JPH02218408A - Method for regulating injection rate of flocculant by means of floc measuring device - Google Patents

Method for regulating injection rate of flocculant by means of floc measuring device

Info

Publication number
JPH02218408A
JPH02218408A JP4141189A JP4141189A JPH02218408A JP H02218408 A JPH02218408 A JP H02218408A JP 4141189 A JP4141189 A JP 4141189A JP 4141189 A JP4141189 A JP 4141189A JP H02218408 A JPH02218408 A JP H02218408A
Authority
JP
Japan
Prior art keywords
floc
turbidity
flocculant
injection rate
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4141189A
Other languages
Japanese (ja)
Other versions
JP2745641B2 (en
Inventor
Hiroshi Shimazaki
弘志 島崎
Hiroyuki Goto
浩之 後藤
Shigeo Sato
茂雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4141189A priority Critical patent/JP2745641B2/en
Publication of JPH02218408A publication Critical patent/JPH02218408A/en
Application granted granted Critical
Publication of JP2745641B2 publication Critical patent/JP2745641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce delay time in regulating injection rate of flocculant by correcting feedback correction term at specified intervals based on the difference between predicted mean particle diameter determined from raw water and injection rate of flocculant and actually measured mean particle diameter of floc. CONSTITUTION:By detecting turbidity of raw water and turbidity at the outlet of a settling pond 4, flocculant injection rate is controlled using flocculant injection equation: D=A.TB<n>+B (D: flocculant injection rate, TB: turbidity of raw water, A, n: coefficient, B: feedback correction term). ALT ratio (quantity of Al ion relative to turbidity of raw water) is determined from raw water and flocculant injection rate, whereby predicted mean particle diameter of floc is determined from ALT ratio thus obtained and equation relating to mean particle diameter of floc. Further, actually measured value of geometrical mean particle diameter of floc is obtained by image processing of floc measuring device 10 provided in a floc formation pond 3. By feeding back the difference between the predicted and measured mean particle diameter of floc at specified intervals, correction term B is corrected and injection rate of flocculant is regulated.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、凝集剤を投入して水処理を行うための、フロ
ック計測装置による凝集剤注入率制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for controlling a flocculant injection rate using a flocculant measuring device for water treatment by injecting a flocculant.

B5発明の概要 本発明のフロック計測装置による凝集剤注入率制御方法
は、凝集剤注入式D=A−TB″十B を用いた凝集剤
注入率を制御するものにおいて、原水と凝集剤注入率か
らフロックの予測平均粒径を求めると共に、フロック計
測装置にてフロックの平均粒径を実測し、その差を所定
時間毎にフィードバックに補正項Bを補正することによ
り、凝集剤注入率制御遅れ時間を短縮し、制御精度を向
上させるようにしたものである。
B5 Summary of the Invention The flocculant injection rate control method using the flocculant injection device of the present invention is for controlling the flocculant injection rate using the flocculant injection formula D=A-TB″×B, in which the raw water and the flocculant injection rate are In addition to calculating the predicted average particle size of the flocs from This shortens the time and improves control accuracy.

C0従来の技術 浄水場においては、河川、湖沼から取水した原水をフロ
ック形成池で、−凝集剤(ポリ塩化カルシウム(PAC
)、硫酸バンド等)により、濁質成分(粘土、iii類
等)を凝集し、沈澱池で除去している。
C0 Conventional technology In water purification plants, raw water taken from rivers, lakes and marshes is treated with a flocculant (polycalcium chloride (PAC)) in a floc formation pond.
), sulfuric acid bands, etc.) to aggregate suspended components (clay, class III, etc.) and remove them in a settling tank.

しかし、凝集処理する原水の水質変化(水温。However, changes in the water quality (water temperature) of the raw water used for flocculation treatment.

PH,濁質成分の無機物/有機物比等)は、季節変動が
著しくなってきている。原因としては、河川、湖沼の汚
濁、降雨量の変化などに起因している。そのため、上記
要因をふまえて、凝集剤注入率を自動的に変化させて注
入制御を行っている。
Seasonal fluctuations in pH, inorganic/organic ratio of turbidity components, etc. are becoming more pronounced. The causes include pollution of rivers, lakes and marshes, and changes in rainfall. Therefore, based on the above factors, injection control is performed by automatically changing the flocculant injection rate.

この凝集剤注入率の決定には、主因子である濁度の関数
として注入式 %式%(1) が一般に用いられている(第10図曲線■参照)。
To determine the flocculant injection rate, the injection formula % (1) is generally used as a function of turbidity, which is the main factor (see curve 1 in Figure 10).

この式の特徴は、係数a及びbを決定するのにデータ解
析が簡単であることである。
A feature of this equation is that data analysis is easy to determine the coefficients a and b.

しかし、この注入式(1)を微調整するための変更可能
な係数はbだけであるため、フィードフォワード制御は
可能であるが、フィードフォワード注入式に前記水質変
化による要因をフィードバック制御をかけるためには、
係数a、bで決まるので、係数すだけで注入式を補正す
るのに無理がある。即ち、係数a、bを決定するには、
低、中。
However, since the only coefficient that can be changed to fine-tune this injection formula (1) is b, feedforward control is possible. for,
Since it is determined by the coefficients a and b, it is impossible to correct the injection formula just by using the coefficients. That is, to determine the coefficients a and b,
Low, medium.

高濁度に対して相当量の凝集データが必要となり、デー
タ量が少ない場合、注入式の精度か低下する恐れがある
A considerable amount of aggregation data is required for high turbidity, and if the amount of data is small, the accuracy of the injection method may decrease.

