JP2008095115A - Method for producing resin fine particle, resin fine particle and apparatus for producing resin fine particle - Google Patents
Method for producing resin fine particle, resin fine particle and apparatus for producing resin fine particle Download PDFInfo
- Publication number
- JP2008095115A JP2008095115A JP2007305706A JP2007305706A JP2008095115A JP 2008095115 A JP2008095115 A JP 2008095115A JP 2007305706 A JP2007305706 A JP 2007305706A JP 2007305706 A JP2007305706 A JP 2007305706A JP 2008095115 A JP2008095115 A JP 2008095115A
- Authority
- JP
- Japan
- Prior art keywords
- resin fine
- liquid
- fine particles
- polymerizable monomer
- droplet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Polymerisation Methods In General (AREA)
Abstract
Description
本発明は、化学、医療、電子材料分野等に使用される均一粒子径の樹脂微粒子の製造方法、樹脂微粒子及び樹脂微粒子の製造装置に関する。 The present invention relates to a method for producing resin fine particles having a uniform particle diameter used in the fields of chemistry, medicine, electronic materials, and the like, a resin fine particle, and a resin fine particle production apparatus.
従来より、樹脂微粒子を作製する方法としては、懸濁重合法が知られている。この方法は、攪拌機を備えた反応槽に分散安定剤を溶解した水性媒体を仕込み、攪拌しながら重合開始剤を溶解させた重合性単量体を投入、加熱することにより樹脂微粒子を得る方法である。しかし、この方法では得られる樹脂微粒子の粒子径分布は広く、カラム充填材、スペーサー、トナー、発泡体の原料等の粒子径の均一性が要求される用途では、分級等の分別操作が必要となり非常に煩雑であった。 Conventionally, a suspension polymerization method is known as a method for producing resin fine particles. This method is a method in which an aqueous medium in which a dispersion stabilizer is dissolved is charged into a reaction vessel equipped with a stirrer, and a polymerizable monomer in which a polymerization initiator is dissolved is charged while stirring and heated to obtain resin fine particles. is there. However, with this method, the particle size distribution of the resin fine particles obtained is wide, and in applications that require uniform particle size, such as column fillers, spacers, toners, and foam raw materials, classification operations such as classification are required. It was very complicated.
これに対して、特許文献1には、層流特性を持つ重合性単量体流を機械的振動を与えることにより小さな液滴に砕き、これを連続相中で重合槽に移動させ、加熱により重合する方法が開示されている。しかしながら、この方法に記載されている装置では、重合性単量体開口部が複数であるため実際には各々から同じ流量で吐出することは困難であり、流量のバラツキが生じることから、これを同じ機械的周波数で分裂させた液滴はその容量すなわち大きさにバラツキが生じる。従って、このような装置では、分裂状態を充分に把握できないため、分裂不良が起こった際にそれを回避しにくく、最終的な樹脂微粒子の粒子径の均一性を損なうことがあった。また、この装置には液滴の生成状態や、液滴の粒子径をチェックする機構がないため、作製条件の変動等により粒子径の均一性が損なわれてもそのまま作製を続行してしまうため、得られる樹脂微粒子の均一性が悪いという問題点があった。
本発明の目的は、化学、医療、電子材料分野等に使用される均一粒子径の樹脂微粒子の製造方法、樹脂微粒子及び樹脂微粒子の製造装置を提供することである。 An object of the present invention is to provide a method for producing resin fine particles having a uniform particle diameter, a resin fine particle, and a resin fine particle producing apparatus used in the fields of chemistry, medicine, electronic materials, and the like.
本発明は、連続相中に、分散相として重合性単量体からなる液体を吐出し、機械的振動を与えることにより前記重合性単量体からなる液体を分裂させて液滴を形成し、前記液滴が分裂、合着しない状態で重合することにより樹脂微粒子を製造する方法であって、前記形成された液滴の粒子径を測定し、その結果を前記重合性単量体からなる液体の吐出条件及び/又は機械振動条件にフィードバックする樹脂微粒子の製造方法である。
以下に本発明を詳述する。
The present invention discharges a liquid composed of a polymerizable monomer as a dispersed phase in a continuous phase, and forms liquid droplets by splitting the liquid composed of the polymerizable monomer by applying mechanical vibration. A method for producing resin fine particles by polymerizing in a state where the droplets are not split or coalesced, the particle size of the formed droplets being measured, and the result being a liquid comprising the polymerizable monomer The method for producing resin fine particles is fed back to the discharge conditions and / or the mechanical vibration conditions.
The present invention is described in detail below.
本発明の樹脂微粒子の製造方法は、連続相中に、分散相として重合性単量体からなる液体を吐出し、機械的振動を与えることにより前記重合性単量体からなる液体を分裂させて液滴を形成し、前記液滴が分裂、合着しない状態で重合することにより樹脂微粒子を製造する方法である。 In the method for producing resin fine particles of the present invention, a liquid composed of a polymerizable monomer is discharged as a dispersed phase in a continuous phase, and the liquid composed of the polymerizable monomer is split by applying mechanical vibration. This is a method for producing resin fine particles by forming droplets and polymerizing the droplets in a state where the droplets are not split or coalesced.
上記連続相としては、気体、液体に限定されない。上記気体としては、例えば、空気、窒素、アルゴン等の不活性ガス等が挙げられる。上記液体としては、連続相を水系とし重合性単量体を油系とする水中油相系の場合には、例えば、水、水とアルコール等の水溶性有機溶剤との混合溶液等が挙げられる。また、連続相を油系とし重合性単量体を水系とする油中水相系の場合には、例えば、n−ヘキサン、n−オクタン等の脂肪族炭化水素;四塩化炭素等のハロゲン化炭化水素系;トルエン、キシレン等の芳香族炭化水素等が挙げられる。 The continuous phase is not limited to gas and liquid. As said gas, inert gas, such as air, nitrogen, argon, etc. are mentioned, for example. As the liquid, in the case of an oil-in-water system in which the continuous phase is water and the polymerizable monomer is oil, for example, water, a mixed solution of water and a water-soluble organic solvent such as alcohol, and the like can be given. . In the case of a water-in-oil phase system in which the continuous phase is an oil system and the polymerizable monomer is an aqueous system, for example, aliphatic hydrocarbons such as n-hexane and n-octane; halogenation such as carbon tetrachloride Hydrocarbon type; aromatic hydrocarbons such as toluene and xylene are listed.
