Fiber type optical isolator and method of manufacturing the same | |
GB1485068A (en) | Optical couplers | |
JPS58117511A (en) | Diffraction grating | |
Song et al. | Generation of multiple-pitch gratings in WDM devices by using a single computer-generated phase mask |