このため、フィードバック制御をかけるために、また、
より精度を向上させるには、ALT比(原水濁度に対す
るAAlイオン量(1”))と原水濁度の関係から、 D=A・TBn+B    ・・・・・・・・・(2)
(D;凝集剤注入率、TB:原水濁度)の式が利用され
ている(第1図曲線■参照)。
Therefore, in order to apply feedback control,
To further improve accuracy, from the relationship between the ALT ratio (AAl ion amount (1”) to raw water turbidity) and raw water turbidity, D=A・TBn+B ・・・・・・・・・(2)
The formula (D: flocculant injection rate, TB: raw water turbidity) is used (see curve ■ in Figure 1).

即ち、注入式(2)の特徴は、注入式(1)と比較して
、低、中、高濁度が一本の注入式で近似でき、係数A、
nが浄水場に関係なく、一定の範囲(A”−85,n4
0.25)に規定できる。
In other words, the characteristics of injection type (2) are that, compared to injection type (1), low, medium, and high turbidity can be approximated with one injection type, and the coefficients A,
Regardless of the water treatment plant, n is within a certain range (A”-85, n4
0.25).

従って、新規事業化又は凝集データの整備不十分な浄水
場においても初期値係数A、nを採用することで、注入
式(1)よりも精度の高い注入式が実現できる。つまり
、A−TBrlかフィードフォワード制御項で、Bがフ
ィードバック補正項となり、B=0の時が注入率の補正
がない状態で、実際は補正項を必要とする。
Therefore, by employing the initial value coefficients A and n even in a new business or a water purification plant where the aggregation data is insufficiently prepared, an injection method with higher accuracy than the injection method (1) can be realized. That is, A-TBrl is a feedforward control term, and B is a feedback correction term, and when B=0, there is no injection rate correction, and a correction term is actually required.

D2発明が解決しようとする課題 この補正項の要因としては、前記水質変化量が影響する
が、凝集剤としてPACを使用すると、最適凝集範囲が
広いため、水温、PHはあまり問題にはならなす、寧ろ
沈澱池出口の濁度並びに原水濁度成分(粘土、砂6色度
、原水濁度と原水懸濁量(SS量)の比)等の影響因子
の変動が大きい。沈澱池出口の濁度は各浄水場によって
規帛値を設定し、比較することで補正することかできる
が、原水濁度成分に関しては、フィードバック制御でき
る指標が少なく、考えられる指標としては色度があるが
、フロック形成池である程度除去されるし、更に中塩素
処理(沈澱池前後で塩素注入)を行うことで、沈澱池出
口の濁度には現れず、途中で除去されてしまうため、制
御ができない。また、原水濁度と原水SS量の比に関し
て、現状で連続計測することはできないし、相関式から
導入してもバラツキ巾が広く高精度化できない。即ち、
現状で行われている原水濁度と沈澱池出口の濁度から求
めた注入率式制御では、より精度を向上させることはで
きないし、且つ沈澱池出口の濁度情報では急激な原水濁
度変動に対して滞留時間の関係からリアルタイム制御が
できにくい問題点を有していた。
D2 Problem to be solved by the invention This correction term is influenced by the amount of change in water quality, but when PAC is used as a flocculant, the optimal flocculation range is wide, so water temperature and pH do not matter much. Rather, there are large fluctuations in influencing factors such as the turbidity at the outlet of the settling tank and the raw water turbidity components (clay, sand chromaticity, ratio of raw water turbidity to raw water suspension amount (SS amount)). The turbidity at the outlet of the sedimentation tank can be corrected by setting standard values for each water treatment plant and comparing them, but there are few indicators that can be feedback-controlled for raw water turbidity components, and chromaticity is a possible indicator. However, it is removed to some extent in the floc formation tank, and by performing intermediate chlorination treatment (chlorine injection before and after the settling tank), it does not appear in the turbidity at the exit of the settling tank and is removed during the process. I can't control it. Furthermore, regarding the ratio of raw water turbidity to raw water SS amount, it is currently not possible to continuously measure it, and even if it is introduced from a correlation formula, there is a wide range of variation and high accuracy cannot be achieved. That is,
The current injection rate control method calculated from the raw water turbidity and the turbidity at the outlet of the sedimentation tank cannot further improve accuracy, and the turbidity information at the outlet of the sedimentation tank does not allow for rapid fluctuations in raw water turbidity. However, due to the residence time, real-time control is difficult.

本発明は、従来の技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、フィ
ードバック制御が可能な前記注入式D=A−TB’+B
でかつフロック形成方法の一手法である迂流式フロック
形成池の精度を向上しうる画像計測を応用したフロック
計測装置による凝集剤注入率制御方法を提供することに
ある。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to improve the injection type D=A-TB'+B which is capable of feedback control.
An object of the present invention is to provide a flocculant injection rate control method using a flocculant injection rate applying image measurement that can improve the precision of a bypass type floc formation pond, which is one method of floc formation.