上記連続相には、形成した液滴が分裂、合着しないように分散安定剤を添加することが好ましい。上記分散安定剤としては特に限定されず、水中油相系の場合には、例えば、ポリビニルアルコール;カルボキシメチルセルロース、ヒドロキシメチルセルロース等のセルロース;でんぷん、ゼラチン等の水溶性高分子;リン酸三カルシウム等の難水溶性無機塩等が挙げられ、油中水相系の場合には、例えば、アルキルベンゼンスルホン酸ナトリウム等が挙げられる。
上記連続相には、また、表面張力調整のための界面活性剤、比重調整剤等を添加してもよい。
It is preferable to add a dispersion stabilizer to the continuous phase so that the formed droplets do not break or coalesce. The dispersion stabilizer is not particularly limited. In the case of an oil-in-water system, for example, polyvinyl alcohol; cellulose such as carboxymethyl cellulose and hydroxymethyl cellulose; water-soluble polymer such as starch and gelatin; tricalcium phosphate and the like Examples thereof include hardly water-soluble inorganic salts, and in the case of a water-in-oil system, for example, sodium alkylbenzene sulfonate and the like.
A surfactant for adjusting the surface tension, a specific gravity adjusting agent, and the like may also be added to the continuous phase.
上記分散相としては、重合性単量体からなる液体が用いられる。上記重合性単量体としては、水中油相系の場合には、例えば、スチレン、ビニルナフタレン、アルキル置換スチレン等のモノビニル芳香族化合物;ブロモスチレン、クロロスチレン等のハロ置換スチレン;ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン、トリビニルベンゼン、ジビニルジフエニルエーテル、ジビニルジフエニルスルホン等のポリビニル芳香族化合物;塩化ビニル等のハロオレフイン又はハロゲン化ビニル;アクリル酸又はメタアクリル酸のエステル等のα−β−エチレン性不飽和カルボン酸のエステル;メチルメタアクリレート、エチルアクリレート、酢酸ビニル等が挙げられる。なかでも、電子材料分野に使用される場合には、耐熱性が得られる架橋性の重合性単量体であるジビニルベンゼン、ジビニルベンゼンと多官能アクリレートとを混合したものが好適である。これらの重合性単量体は単独で用いられてもよく、2種以上が併用されてもよい。 As the dispersed phase, a liquid made of a polymerizable monomer is used. Examples of the polymerizable monomer include, in the case of an oil-in-water system, monovinyl aromatic compounds such as styrene, vinyl naphthalene, and alkyl-substituted styrene; halo-substituted styrenes such as bromostyrene and chlorostyrene; divinylbenzene, divinyl. Polyvinyl aromatic compounds such as toluene, divinylxylene, divinylnaphthalene, trivinylbenzene, divinyldiphenyl ether, divinyldiphenylsulfone; haloolefins or vinyl halides such as vinyl chloride; α such as esters of acrylic acid or methacrylic acid -Esters of β-ethylenically unsaturated carboxylic acids; methyl methacrylate, ethyl acrylate, vinyl acetate and the like. Among these, when used in the field of electronic materials, divinylbenzene, which is a crosslinkable polymerizable monomer capable of obtaining heat resistance, and a mixture of divinylbenzene and a polyfunctional acrylate are preferable. These polymerizable monomers may be used independently and 2 or more types may be used together.
また、上記重合性単量体としては、油中水相系の場合には、例えば、アクリルアミド、メタアクリルアミド、フマルアミド、エタクリルアミド等のエチレン性不飽和カルボキザミド;不飽和カルボン酸のアミノアルキルエステル;酸無水物;アクリル酸、メタアクリル酸等のエチレン性不飽和カルボン酸等の水溶性の重合性単量体が挙げられる。 Examples of the polymerizable monomer include, in the case of a water-in-oil system, ethylenically unsaturated carboxamides such as acrylamide, methacrylamide, fumaramide, and ethacrylamide; aminoalkyl esters of unsaturated carboxylic acids; And water-soluble polymerizable monomers such as ethylenically unsaturated carboxylic acids such as acrylic acid and methacrylic acid.
上記分散相には、重合開始剤を添加してもよい。上記重合開始剤としては従来公知のものを用いることができ、水中油相系の場合には、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、メチルエチルケトンパーオキサイド、過硫酸カリウム、アゾビスイソブチロニトリル、アゾビスバレロニトリル等が挙げられ、油中水相系の場合には、例えば、過硫酸塩、過酸化水素、ハイドロパーオキサイド等の水溶性の重合開始剤が挙げられる。また、光で重合させる場合には、光重合開始剤が使用され、その他の連鎖移動剤等の重合助剤を添加してもよい。
また、上記分散相には、重合に影響を与えない範囲において、増感剤、粘度調整剤、溶媒、表面張力調整のための界面活性剤等を添加してもよい。
A polymerization initiator may be added to the dispersed phase. As the polymerization initiator, conventionally known ones can be used. In the case of an oil-in-water system, for example, benzoyl peroxide, lauroyl peroxide, methyl ethyl ketone peroxide, potassium persulfate, azobisisobutyronitrile, Examples thereof include azobisvaleronitrile, and in the case of a water-in-oil system, for example, water-soluble polymerization initiators such as persulfate, hydrogen peroxide, and hydroperoxide. Moreover, when making it superpose | polymerize by light, a photoinitiator is used and you may add polymerization adjuvants, such as another chain transfer agent.
In addition, a sensitizer, a viscosity modifier, a solvent, a surfactant for adjusting the surface tension, and the like may be added to the dispersed phase as long as the polymerization is not affected.