E9課題を解決するための手段 上記目的を達成するために、本発明のフロック計測装置
による凝集剤注入率制御方法は、原水濁度及び沈澱池出
口濁度を検出し、凝集剤注入式D=A−TB”+B  
(Dは凝集剤注入率、TBは原水濁度、A、nは係数、
Bはフィードバック補正項)によって凝集剤注入率を制
御するものにおいて、原水を凝集剤注入率からALT比
(原水濁度に対するAQイオン量)を求め、このALT
比とフロック平均粒径間係式からフロックの予測平均粒
径を求めると共に、フロック形成池に設けたフロック計
測装置の画像処理からフロックの幾何学平均粒径の実測
値を求め、この予測と実測のフロック平均粒径の差を所
定時間毎にフィードバックして前記補正項Bを補正し、
凝集剤注入率を制御するものである。
E9 Means for Solving Problems In order to achieve the above object, the flocculant injection rate control method using the floc measuring device of the present invention detects raw water turbidity and sedimentation tank outlet turbidity, and uses the flocculant injection method D= A-TB”+B
(D is flocculant injection rate, TB is raw water turbidity, A, n are coefficients,
B is a feedback correction term) in which the flocculant injection rate is controlled, the ALT ratio (AQ ion amount to raw water turbidity) is calculated from the flocculant injection rate of the raw water, and this ALT
In addition to calculating the predicted average particle size of the flocs from the equation between the ratio and average particle size of the flocs, the actual measured value of the geometric average particle size of the flocs was obtained from image processing of the floc measurement device installed in the floc formation pond, and this prediction and actual measurement were performed. correcting the correction term B by feeding back the difference in average particle diameter of the flocs at predetermined time intervals;
This controls the flocculant injection rate.

F3作用 凝集剤注入率りは原水濁度TBとD=A−TB’十Bの
関係にあり、A−TB″項は原水濁度によるフィードフ
ォード制御項、Bはフィードバック制御項として制御さ
れる。
The F3 action flocculant injection rate has a relationship with the raw water turbidity TB and D = A-TB'10B, where the A-TB' term is controlled as a feedford control term by the raw water turbidity, and B is controlled as a feedback control term. .

原水と凝集剤注入率から濁度に対するALT比を求め、
ALT比と平均粒径の関係式から予測平均粒径が予測で
きる。
Calculate the ALT ratio for turbidity from raw water and flocculant injection rate,
The predicted average particle size can be predicted from the relational expression between the ALT ratio and the average particle size.

フロックの幾何学平均粒径はフロック計測装置をフロッ
ク成形池に設けてその画像処理から求めることができる
The geometric mean particle size of the flocs can be determined by installing a floc measuring device in the floc forming pond and processing the image.

このフロックの実測平均粒径は水量変動の因子SS量/
TBの因子を含む値となるので、予測平均粒径とこの実
測値との差でフィードバック制御項Bを制御すれば、凝
集剤注入率を補正することができる。
The measured average particle diameter of this floc is the factor SS amount/
Since the value includes the factor of TB, the flocculant injection rate can be corrected by controlling the feedback control term B based on the difference between the predicted average particle diameter and this measured value.

フロック平均粒径の実測はフロック形成池で行われるか
ら、フロック平均粒径の実測地点までのフロック滞留時
間は30〜60分となり、沈澱池出口濁度検出地点まで
のフロック滞留時間が2時間以上であるのに比し、大巾
に短縮され、30〜60分毎のフィードバックサンプリ
ング制御ができるので、制御精度が向上する。
Since the actual measurement of the average floc particle size is performed in the floc formation pond, the residence time of the flocs to the actual measurement point of the floc average particle size is 30 to 60 minutes, and the residence time of the flocs to the turbidity detection point at the exit of the sedimentation tank is 2 hours or more. Compared to the above, the time is significantly shortened, and feedback sampling control can be performed every 30 to 60 minutes, improving control accuracy.

G、実施例 凝集剤の注入率制御を行う指標として原水中に浮遊する
濁度成分を濁度計により計測できる。しかし、濁度はマ
クロ的な指示値であり、濁度成分には無機系粘度、砂等
と有機系の藻類1等が混在しているため、実際のフロッ
ク形式においても無機物、有機物の比率が違うとフロッ
ク形成状態も変化する。即ち、有機系のソウ類の密度は
無機系の粘土と比較すると、かなり水の密度に近い値で
あり、同−濁度指示値で有機系の藻類が多い場合、フロ
ック凝集性が悪くなり、フロック有効密度が低下し、凝
集した状態のフロックが解離する危険性がある。この概
念を実際のフロック形成池に適応し、水中カメラにて画
像解析した結果、第2図〜第5図に示すような現象を発
見した。
G. Example As an index for controlling the injection rate of the flocculant, the turbidity components suspended in the raw water can be measured using a turbidity meter. However, turbidity is a macroscopic indication value, and the turbidity component includes a mixture of inorganic viscosity, sand, etc., and organic algae, etc., so even in actual floc format, the ratio of inorganic to organic matter varies. If different, the state of floc formation will also change. In other words, compared to inorganic clay, the density of organic algae is quite close to the density of water, and if there is a large amount of organic algae at the same turbidity indicator value, floc flocculation becomes poor; There is a risk that the effective density of the flocs will decrease and the flocs in a coagulated state will dissociate. As a result of applying this concept to an actual floc-forming pond and analyzing images using an underwater camera, we discovered the phenomena shown in Figures 2 to 5.

第2図は、注入率式(2)を導入するALT比と幾何平
均粒径の関係を示すもので、・印は殆ど有機物がないと
き、x印は有機物が多く混在しているときで、G印とX
印をバラツキ幅として近似式を立てることができる。し
かし、実際には、同一濁度において差が生じる。この傾
向を画像解析と手分析により調べた結果、第3図に示す
ような画像解析結果を得た。第3図(a)は無機物の多
い濁質のときのフロック輝度で、第3図(b)は有機物
の多い濁質のときのフロック輝度である。
Figure 2 shows the relationship between the ALT ratio and the geometric mean particle size, which introduces the injection rate formula (2), where the * mark is when there is almost no organic matter, and the x mark is when there is a lot of organic matter mixed in. G mark and X
An approximate formula can be established using the mark as the variation width. However, in reality, differences occur at the same turbidity. As a result of investigating this tendency by image analysis and manual analysis, we obtained the image analysis results shown in Figure 3. FIG. 3(a) shows the floc luminance when the turbidity is rich in inorganic matter, and FIG. 3(b) is the floc luminance when the turbidity is rich in organic matter.