本発明の樹脂微粒子の製造方法では、上記連続相中に上記分散相として重合性単量体からなる液体を吐出し、機械的振動を与えることにより重合性単量体からなる液体を分裂させて液滴を形成する。例えば、上記重合性単量体からなる液滴をノズルやオリフィス等の開口部より層流になるような条件で上記連続相中に吐出すると、上記開口部付近で重合性単量体の液柱が形成される。この液柱に機械的振動を与えることにより液柱に表面波を与えると、液柱が変形し、くびれが生じて、その部分から分裂して液滴が形成される。この液滴形成の様子を図1に示した。振動の周波数に従ってくびれ部分が発生するので、単位時間あたりの流量を周波数で除した値から液滴1個の容量を算出することができる。 In the method for producing resin fine particles of the present invention, a liquid composed of a polymerizable monomer is discharged as the dispersed phase into the continuous phase, and the liquid composed of the polymerizable monomer is disrupted by applying mechanical vibration. Form droplets. For example, when a droplet made of the polymerizable monomer is discharged into the continuous phase under the condition that the liquid drops are laminar from an opening such as a nozzle or an orifice, a liquid column of the polymerizable monomer is formed in the vicinity of the opening. Is formed. When a surface wave is applied to the liquid column by applying mechanical vibration to the liquid column, the liquid column is deformed, constricted, and split from the portion to form a droplet. The state of this droplet formation is shown in FIG. Since a constricted portion is generated according to the frequency of vibration, the volume of one droplet can be calculated from the value obtained by dividing the flow rate per unit time by the frequency.
本発明の樹脂微粒子の製造方法では、上記重合性単量体からなる液体が分裂して液滴になる状態、即ち、重合性単量体の液柱から液滴が形成する瞬間を認識し、その結果を前記重合性単量体からなる液体の吐出条件及び/又は機械振動条件にフィードバックする。 In the method for producing resin fine particles of the present invention, the liquid consisting of the polymerizable monomer is split into droplets, that is, the moment when the droplets are formed from the polymerizable monomer liquid column, The result is fed back to the discharge condition and / or the mechanical vibration condition of the liquid composed of the polymerizable monomer.
上記液体が分裂して液滴になる状態を認識する手段としては特に限定されないが、例えば、高速な液滴形成の状態を静止状態で捉えるのに充分な高速のシャッタースピードで撮影可能なカメラ、又は、このようなカメラとストロボ照明とを組み合わせる方法等が好ましい。また、微小な液滴を視認可能な大きさに拡大するために、上記カメラには拡大撮影装置が装着されることが好ましく、上記カメラでとらえた画像はディスプレイ等で表示され認識しやすくすることが好ましい。 The means for recognizing the state in which the liquid breaks up into droplets is not particularly limited.For example, a camera capable of photographing at a high shutter speed sufficient to capture a high-speed droplet formation state in a stationary state, Alternatively, a method of combining such a camera and strobe illumination is preferable. Further, in order to enlarge a minute droplet to a size that can be visually recognized, it is preferable that the camera is equipped with an enlargement photographing device, and an image captured by the camera is displayed on a display or the like so as to be easily recognized. Is preferred.
上記フィードバックとしては、例えば、液滴が図1に示すように正常に生成するか否かを確認し、異常が生じた場合その状況により生成条件を調整したり、場合によっては生成を中止したりすることを言う。異常の例として図2に示すようなものがあり、この場合のフィードバックの例としては、与える機械的振動の振幅を大きくしてくびれを生じさせ、液滴が分裂するように調整する。このようなフィードバックを行うことにより、均一な粒子径を有する樹脂微粒子を製造することができる。 As the feedback, for example, it is confirmed whether or not the droplet is normally generated as shown in FIG. 1, and if an abnormality occurs, the generation condition is adjusted depending on the situation, or the generation is stopped in some cases. Say to do. An example of the abnormality is shown in FIG. 2, and as an example of feedback in this case, the amplitude of the mechanical vibration to be applied is increased to cause squeezing and the droplet is adjusted to break up. By performing such feedback, resin fine particles having a uniform particle diameter can be produced.
本発明の樹脂微粒子の製造方法では、形成された重合性単量体の液滴を、液滴が分裂、合着しない状態で重合を行うことにより樹脂微粒子を得ることができる。上記液滴が合着しない状態にする方法としては、例えば、連続相に分散安定剤を添加する方法等が挙げられる。上記液滴を分裂しない状態にする方法としては、例えば、液滴に過剰な機械的剪断力がかからないよう連続相を緩やかに攪拌する方法等が挙げられる。このような状態で、加熱又は活性光を照射することにより重合性単量体を重合させる。 In the method for producing resin fine particles of the present invention, resin fine particles can be obtained by polymerizing the formed droplets of polymerizable monomer in a state where the droplets are not split or coalesced. Examples of the method for preventing the droplets from coalescing include a method of adding a dispersion stabilizer to the continuous phase. Examples of the method for preventing the droplets from breaking up include a method of gently stirring the continuous phase so that excessive mechanical shearing force is not applied to the droplets. In such a state, the polymerizable monomer is polymerized by heating or irradiating active light.
また、形成された液滴の粒子径を測定し、その結果を前記重合性単量体からなる液体の吐出条件及び/又は機械振動条件にフィードバックすることによっても、均一な粒子径を有する樹脂微粒子を製造することができる。 Also, the resin fine particles having a uniform particle diameter can be obtained by measuring the particle diameter of the formed droplets and feeding back the result to the liquid discharge conditions and / or mechanical vibration conditions comprising the polymerizable monomer. Can be manufactured.
連続相中に、分散相として重合性単量体からなる液体を吐出し、機械的振動を与えることにより重合性単量体からなる液体を分裂させて液滴を形成し、液滴が分裂、合着しない状態で重合することにより樹脂微粒子を製造する方法であって、形成された液滴の粒子径を測定し、その結果を重合性単量体からなる液体の吐出条件及び/又は機械振動条件にフィードバックする樹脂微粒子の製造方法もまた、本発明の1つである。 In the continuous phase, a liquid composed of a polymerizable monomer is discharged as a dispersed phase, and a liquid composed of a polymerizable monomer is formed by applying mechanical vibrations to form droplets. A method of producing resin fine particles by polymerizing in a non-bonded state, measuring the particle diameter of the formed droplets, and determining the result of the discharge conditions and / or mechanical vibration of a liquid composed of a polymerizable monomer A method for producing resin fine particles that feed back to conditions is also one aspect of the present invention.
上記液滴の粒子径を測定する方法としては特に限定されず、例えば、分散相中で形成された液滴の画像をコンピュータに取り込んで計測する方法等が挙げられる。その際に計測される液滴は、液滴状態であれば特に限定されない。具体的には、例えば、上述のカメラにより撮影された画像をコンピュータに取り込み、画像解析ソフトウエアにより形成された液滴の粒子径を測定することができる。得られた測定値を演算処理し、平均値や標準偏差等の値を求め、この結果から液滴の粒子径を調整するようにフィードバックする。上記フィードバックとしては、例えば、コンピュータから、又は、シーケンサーを介して制御信号を機械的振動を与える装置又は重合性単量体の吐出を調整する装置等に送ることにより制御する。例えば、粒子径が大きすぎる場合には、機械的振動の周波数を上げたり、重合性単量体の吐出量を下げたりすることで調整し、粒子径が小さすぎる場合にはその逆を行うことで調整を行う。 The method for measuring the particle diameter of the droplet is not particularly limited, and examples thereof include a method of measuring an image of a droplet formed in a dispersed phase by taking it into a computer. The droplets measured at that time are not particularly limited as long as they are in a droplet state. Specifically, for example, an image photographed by the above-described camera can be taken into a computer, and the particle diameter of a droplet formed by image analysis software can be measured. The obtained measurement values are processed, values such as average values and standard deviations are obtained, and feedback is performed so as to adjust the particle diameter of the droplets from the results. The feedback is controlled, for example, by sending a control signal from a computer or via a sequencer to a device that applies mechanical vibration or a device that adjusts the discharge of the polymerizable monomer. For example, if the particle size is too large, adjust by increasing the frequency of mechanical vibration or decreasing the discharge amount of the polymerizable monomer, and vice versa if the particle size is too small Adjust with.
本発明の樹脂微粒子の製造方法によれば、非常に均一な粒子径を有する樹脂微粒子を得ることができる。本発明の樹脂微粒子の製造方法により製造された樹脂微粒子であって、平均粒子径が10〜3000μmであり、かつ、80%以上が平均粒子径の±10%の範囲内に含まれる樹脂微粒子もまた、本発明の1つである。 According to the method for producing resin fine particles of the present invention, resin fine particles having a very uniform particle diameter can be obtained. Resin fine particles produced by the method for producing resin fine particles of the present invention, wherein the average particle size is 10 to 3000 μm, and 80% or more is contained within a range of ± 10% of the average particle size Moreover, it is one of the present inventions.
ここで本発明の樹脂微粒子の粒子径の好ましい下限を10μm、好ましい上限を3000μmとしたのは、このような粒子径を有する樹脂微粒子は、懸濁重合での作製が困難であるため、本発明の樹脂微粒子の製造方法が特に有効となる範囲であるからである。本発明の樹脂微粒子が、平均粒子径の±10%の範囲内に含まれる樹脂微粒子が80%未満であると、粒子径が不均一になり、分別工程が必要になることがある。 Here, the preferable lower limit of the particle diameter of the resin fine particles of the present invention is 10 μm, and the preferable upper limit is 3000 μm, because the resin fine particles having such particle diameters are difficult to produce by suspension polymerization. This is because the method for producing resin fine particles is in a particularly effective range. When the resin fine particles of the present invention are contained in a range of ± 10% of the average particle diameter of less than 80%, the particle diameter becomes non-uniform and a separation step may be required.
本発明の樹脂微粒子の製造方法を実施するための製造装置は、少なくとも、分散容器、分散容器内に開口しており分散媒中に重合性単量体からなる液体を吐出する噴出口、分散媒中に噴出された重合性単量体からなる液体に機械的振動を与える手段、及び、形成される液滴を撮影する撮影装置を有することが好ましい。 The production apparatus for carrying out the method for producing resin fine particles of the present invention includes at least a dispersion container, a jet opening for discharging a liquid composed of a polymerizable monomer into the dispersion medium, and a dispersion medium. It is preferable to have a means for applying mechanical vibration to the liquid composed of the polymerizable monomer ejected inside and a photographing device for photographing the formed droplet.
このような分散容器、分散容器内に開口しており液状分散媒中に重合性単量体からなる液体を吐出する噴出口、液状分散媒中に噴出された重合性単量体からなる液体に機械的振動を与える手段、及び、形成される液滴を撮影する撮影装置を有する樹脂微粒子の製造装置もまた、本発明の1つである。 Such a dispersion container, a jet opening for discharging a liquid composed of a polymerizable monomer into a liquid dispersion medium that is open in the dispersion container, and a liquid composed of a polymerizable monomer ejected into the liquid dispersion medium. A resin fine particle manufacturing apparatus having a means for applying mechanical vibration and a photographing device for photographing a formed droplet is also one aspect of the present invention.
上記分散容器としては特に限定されないが、液滴の形成状態をCCDカメラ等で撮影することや液滴形成後の反応を考慮して、透明で100℃程度の加熱に耐えられるものが好ましい。このような分散容器としては、例えば、ガラス製の丸形や筒形のセパラブルフラスコ容器等が挙げられる。 The dispersion container is not particularly limited, but is preferably a transparent container that can withstand heating at about 100 ° C. in consideration of photographing the formation state of the liquid droplets with a CCD camera or the like and the reaction after the liquid droplets are formed. Examples of such a dispersion container include a glass round or cylindrical separable flask container.
上記噴出口は、上記分散容器内に開口しており液状分散媒中に重合性単量体からなる液体を吐出するものである。上記噴出口の開口部の形状としては、円が好ましく、開口部の流路形状は円筒状又は円錐台状が好ましい。上記噴出口の材質としては、分散相、連続相の成分によって侵されず、化学的に影響されないものが好ましく、例えば、ステンレス、テフロン(登録商標)等が挙げられる。 The said jet nozzle is opened in the said dispersion | distribution container, and discharges the liquid which consists of a polymerizable monomer in a liquid dispersion medium. The shape of the opening of the jet port is preferably a circle, and the flow path shape of the opening is preferably cylindrical or frustoconical. The material of the jet outlet is preferably a material that is not affected by the components of the dispersed phase and continuous phase and is not chemically affected. Examples thereof include stainless steel and Teflon (registered trademark).
なお、上記噴出口は特に限定されないが、1つであることが好ましい。噴出口を複数個並設すると、各噴出口からの重合性単量体の噴出量にばらつきを生じ、加振されて生成される液滴の大きさが不均一となるとともに、液滴が重なって明確な映像の撮影が困難となることがある。 In addition, although the said jet nozzle is not specifically limited, It is preferable that it is one. When a plurality of jet outlets are arranged side by side, the amount of the polymerizable monomer ejected from each jet outlet varies, and the size of the droplets generated by vibration becomes uneven and the droplets overlap. It may be difficult to capture clear images.