両者を比較すると無機物が多いフロックでは輝度値が高
(、逆に有機物が多いフロックは無機物より低い輝度値
を示した。この結果をもとに手分析と照合した結果第2
図のx印はSS量/TB#0゜78、O印はSS量/T
B舛1.0の関係にあった。一般的に濁度とSS量の関
係は、 SS量(my/ Q )= A (T B Cm / 
Q )+ M)であり、補正項Mは色度fなどにより与
えられる。
Comparing the two, flocs with a lot of inorganic matter showed a high brightness value (on the contrary, flocs with a lot of organic matter showed a lower brightness value than inorganic matter. Based on this result, the second result was compared with manual analysis.
The x mark in the figure is SS amount/TB#0゜78, the O mark is SS amount/T
The relationship was B-1.0. Generally, the relationship between turbidity and SS amount is as follows: SS amount (my/Q) = A (T B Cm /
Q)+M), and the correction term M is given by the chromaticity f, etc.

従って色度fの影響を殆ど受けない近赤外式濁度計を用
いれば、補正項Mは無視できる。
Therefore, if a near-infrared turbidity meter that is hardly affected by the chromaticity f is used, the correction term M can be ignored.

よって、SS量(x9/I2 ) =A −TBとなり
、係数Aは5Sli/TBで表すことができる。この係
数AはO<At≦1でなければならない。ただし、この
条件を満たしているときでも傾向から外れる場合がある
。第5図は迂流式フロック形成池における撹拌強度(G
T値)の差によるフロック形成変化を示したもので、迂
流式の場合、形成池を設計するときに、目的処理水量と
撹拌強度の設定から行う。一般的に迂流式は流路が固定
されているため、水量を変化させると撹拌強度も変化し
てしまうので、水量変動をさせないことが一般的条件で
ある。
Therefore, the SS amount (x9/I2) = A - TB, and the coefficient A can be expressed as 5Sli/TB. This coefficient A must be O<At≦1. However, even when this condition is met, there may be deviations from the trend. Figure 5 shows the agitation intensity (G
This shows the change in floc formation due to the difference in T value).In the case of a bypass type, when designing a formation pond, the target water volume to be treated and the agitation intensity are set. Generally, in the bypass type, the flow path is fixed, so changing the water amount will also change the stirring intensity, so the general condition is not to allow the water amount to fluctuate.

第5図は設定GT値を200.000としたフロック形
成池において、水量を変化させたときのGT値を示した
もので、GTIが高い値が水量が少なく、逆にGT値が
低い値が水量の多いときである。即ち、撹拌強度によっ
て同−ALT値においてもフロック平均粒径に違いを生
ずることになる。第5図中曲線■は形成池の設計値のG
T値におけるALT比と平均粒径の関係式を、曲線■は
GT値220,000で水量が設計値よりも少ないとき
のALT比と平均粒径の関係を、また曲線■はGTTi
2O3000で水量が設計値より多いときの関係式を示
す。この関係式から取水量を変えたときに生じる撹拌強
度によりフロックの径状が変化することがわかる。
Figure 5 shows the GT value when the water volume is changed in a floc formation pond with a set GT value of 200.000. A high GTI value means a low water volume, and conversely a low GT value means a low water volume. This is when there is a lot of water. That is, the floc average particle size will vary depending on the stirring intensity even at the same -ALT value. The curve ■ in Figure 5 is the design value of G for the formation pond.
The relational expression between the ALT ratio and the average particle size at the T value, the curve ■ shows the relationship between the ALT ratio and the average particle size when the GT value is 220,000 and the water amount is less than the design value, and the curve ■ shows the relationship between the ALT ratio and the average particle size when the GT value is 220,000 and the water amount is less than the designed value.
The relational expression when the water amount is larger than the design value at 2O3000 is shown. From this relational expression, it can be seen that the diameter of the flocs changes depending on the agitation intensity that occurs when the water intake amount is changed.

この撹拌強度Gの算出法は、 G=J e/a  =J rhrg−/μTここで、ε
:総エネルギー消費率(erg/cm3・5ec)μ:
水の粘性(g s/ sea−am)gc:ニュートン
の換算係数で980 (g鵬”cm/gw・5ec) T:フロック形成池の滞留時間(sec)ht:迂流式
フロック形成池の総損失 水頭(C■) r:水の単位体積重量l(g w/ c m’)(注)
一般に総エネルギー消費率εは、フロック形成に有効な
エネルギー 消費率ε。よりも−桁大きいと考 えてよい。従って、ε。=0.18 として概算すればよい。
The calculation method for this stirring intensity G is as follows: G=J e/a = J rhrg-/μT, where ε
: Total energy consumption rate (erg/cm3・5ec) μ:
Water viscosity (gs/sea-am) gc: Newton's conversion factor 980 (gpengcm/gw・5ec) T: Residence time in flocculation pond (sec) ht: Total length of bypass type flocculation pond Head loss (C■) r: Unit volume weight of water l (g w/cm') (Note)
Generally, the total energy consumption rate ε is the energy consumption rate ε effective for floc formation. It can be considered to be - orders of magnitude larger than . Therefore, ε. = 0.18.

になり、迂流式フロック形成池の場合、G値を計算式か
ら求め、このG値にフロック形成池の滞留時間Tを掛け
た値がGT値(無次元数)になる。
In the case of a bypass-type floc formation pond, the G value is obtained from a calculation formula, and the value obtained by multiplying this G value by the residence time T of the floc formation pond becomes the GT value (dimensionless number).