上記噴出口から上記重合性単量体を吐出する方法としては特に限定されず、例えば、ポンプ等により送液する方法等が挙げられる。上記ポンプとしては、脈動の少ないものが好ましく、回転数により流量が制御し易いギヤポンプが好適に用いられる。上記ポンプとしてプランジャーポンプを用いる場合には、整流装置を併用することが必要である。また、噴出口に配管によって接続された単量体容器に圧縮空気を送入して単量体を容器から押出し、流量調整弁を用いて定量を送出するようにしてもよい。 The method for discharging the polymerizable monomer from the ejection port is not particularly limited, and examples thereof include a method for feeding liquid by a pump or the like. As the pump, a pump with less pulsation is preferable, and a gear pump whose flow rate is easily controlled by the number of rotations is preferably used. When a plunger pump is used as the pump, it is necessary to use a rectifier together. Alternatively, compressed air may be fed into a monomer container connected to the jet port by piping to extrude the monomer from the container, and a fixed amount may be sent out using a flow rate adjustment valve.
上記機械的振動を与える手段としては特に限定されず、例えば、振動子を噴出口を支持する部材に接続して機械的に振動させる方法;規則的な振動数を有する電気信号を発生する発振器に接続されたピストンにより生ずる往復運動を単量体又は分散媒に伝える方法等が挙げられる。なかでも、直接噴出口を支持する部材を振動させる方法が好ましい。機械振動を発生させる方法としては、例えば、ファンクションジェネレータを用いて振動を発生し、これを増幅器により増幅し、振動子に供給する方法等が挙げられる。上記振動子としては、外部からの信号により周波数、振幅が調整可能なものが好ましい。 The means for applying the mechanical vibration is not particularly limited. For example, the vibrator is mechanically vibrated by connecting the vibrator to a member that supports the jet outlet; the oscillator that generates an electrical signal having a regular frequency is used. For example, a method of transmitting the reciprocating motion generated by the connected piston to the monomer or the dispersion medium may be used. Among these, a method of vibrating the member that directly supports the jet nozzle is preferable. As a method of generating mechanical vibration, for example, there is a method of generating vibration using a function generator, amplifying this using an amplifier, and supplying the vibration to a vibrator. As the vibrator, a vibrator whose frequency and amplitude can be adjusted by an external signal is preferable.
上記撮影装置としては特に限定されないが、高速な液滴の形成を静止状態で捉えるに充分な高速のシャッター又はストロボ照明と、微小な液滴を視認可能な大きさに拡大して表示することが出来るディスプレイとを備えたCCDカメラ等が好適に用いられる。 The photographing apparatus is not particularly limited, and a high-speed shutter or stroboscopic illumination sufficient to capture high-speed droplet formation in a stationary state and a small droplet can be enlarged and displayed in a visible size. A CCD camera equipped with a display capable of being used is preferably used.
分散容器、分散容器内に開口しており液状分散媒中に重合性単量体からなる液体を吐出する噴出口、液状分散媒中に噴出された重合性単量体からなる液体に機械的振動を与える手段、及び、形成される液滴の粒子径の計測手段を有する樹脂微粒子の製造装置もまた、本発明の1つである。 Dispersion vessel, jet port that opens into the dispersion vessel and discharges the liquid composed of polymerizable monomer into the liquid dispersion medium, mechanical vibrations into the liquid composed of polymerizable monomer ejected into the liquid dispersion medium An apparatus for producing resin fine particles having a means for providing the liquid crystal and a means for measuring the particle diameter of the formed droplets are also one aspect of the present invention.
上記液滴の粒子径の計測手段としては特に限定されないが、例えば、上記撮影装置により液滴の形成の状態を撮影した画像をコンピュータに取込んで、画像処理装置により液滴の粒子径を計測するのが好ましい。 The means for measuring the particle size of the droplet is not particularly limited. For example, an image obtained by photographing the droplet formation state by the photographing device is taken into a computer, and the particle size of the droplet is measured by the image processing device. It is preferable to do this.
本発明の樹脂微粒子の製造装置は、更に液滴の粒子径の計測結果に基いて、重合性単量体からなる液体の吐出条件及び/又は機械振動条件を調整する手段を有することが好ましい。液状分散媒中に噴出された単量体が加振されて形成される液滴の粒子径は、重合性単量体の噴出量に正比例し、重合性単量体を加振する振動数に反比例することから、液滴の粒子径が大き過ぎる場合には、重合性単量体の吐出量を減少させるか振動数を増加させる操作、液滴の径が小さ過ぎる場合には、重合性単量体の吐出量を増加させるか振動数を減少させる操作を手動又は自動操作により行い、液滴の粒子径を均一化させる。 The apparatus for producing resin fine particles of the present invention preferably further comprises means for adjusting the discharge condition and / or the mechanical vibration condition of the liquid composed of the polymerizable monomer based on the measurement result of the particle diameter of the droplet. The particle diameter of the droplets formed by the vibration of the monomer ejected into the liquid dispersion medium is directly proportional to the amount of the polymerizable monomer ejected, and the frequency at which the polymerizable monomer is vibrated. Since it is inversely proportional, if the particle size of the droplet is too large, an operation to decrease the discharge amount of the polymerizable monomer or increase the frequency, and if the droplet size is too small, The operation of increasing the discharge amount of the mass body or decreasing the frequency is performed manually or automatically to make the particle diameter of the droplet uniform.
本発明によれば、化学、医療、電子材料分野等に使用される均一粒子径の樹脂微粒子の製造方法、樹脂微粒子及び樹脂微粒子の製造装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the resin microparticles | fine-particles of the uniform particle diameter used for a chemical | medical, medical, electronic material field | area etc., the resin microparticles | fine-particles, and the manufacturing apparatus of resin microparticles | fine-particles can be provided.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
まず、図3に示したような樹脂微粒子の製造装置を作製した。
図3に示した装置において、1は液状重合性単量体Mの容器であって、容器1にポンプPを経由して接続された内径0.3mmのノズルからなる噴出口2が、透明な分散容器3内に収納された液状分散媒D内に開口されている。
(Example 1)
First, a resin fine particle manufacturing apparatus as shown in FIG. 3 was produced.
In the apparatus shown in FIG. 3, reference numeral 1 denotes a container of the liquid polymerizable monomer M, and the
噴出口2から液状分散媒D中に噴出された単量体Mは、噴出口2を支持する部材に接続された振動子4によって加振されて液滴が生成される。分散容器3の右方には液滴の分裂の状態を5秒毎に断続的に撮影するよう設定され、1/10000秒の高速のシャッターと拡大レンズを有する撮影装置5が、左方には光源Iに接続され、液状分散媒Dの背面から光量を与える照明装置6が付設されている。
The monomer M ejected from the
撮影装置5によって撮影された画像は、画像のコントローラC2を経由して14インチのCRTディスプレイ7に拡大表示され、生成された液滴の径の状態を目視により観察した結果に基づいて、手動操作により液滴の径を均一化させる調整を行うことが出来る。即ち、液滴の径が大き過ぎる場合には、ポンプのコントローラC1を操作して液状重合性単量体Mの噴出量を減少させるか、増幅器Aに接続されたファンクションジェネレータFGを操作して液状重合性単量体Mを加振する振動数を増加させることにより、液滴の径を縮小させ、液滴の径が小さ過ぎる場合には、逆に、噴出量を増加させるか、振動数を減少させることにより、液滴の径を拡大させて、手動操作により液滴の径を均一化させる調整が行われる。
An image photographed by the photographing device 5 is enlarged and displayed on a 14-
次いで、この装置を用いて樹脂微粒子の製造を行った。
ジビニルベンゼン50重量部と、トリメチロールプロパントリメタクリレート50重量部とを混合して液状重合性単量体Mを作製し、重合開始剤としてベンゾイルパーオキサイド2重量部を添加して、容器1に注入した。
単量体Mは、ガラス製の分散容器3に収納された、水にポリビニルアルコールが3%添加された液状分散媒D内に、内径0.3mmの噴出口2より4.96mL/分の割合で噴出され、振動子4は200Hzの振動数で単量体Mが噴出された液状分散媒Dを加振して液滴を生成させた。
撮影装置5によって撮影され、CRTディスプレイ7に拡大表示された画像により、生成された液滴の径の状態を目視観察した結果に基づいて、手動操作により液滴の径を均一化させる調整を行った。
Subsequently, resin fine particles were produced using this apparatus.
50 parts by weight of divinylbenzene and 50 parts by weight of trimethylolpropane trimethacrylate are mixed to prepare a liquid polymerizable monomer M, and 2 parts by weight of benzoyl peroxide is added as a polymerization initiator and injected into the container 1 did.
The monomer M is contained in the glass dispersion vessel 3 and is 4.96 mL / min from the
Based on the result of visual observation of the state of the diameter of the generated liquid droplets, an adjustment is made to make the diameters of the liquid droplets uniform by manual operation based on the image of the diameter of the generated liquid droplets, which is captured by the photographing device 5 and enlarged and displayed on the CRT display It was.
所定量の単量体Mの噴出後、分散容器3に攪拌機と冷却管とを設置して加熱攪拌することにより、単量体Mを重合させて樹脂微粒子を得た。得られた樹脂微粒子の平均粒子径は602μmであって、平均粒子径の±10%の範囲に92%の樹脂微粒子が含まれていた。 After a predetermined amount of the monomer M was ejected, a stirrer and a cooling pipe were installed in the dispersion vessel 3 and heated and stirred to polymerize the monomer M to obtain resin fine particles. The obtained resin fine particles had an average particle diameter of 602 μm, and 92% of resin fine particles were contained in a range of ± 10% of the average particle diameter.
(実施例2)
図4に示した樹脂微粒子の製造装置を作製した。
図4に示した装置では、分散容器3の右方に液滴の粒子径の計測装置Sが付設されており、撮影装置5によって撮影された画像は、画像のコントローラC2を経由して計測装置Sに送られて、形成された液滴の粒子径が測定され、測定値を演算処理した結果が、ポンプのコントローラC1又はファンクションジェネレータFGにフィードバックされて、自動操作により液滴の径を均一化させる調整が行われる。
(Example 2)
The apparatus for producing resin fine particles shown in FIG. 4 was produced.
In the apparatus shown in FIG. 4, a droplet diameter measuring device S is attached to the right side of the dispersion container 3, and an image photographed by the photographing device 5 is measured via the image controller C2. S is sent to S, the particle diameter of the formed droplet is measured, and the result of calculation processing of the measured value is fed back to the pump controller C1 or the function generator FG, and the droplet diameter is made uniform by automatic operation. Adjustments are made.
次いで、この装置を用いて樹脂微粒子の製造を行った。
図4に示した装置を用い、トリメチロールプロパントリメタクリレートに代えて、テトラメチロールメタンテトラアクリレートを用いて液状重合性単量体Mを調製したこと以外は実施例1と同様にして樹脂微粒子を製造した。
得られた樹脂微粒子の平均粒子径は599μmであって、平均粒子径の±10%の範囲に89%の樹脂微粒子が含まれていた。
Subsequently, resin fine particles were produced using this apparatus.
Using the apparatus shown in FIG. 4, resin fine particles were produced in the same manner as in Example 1 except that the liquid polymerizable monomer M was prepared using tetramethylolmethane tetraacrylate instead of trimethylolpropane trimethacrylate. did.
The average particle size of the obtained resin fine particles was 599 μm, and 89% of the resin fine particles were contained in the range of ± 10% of the average particle size.
(実施例3)
図4に示した装置を用いた以外は実施例1同様にして樹脂微粒子を製造した。即ち、液状重合性単量体Mが吐出された液状分散媒Dを加振して液滴を生成させた。計測装置Sにより、生成された液滴の径が測定され、測定値を演算処理した結果が、ポンプのコントローラC1にフィードバックされて、自動操作により液滴の径を均一化させる調整を行った。所定量の単量体Mの噴出後、分散容器3に攪拌機と冷却管とを設置して加熱攪拌することにより、単量体Mを重合させて樹脂微粒子を得た。
得られた樹脂微粒子の平均粒子径は601μmであって、平均粒子径の±10%の範囲に95%の樹脂微粒子が含まれていた。
(Example 3)
Resin fine particles were produced in the same manner as in Example 1 except that the apparatus shown in FIG. 4 was used. That is, the liquid dispersion medium D from which the liquid polymerizable monomer M was discharged was vibrated to generate droplets. The diameter of the generated droplets was measured by the measuring device S, and the result obtained by calculating the measured values was fed back to the pump controller C1, and adjustment was performed to make the droplet diameters uniform by automatic operation. After a predetermined amount of the monomer M was ejected, a stirrer and a cooling pipe were installed in the dispersion vessel 3 and heated and stirred to polymerize the monomer M to obtain resin fine particles.