即ち、GT値は迂流式のフロック形成池において、滞留
時間の長さによってフロックが成長したり、しなかった
り、更にフロック解離も生じる。また、第5図から同−
ALT比による撹拌強度の差で平均粒径が変化すること
が、水中カメラからの情報で画像解析することにより、
平均粒径を求めることで水量変化に対応した制御が可能
になる。
That is, the GT value is determined by whether flocs grow or not depending on the length of residence time in a bypass type floc formation pond, and floc dissociation also occurs. Also, from Figure 5, the same -
Image analysis using information from an underwater camera revealed that the average particle size changes due to the difference in stirring intensity depending on the ALT ratio.
By determining the average particle size, control that corresponds to changes in water amount becomes possible.

<D=A−TB″+Hの注入式のB補正〉平均粒径予測 (1)水中カメラからの情報で画像解析により統計的条
件を満足するフロック数(4000個以上のフロック数
)から求めた第4図に示す体積量と平均粒径のヒストグ
ラムから求めた幾何平均粒径(粒径値を対数値変換した
ときに正規分布となる条件)と前記SS/TB〜10の
関係にある設計値(GT値200.000)のALT比
と平均粒径の関係式第5図から予測される平均粒径(H
D)を求める。
<Injection type B correction of D=A-TB"+H> Average particle size prediction (1) Calculated from the number of flocs (4000 or more flocs) that satisfies statistical conditions by image analysis using information from an underwater camera. The design value has a relationship between the geometric mean particle size (conditions for obtaining a normal distribution when the particle size value is logarithmically converted) obtained from the histogram of volume and average particle size shown in Figure 4 and the above SS/TB~10. (GT value 200.000) The average particle size (H
Find D).

HD=a eALT−” (H:予測平均粒径、a、−n係数) (2)予測した平均粒径を時経列でプロットすると第7
図の折線■のようになる。また、凝集剤注入から水中カ
メラ設置フロック形成池までの遅れ時間(滞留時間)後
の実測フロック平均粒径は折線■のようになる。この予
測平均粒径と実測平均粒径との差から注入量を補正する
HD=a eALT-” (H: predicted average particle diameter, a, -n coefficient) (2) When the predicted average particle diameter is plotted over time, the seventh
It will look like the broken line ■ in the figure. Furthermore, the average particle diameter of the actually measured flocs after the delay time (residence time) from the injection of the flocculant to the flocculation pond where the underwater camera is installed is as shown by the broken line ■. The injection amount is corrected based on the difference between the predicted average particle size and the measured average particle size.

D=A−TBn±(予測HD−実測HD)予測HDと実
測HDの差を、B+=HDeと表すと、HDe<0のと
き、−B、(注入量を減らす)となり、HDe≧0のと
きに、Bt=±0となる。
D=A-TBn±(Predicted HD-Actual HD) If the difference between predicted HD and actual measured HD is expressed as B+=HDe, when HDe<0, it becomes -B, (reduce the injection amount), and when HDe≧0 Sometimes Bt=±0.

この理由は、 (1)前記SS量/TBの関係から係数1が、0≦a≦
1でなければならない。
The reason for this is: (1) From the relationship of SS amount/TB, coefficient 1 is 0≦a≦
Must be 1.

(2)第5図の曲線■で示した取水量が増加し、GT値
が低くなる時は、第6図に示すようにフロックの形成に
必要な時間と濁度の関係から、フロック成長時間が短く
なる傾向にあるが、濁度濃度が高い場合、即ち、第5図
に示すALT比が低値(0,1萌後)のときは、殆ど影
響しないが、ALT比が高い値(0,3前後)の時に影
響される。
(2) When the intake amount shown by the curve ■ in Figure 5 increases and the GT value decreases, the floc growth time is determined from the relationship between the time required for floc formation and turbidity as shown in Figure 6. However, when the turbidity concentration is high, that is, when the ALT ratio shown in Fig. 5 is a low value (after 0,1 moe), there is almost no effect; , around 3).

例えば、第6図のように濁度濃度が低い10度の場合、
フロック成長に必要な時間は5000秒かかり、濁質濃
度20度では3000秒程度で済む。
For example, when the turbidity concentration is low at 10 degrees as shown in Figure 6,
The time required for floc growth is 5,000 seconds, and at a turbidity concentration of 20 degrees, it only takes about 3,000 seconds.

よって、GT値が設計値よりも高い(滞留時間が長くな
る)時には、注入量を減じ滞留時間が長くなった効果を
利用してフロックを成長させる。
Therefore, when the GT value is higher than the design value (the residence time becomes longer), the injection amount is reduced and the effect of the longer residence time is used to grow the flocs.

逆に、GT値が設計値よりも低い(滞留時間が短くなる
)時には、補正する要因がないため、注入量を増すこと
をせず、後段の沈澱池流出口の濁度計の変化、即ち、設
定濁度と実測濁度の差を補正項Bt= 「set −r
として代入する。
Conversely, when the GT value is lower than the design value (residence time becomes shorter), there is no correction factor, so the injection amount is not increased, and the change in the turbidity meter at the downstream sedimentation tank outlet, i.e. , the difference between the set turbidity and the measured turbidity is corrected by the correction term Bt = "set -r
Assign as .