The obtained resin fine particles had an average particle size of 601 μm, and 95% resin fine particles were contained in a range of ± 10% of the average particle size.
(比較例1)
CCDカメラ及びCRTモニターを使用せず、吐出条件や周波数条件の調整を行わなかったこと以外は、実施例1と同様にして樹脂微粒子を得た。
得られた樹脂微粒子の平均粒子径は688μmであって、±10%範囲に78%の粒子しか含まれていなかった。
(Comparative Example 1)
Resin fine particles were obtained in the same manner as in Example 1 except that the CCD camera and the CRT monitor were not used and the ejection conditions and frequency conditions were not adjusted.
The obtained resin fine particles had an average particle diameter of 688 μm, and contained only 78% of particles in the ± 10% range.
(比較例2)
液状分散媒D内に、内径0.3mmの噴出口2が3個並設して開口されている以外は実施例1で用いた装置と同様の樹脂微粒子製造装置を作製した。
この装置を用いて、3個の噴出口2より15.9mL/分の割合で液状重合性単量体Mを噴出させたこと以外は、実施例1と同様にして液滴を生成させた。撮影装置5によって撮影され、CRTディスプレイ7に拡大表示された画像は、液滴が重なり合って個別に視認することが出来なかった。
手動操作により液滴の径を均一化させる調整を行うことなく、単量体Mを重合させて得た樹脂微粒子の平均粒子径は610μmであって、平均粒子径の±10%の範囲には65%の樹脂微粒子しか含まれていなかった。
(Comparative Example 2)
A resin fine particle production apparatus similar to the apparatus used in Example 1 was prepared except that three
Using this apparatus, droplets were generated in the same manner as in Example 1 except that the liquid polymerizable monomer M was ejected from the three
The resin fine particles obtained by polymerizing the monomer M without adjusting the droplet diameter to be uniform by manual operation have an average particle diameter of 610 μm and within ± 10% of the average particle diameter. Only 65% resin fine particles were contained.
本発明によれば、化学、医療、電子材料分野等に使用される均一粒子径の樹脂微粒子の製造方法、樹脂微粒子及び樹脂微粒子の製造装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the resin microparticles | fine-particles of the uniform particle diameter used for a chemical | medical, medical, electronic material field | area etc., the resin microparticles | fine-particles, and the manufacturing apparatus of resin microparticles | fine-particles can be provided.
1 液状重合性単量体の容器
2 噴出口
3 分散容器
4 振動子
5 撮影装置
6 照明装置
7 CRTディスプレイ
A 増幅器
C1 ポンプのコントローラ
C2 画像のコントローラ
D 液状分散媒
FG ファンクションジェネレータ
M 液状重合性単量体
P ポンプ
S 計測装置
DESCRIPTION OF SYMBOLS 1 Liquid
Claims (5)
前記形成された液滴の粒子径を測定し、その結果を前記重合性単量体からなる液体の吐出条件及び/又は機械振動条件にフィードバックする
ことを特徴とする樹脂微粒子の製造方法。 In the continuous phase, a liquid composed of a polymerizable monomer is discharged as a dispersed phase, and mechanical liquid is applied to break up the liquid composed of the polymerizable monomer to form droplets. A method of producing resin fine particles by polymerizing in a state where no splitting or coalescence is achieved,
A method for producing resin fine particles, comprising measuring a particle diameter of the formed droplet and feeding back the result to a discharge condition and / or a mechanical vibration condition of the liquid composed of the polymerizable monomer.
前記撮影装置により液滴の形成の状態を撮影した画像をコンピュータに取込んで、画像処理装置により液滴の粒子径を計測し、その結果を前記重合性単量体からなる液体の吐出条件及び/又は機械振動条件にフィードバックする
ことを特徴とする樹脂微粒子の製造装置。 An apparatus for performing the method for producing resin fine particles according to claim 1, comprising: a dispersion container, a jet opening that opens in the dispersion container and discharges a liquid composed of a polymerizable monomer in a liquid dispersion medium, and a liquid A means for applying mechanical vibration to a liquid composed of a polymerizable monomer ejected into a dispersion medium, and a photographing device for photographing a formed droplet;
An image obtained by photographing the state of droplet formation by the photographing device is taken into a computer, the particle diameter of the droplet is measured by an image processing device, and the result is a discharge condition of the liquid composed of the polymerizable monomer and An apparatus for producing resin fine particles, which is fed back to mechanical vibration conditions.
前記計測手段により計測した液滴の粒子径を前記重合性単量体からなる液体の吐出条件及び/又は機械振動条件にフィードバックする
ことを特徴とする樹脂微粒子の製造装置。 An apparatus for performing the method for producing resin fine particles according to claim 1, comprising: a dispersion container, a jet opening that opens in the dispersion container and discharges a liquid composed of a polymerizable monomer in a liquid dispersion medium, and a liquid A means for applying mechanical vibration to the liquid composed of the polymerizable monomer ejected into the dispersion medium, and a means for measuring the particle diameter of the formed droplets,
An apparatus for producing resin fine particles, wherein the particle diameter of a droplet measured by the measuring means is fed back to a discharge condition and / or a mechanical vibration condition of a liquid made of the polymerizable monomer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007305706A JP2008095115A (en) | 2001-06-22 | 2007-11-27 | Method for producing resin fine particle, resin fine particle and apparatus for producing resin fine particle |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001189990 | 2001-06-22 | ||
JP2001189989 | 2001-06-22 | ||
JP2007305706A JP2008095115A (en) | 2001-06-22 | 2007-11-27 | Method for producing resin fine particle, resin fine particle and apparatus for producing resin fine particle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003507144A Division JP4070717B2 (en) | 2001-06-22 | 2002-06-21 | Method for producing resin fine particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008095115A true JP2008095115A (en) | 2008-04-24 |
Family
ID=39378279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007305706A Pending JP2008095115A (en) | 2001-06-22 | 2007-11-27 | Method for producing resin fine particle, resin fine particle and apparatus for producing resin fine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008095115A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012516901A (en) * | 2009-02-02 | 2012-07-26 | ビーエーエスエフ ソシエタス・ヨーロピア | Polymer production method and reactor used in the production method |
WO2023286822A1 (en) * | 2021-07-16 | 2023-01-19 | 株式会社カネカ | Expandable methyl methacrylate-based resin particles, expanded methyl methacrylate-based resin particles, methyl methacrylate-based resin foam molded article, evaporative pattern, and method for producing expandable methyl methacrylate-based resin particles |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183202A (en) * | 1984-08-23 | 1986-04-26 | ザ ダウ ケミカル カンパニ− | Manufacture of polymer grain of uniform size and apparatus therefor |
JPH02199137A (en) * | 1989-01-30 | 1990-08-07 | Kanegafuchi Chem Ind Co Ltd | Production of expandable thermoplastic polymer particle |
JPH02218408A (en) * | 1989-02-21 | 1990-08-31 | Meidensha Corp | Method for regulating injection rate of flocculant by means of floc measuring device |
JPH02305802A (en) * | 1989-05-22 | 1990-12-19 | Kanegafuchi Chem Ind Co Ltd | Method and apparatus for suspension polymerization |
JPH03169306A (en) * | 1989-11-30 | 1991-07-23 | Meidensha Corp | Apparatus for controlling formation of floc |
JPH03249931A (en) * | 1989-11-16 | 1991-11-07 | Mitsubishi Kasei Corp | Production of oil-in-water type uniform droplets dispersion and method for polymerizing uniform-diameter-polymer beads |
JPH04202501A (en) * | 1990-11-30 | 1992-07-23 | Showa Denko Kk | Production of polymer bead |
JPH05186503A (en) * | 1992-01-14 | 1993-07-27 | Kanegafuchi Chem Ind Co Ltd | Method and device for producing monomer droplet |
JP2000117089A (en) * | 1998-10-19 | 2000-04-25 | Sharp Corp | Production of particulate coated with resin and production device used therefor |
JP2001162147A (en) * | 1999-12-06 | 2001-06-19 | Kao Corp | Device for forming uniform liquid droplet |
-
2007
- 2007-11-27 JP JP2007305706A patent/JP2008095115A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183202A (en) * | 1984-08-23 | 1986-04-26 | ザ ダウ ケミカル カンパニ− | Manufacture of polymer grain of uniform size and apparatus therefor |
JPH02199137A (en) * | 1989-01-30 | 1990-08-07 | Kanegafuchi Chem Ind Co Ltd | Production of expandable thermoplastic polymer particle |
JPH02218408A (en) * | 1989-02-21 | 1990-08-31 | Meidensha Corp | Method for regulating injection rate of flocculant by means of floc measuring device |
JPH02305802A (en) * | 1989-05-22 | 1990-12-19 | Kanegafuchi Chem Ind Co Ltd | Method and apparatus for suspension polymerization |
JPH03249931A (en) * | 1989-11-16 | 1991-11-07 | Mitsubishi Kasei Corp | Production of oil-in-water type uniform droplets dispersion and method for polymerizing uniform-diameter-polymer beads |
JPH03169306A (en) * | 1989-11-30 | 1991-07-23 | Meidensha Corp | Apparatus for controlling formation of floc |
JPH04202501A (en) * | 1990-11-30 | 1992-07-23 | Showa Denko Kk | Production of polymer bead |
JPH05186503A (en) * | 1992-01-14 | 1993-07-27 | Kanegafuchi Chem Ind Co Ltd | Method and device for producing monomer droplet |
JP2000117089A (en) * | 1998-10-19 | 2000-04-25 | Sharp Corp | Production of particulate coated with resin and production device used therefor |
JP2001162147A (en) * | 1999-12-06 | 2001-06-19 | Kao Corp | Device for forming uniform liquid droplet |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012516901A (en) * | 2009-02-02 | 2012-07-26 | ビーエーエスエフ ソシエタス・ヨーロピア | Polymer production method and reactor used in the production method |
WO2023286822A1 (en) * | 2021-07-16 | 2023-01-19 | 株式会社カネカ | Expandable methyl methacrylate-based resin particles, expanded methyl methacrylate-based resin particles, methyl methacrylate-based resin foam molded article, evaporative pattern, and method for producing expandable methyl methacrylate-based resin particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI80278C (en) | FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV POLYMERPARTIKLAR AV LIKA STORLEK. | |
EP0051210B2 (en) | Process for preparing uniform size spheroidal polymer beads | |
JP3635575B2 (en) | Monodisperse resin particle production method and production apparatus | |
EP2661456B1 (en) | Method of producing polymer beads | |
EP4234588A2 (en) | Method of producing uniform, fine polymer beads by vibration jetting | |
JP4070717B2 (en) | Method for producing resin fine particles | |
CN108203514A (en) | The method for producing uniform polymer beads by vibration jet using super-hydrophobic film | |
JP2008095115A (en) | Method for producing resin fine particle, resin fine particle and apparatus for producing resin fine particle | |
WO2009044926A1 (en) | Method and apparatus for regulating particle diameter and particle diameter distribution of emulsified particles in emulsion | |
JPH0710912A (en) | Production of spherical particle | |
JP2021053592A (en) | Manufacturing method of o/w emulsion and manufacturing method of fine particle | |
JP2875389B2 (en) | Method for producing polymer beads | |
WO2016120819A1 (en) | Reverse-phase polymerisation process incorporating a microfluidic device | |
JPH06192305A (en) | Suspension polymerization | |
JP2003252908A (en) | Manufacturing method of hydrophobic liquid drops, their manufacturing apparatus, manufacturing method of polymer beads and their manufacturing apparatus | |
JP2005194425A (en) | Method for producing fine particle and fine particle | |
JP2882669B2 (en) | Method and apparatus for producing polymer fine particles having uniform particle size | |
JP2003170425A (en) | Manufacturing apparatus for resin fine particles and manufacturing method for resin fine particles using the same | |
JP2001026606A (en) | Polymer fine particle and its preparation | |
JP2002080504A (en) | Method for producing resin particle and resin particle | |
JPS5891701A (en) | Continuous suspension polymerization | |
JPH04258601A (en) | Production of polymer bead | |
WO2016120817A1 (en) | Preparation of aqueous solutions or dispersions of polymeric bead products | |
JP2007044654A (en) | Apparatus for preparing liquid droplet | |
MXPA98001692A (en) | Procedure to produce coagulated particles of latex de polim |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20110406 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110628 |
|
A02 | Decision of refusal |
Effective date: 20111108 Free format text: JAPANESE INTERMEDIATE CODE: A02 |