D=A−TB”±HDe±(rset−r)rgeL:
沈澱池流出濁度設定値 r:流出濁度 設定値と実測値の差をB*=reと表すとre≧0の時
はB、=±Oとなり(注入率変えない)、「eく0の時
十B、となる。ただし、流出濁度の設定値を低値にする
と注入量の増加に連がるため、濁度lppmの程度に置
きかえる必要がある。
D=A-TB”±HDe±(rset-r)rgeL:
Sedimentation basin effluent turbidity set value r: The difference between the effluent turbidity set value and the actual measurement value is expressed as B*=re.When re≧0, B=±O (does not change the injection rate), and ``eku0 However, since setting the outflow turbidity to a low value will lead to an increase in the amount of injection, it is necessary to replace the turbidity with a level of 1 ppm.

以上が凝集剤注入制御におけるフィードバック制御であ
る。
The above is the feedback control in flocculant injection control.

次にこの制御方法を第8図の制御システムについて説明
する。
Next, this control method will be explained with reference to the control system shown in FIG.

河川、湖沼等よりの原水は着水井1に入り、着水井lの
原水濁度は濁度計6で検出される。この濁度信号は制御
部13に入力され、制御部13の凝集剤注入式により制
御された凝集剤がパイプ■4より混和池2に投入され、
撹拌機15で混合された混合液はフロック形成池3に流
れ込む。この間に、制御部13では、原水濁度と凝集剤
注入率からALT比を計算し、ALT比から第5図に示
した設計値におけるALT比と平均粒径の関係式から、
フロック計測装置10の設置点における予測平均粒径を
予測する。
Raw water from rivers, lakes, etc. enters the receiving well 1, and the turbidity of the raw water in the receiving well 1 is detected by a turbidity meter 6. This turbidity signal is input to the control unit 13, and the flocculant controlled by the flocculant injection method of the control unit 13 is injected into the mixing pond 2 from the pipe 4.
The mixed liquid mixed by the stirrer 15 flows into the floc formation pond 3. During this time, the control unit 13 calculates the ALT ratio from the raw water turbidity and the flocculant injection rate, and from the ALT ratio, the relational expression between the ALT ratio and the average particle size at the design value shown in FIG.
The predicted average particle diameter at the installation point of the floc measuring device 10 is predicted.

フロック形成池3に入った混和液は、対流効果(撹拌)
又は滞留時間(30〜60分)により徐々にフロック径
が成長する。この成長フロックを水中カメラ9で認識し
、フロック計測装置lOの画像処理によってフロック幾
何平均径を求める。
The mixed liquid that entered the floc formation pond 3 has a convection effect (stirring)
Alternatively, the floc diameter gradually grows depending on the residence time (30 to 60 minutes). This growing floc is recognized by the underwater camera 9, and the geometric mean diameter of the floc is determined by image processing by the floc measurement device IO.

このときの実測平均径には水量変動の因子とSS量/T
Bの因子を含む値となる。制御部13は予測値と実測値
の差をフィードバック制御項B、に代入して凝集剤注入
量を制御する。
The actual measured average diameter at this time includes the factor of water volume fluctuation and SS volume/T.
This value includes the factor of B. The control unit 13 controls the amount of coagulant injection by substituting the difference between the predicted value and the measured value into the feedback control term B.

フロック形成池を通った水は沈澱池に入り、フロック等
を沈澱させる。沈澱池出口に濁度計8を設け、沈澱池出
口の濁度を検出し、制御項B1の因子とならない取水量
の増加(GT値の低下)による影響を濁度計の設定値と
実測値の差を補正項B、に代入する。ただし、B1の制
御はサンプリング制御とし30〜60分間毎に補正をか
ける。
The water that has passed through the floc formation pond enters the settling basin, where flocs and the like are precipitated. A turbidity meter 8 is installed at the exit of the sedimentation tank to detect the turbidity at the exit of the sedimentation tank, and calculate the effect of the increase in water intake (reduction in GT value), which is not a factor in control parameter B1, between the set value of the turbidity meter and the actual measured value. Substitute the difference between them into the correction term B. However, the control of B1 is sampling control and correction is applied every 30 to 60 minutes.

補正幅は±5ppm以内とする。The correction width shall be within ±5 ppm.

以上の構成から、濁質成分変化(SS量/TB)。From the above configuration, changes in turbidity components (SS amount/TB).

取水量変動に対して対応のとれる制御システムとなり、
特に取水量の低下、5SIi/TB>1のときに効果を
発揮し、注入量の縮約が計れてより精度の高い制御系が
可能になる。
A control system that can respond to fluctuations in water intake,
It is particularly effective when the amount of water intake is reduced and 5SIi/TB>1, and the injection amount can be reduced, making it possible to create a more accurate control system.

く第5図のALT比と平均粒径の基準式の作成〉 比較的藻類等有機物の発生の少ない期間にフロック計測
装置IOの画像処理により幾何平均径を求めALT比と
の関係式を作成する。
Creation of the standard formula for the ALT ratio and average particle size in Figure 5> Obtain the geometric mean diameter by image processing of the floc measurement device IO during a period when the occurrence of organic matter such as algae is relatively low, and create a relational formula with the ALT ratio. .

条件:■設計取水量(GT値)。Conditions: ■Design water intake amount (GT value).

■SS量/TB#1.0 ■水中カメラの設置場所。■SS amount/TB#1.0 ■Where to install the underwater camera.

■近赤外方式の濁度計使用(色度の影響排除)。■Uses a near-infrared turbidity meter (eliminates the influence of chromaticity).

■に関しての影響が比較的変化の少ない浄水場では、条
件から外しても可能となる。■及び■は一定条件が必要
。■に関しては■の効果と関連するため他の濁度計使用
の場合、■の項目も削除しなければならない。
In water treatment plants where the impact of (2) is relatively small, it is possible to remove it from the conditions. ■ and ■ require certain conditions. Regarding ■, it is related to the effect of ■, so if another turbidity meter is used, the item ■ must also be deleted.

H1発明の効果 本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。
H1 Effects of the Invention Since the present invention is configured as described above, it produces the following effects.

■ALT比を平均粒径の関係式から予測平均粒径を導き
、実測値フロック平均粒径との比較値から凝集剤の注入
量を制御することができる。
(2) The predicted average particle size is derived from the relational expression of the ALT ratio and the average particle size, and the injection amount of the flocculant can be controlled from the value compared with the actual measured value of the floc average particle size.

■従来の迂流式フロック形成池の注入制御では看水井流
入局度と沈澱池流出濁度の間で制御を行っていたが、滞
留時間が2時間以上あるために制御遅れがあったが、フ
ロック形成池に水中カメラを設置して、フロック形成状
態情報をも併せ用いているので、遅れ時間を30〜60
分に短縮することができ制御精度が著しく向上する。
■In the conventional injection control of the bypass type floc formation pond, control was performed between the inflow locality of the nursing well and the turbidity of the outflow from the settling tank, but there was a delay in control because the residence time was over 2 hours. An underwater camera is installed in the floc formation pond, and information on the floc formation status is also used, so the delay time is 30 to 60 minutes.
The control accuracy can be significantly improved.

■フロック平均粒径とALT比の関係から、フロック平
均粒径の変動因子が取水量変動(撹拌強度指標GT値)
とSS量/TB比であることが明確になった。
■From the relationship between the average floc particle size and the ALT ratio, the fluctuation factor of the average floc particle size is the water intake fluctuation (stirring intensity index GT value)
It became clear that this was the SS amount/TB ratio.

■季節変化による濁度成分の変化に対して自動補正が行
えるようになった。
■It is now possible to automatically correct changes in turbidity components due to seasonal changes.

■凝集剤の注入量を適量とすることができるので、凝集
剤が節約傾向になる。
■Since the amount of coagulant to be injected can be set to an appropriate amount, the amount of coagulant tends to be saved.

■従来のフィードフォワード制御の欠点である注入率補
正が自動化できる。
■Injection rate correction, which is a drawback of conventional feedforward control, can be automated.

■補正項Bに更にアルカリ度、PH,水温の因子を付加
することにより高度の凝集剤注入量の制御が可能になる
(2) By further adding factors such as alkalinity, pH, and water temperature to the correction term B, it becomes possible to control the amount of coagulant injected to a high degree.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原水濁度と凝集剤注入率曲線図、第2図はAL
T比とフロックの幾何平均粒径の関係を示す線図、第3
図は画像解析から求めたフロックの体積量と平均粒径の
分布図、第4図は水中カメラの画面水平走査線方向とフ
ロックの輝度の関係を示す線図、第5図(a)、(b)
は夫々フロック平均粒径とALT比の関係を示す線図、
第6図は原水濁度とフロック形成に必要な時間の関係を
示す曲線図、第7図は予測フロック平均径と実測フロッ
ク平均径の時径列変化を示す折線図、第8図は凝集剤注
入制御システムの一例を示す概略構成図である。 !・・・着水井、2・・・混和池、3・・・迂流式フロ
ック形成池、4・・・沈澱池、6,8・・・濁度計、9
・・・水中カメラ、lO・・・フロック計測装置、13
・・・制御部、14・・・凝集剤注入パイプ。 外2名 第 図 原水濁度 TB(m9/1) 第3図 第 2図 幾何平均粒径(mm)皇09 第4図 、体積ヒストグラム ALT比(Al’7Ts> 第6図 原水濁度(度) og ALT比(At”/TB) 手続補正書(。え、 1.事件の表示 平成 年特許願第4141 1号 2゜ 発明の名称 フロック計測装置による凝集剤注入率制御方法3゜ 補正をする者 事件との関係
Figure 1 is a graph of raw water turbidity and flocculant injection rate curve, Figure 2 is AL
Diagram showing the relationship between T ratio and geometric mean particle size of flocs, 3rd
The figure is a distribution diagram of the floc volume and average particle size obtained from image analysis, Figure 4 is a diagram showing the relationship between the horizontal scanning line direction of the underwater camera screen and the luminance of flocs, and Figure 5 (a), ( b)
are diagrams showing the relationship between floc average particle size and ALT ratio, respectively;
Figure 6 is a curve diagram showing the relationship between raw water turbidity and the time required for floc formation, Figure 7 is a line diagram showing changes in the predicted average floc diameter and measured average floc diameter over time, and Figure 8 is a flocculant FIG. 1 is a schematic configuration diagram showing an example of an injection control system. ! ...Water landing well, 2...Mixing pond, 3...Detour type floc formation pond, 4...Sedimentation basin, 6, 8...Turbidity meter, 9
...Underwater camera, lO...floc measuring device, 13
. . . Control unit, 14 . . . Coagulant injection pipe. Figure 2 Figure Raw water turbidity TB (m9/1) Figure 3 Figure 2 Geometric mean particle diameter (mm) 09 Figure 4 Volume histogram ALT ratio (Al'7Ts> Figure 6 Raw water turbidity (degrees) ) og ALT ratio (At”/TB) Procedural amendment (. 1. Indication of the incident Heisei Patent Application No. 4141 No. 1 2゜ Title of invention Coagulant injection rate control method using a floc measuring device 3゜ Correction Relationship with the incident

Claims (1)

【特許請求の範囲】[Claims] (1)原水濁度及び沈澱池出口濁度を検出し、凝集剤注
入式D=A・TB^n+B(Dは凝集剤注入率、TBは
原水濁度、A、nは係数、Bはフィードバック補正項)
によって凝集剤注入率を制御するものにおいて、 原水を凝集剤注入率からALT比(原水濁度に対するA
lイオン量)を求め、このALT比とフロック平均粒径
関係式からフロックの予測平均粒径を求めると共に、フ
ロック形成池に設けたフロック計測装置の画像処理から
フロックの幾何学平均粒径の実測値を求め、この予測と
実測のフロック平均粒径の差を所定時間毎にフィードバ
ックして前記補正項Bを補正し、凝集剤注入率を制御す
ることを特徴とするフロック計測装置による凝集剤注入
率制御方法。
(1) Detect the raw water turbidity and settling tank outlet turbidity, and use the flocculant injection formula D=A・TB^n+B (D is the flocculant injection rate, TB is the raw water turbidity, A, n are coefficients, and B is feedback correction term)
In systems that control the flocculant injection rate by
The predicted average particle size of the flocs is determined from this ALT ratio and the floc average particle size relational expression, and the geometric average particle size of the flocs is actually measured from the image processing of the floc measurement device installed in the floc formation pond. A flocculant injection using a flocculant measuring device, characterized in that the flocculant injection rate is controlled by calculating the value and feeding back the difference between the predicted and actually measured floc average particle diameter at predetermined time intervals to correct the correction term B. Rate control method.
JP4141189A 1989-02-21 1989-02-21 Flocculant injection rate control method by floc measuring device Expired - Fee Related JP2745641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4141189A JP2745641B2 (en) 1989-02-21 1989-02-21 Flocculant injection rate control method by floc measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4141189A JP2745641B2 (en) 1989-02-21 1989-02-21 Flocculant injection rate control method by floc measuring device

Publications (2)

Publication Number Publication Date
JPH02218408A true JPH02218408A (en) 1990-08-31
JP2745641B2 JP2745641B2 (en) 1998-04-28

Family

ID=12607617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4141189A Expired - Fee Related JP2745641B2 (en) 1989-02-21 1989-02-21 Flocculant injection rate control method by floc measuring device

Country Status (1)

Country Link
JP (1) JP2745641B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000715A (en) * 2004-06-15 2006-01-05 Japan Organo Co Ltd Equipment and method for flocculation precipitation treatment
JP2007098287A (en) * 2005-10-05 2007-04-19 Hitachi Ltd Method for controlling operation of water purifying process
JP2008095115A (en) * 2001-06-22 2008-04-24 Sekisui Chem Co Ltd Method for producing resin fine particle, resin fine particle and apparatus for producing resin fine particle
JP2011011107A (en) * 2009-06-30 2011-01-20 Metawater Co Ltd Apparatus and method for controlling infusion rate of flocculant
JP2014065030A (en) * 2012-09-05 2014-04-17 Metawater Co Ltd Water processing control method, and water processing control device
CN112358019A (en) * 2020-11-09 2021-02-12 江苏四联自动化科技有限公司 Device and method for controlling alum addition in water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095115A (en) * 2001-06-22 2008-04-24 Sekisui Chem Co Ltd Method for producing resin fine particle, resin fine particle and apparatus for producing resin fine particle
JP2006000715A (en) * 2004-06-15 2006-01-05 Japan Organo Co Ltd Equipment and method for flocculation precipitation treatment
JP2007098287A (en) * 2005-10-05 2007-04-19 Hitachi Ltd Method for controlling operation of water purifying process
JP2011011107A (en) * 2009-06-30 2011-01-20 Metawater Co Ltd Apparatus and method for controlling infusion rate of flocculant
JP2014065030A (en) * 2012-09-05 2014-04-17 Metawater Co Ltd Water processing control method, and water processing control device
CN112358019A (en) * 2020-11-09 2021-02-12 江苏四联自动化科技有限公司 Device and method for controlling alum addition in water

Also Published As

Publication number Publication date
JP2745641B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP4230787B2 (en) Flocculant injection control device
JP2008161809A (en) Coagulant injection control system
CN103118755B (en) Current processing method and system
JPH07204412A (en) Apparatus for automatic determination of chemical injection ratio and method for automatic determination
JPH0483504A (en) Flocculant injection controlling apparatus
JPH02218408A (en) Method for regulating injection rate of flocculant by means of floc measuring device
JP4505772B2 (en) Coagulant injection control method for water purification plant
JP5636263B2 (en) Flocculant injection control system
JP2002205076A (en) Flocculating agent injection control system
JP4784241B2 (en) Flocculant injection method and apparatus for water purification process
JPH10202013A (en) Method for controlling water purifying and flocculating treatment
JP2007098287A (en) Method for controlling operation of water purifying process
JP4900556B2 (en) Wastewater treatment plant operation management method
JP2003200175A (en) Flocculant injection control method and flocculant injection control system
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP6599704B2 (en) Flocculant injection rate determination method and flocculant injection rate determination device
JPH05240767A (en) Floc measuring/controlling device
JP5571424B2 (en) Method and apparatus for controlling the injection rate of flocculant in real time
JP6270655B2 (en) Flock aggregation condition control method, floc aggregation condition control device, water treatment method and water treatment apparatus
JP5579404B2 (en) Apparatus and method for controlling flocculant injection rate
JPH01199608A (en) Controller for injection of flocculant in water purifying plant
JP2674225B2 (en) Flock formation control device
CN111138004A (en) Coagulant adding control system and method
JPH10118411A (en) Method and device for controlling injection of flocculant in water purification plant
JPS63197506A (en) Control system for injection of flocculating agent in purification plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees