JP4900556B2 - Wastewater treatment plant operation management method - Google Patents
Wastewater treatment plant operation management method Download PDFInfo
- Publication number
- JP4900556B2 JP4900556B2 JP2005262195A JP2005262195A JP4900556B2 JP 4900556 B2 JP4900556 B2 JP 4900556B2 JP 2005262195 A JP2005262195 A JP 2005262195A JP 2005262195 A JP2005262195 A JP 2005262195A JP 4900556 B2 JP4900556 B2 JP 4900556B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- activated sludge
- amount
- concentration
- property
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007726 management method Methods 0.000 title claims description 78
- 238000004065 wastewater treatment Methods 0.000 title claims description 74
- 239000010802 sludge Substances 0.000 claims description 428
- 238000011282 treatment Methods 0.000 claims description 119
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 116
- 238000005273 aeration Methods 0.000 claims description 83
- 238000006243 chemical reaction Methods 0.000 claims description 66
- 230000002776 aggregation Effects 0.000 claims description 54
- 238000005054 agglomeration Methods 0.000 claims description 46
- 239000000126 substance Substances 0.000 claims description 46
- 239000007788 liquid Substances 0.000 claims description 38
- 238000000926 separation method Methods 0.000 claims description 38
- 238000012545 processing Methods 0.000 claims description 34
- 238000005345 coagulation Methods 0.000 claims description 30
- 230000015271 coagulation Effects 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 26
- 238000012544 monitoring process Methods 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 23
- 239000007924 injection Substances 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 22
- 230000007423 decrease Effects 0.000 claims description 21
- 230000003247 decreasing effect Effects 0.000 claims description 19
- 239000003814 drug Substances 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 12
- 229940079593 drug Drugs 0.000 claims description 10
- 230000004520 agglutination Effects 0.000 claims description 3
- 230000018044 dehydration Effects 0.000 claims description 2
- 238000006297 dehydration reaction Methods 0.000 claims description 2
- 238000004062 sedimentation Methods 0.000 description 43
- 238000000034 method Methods 0.000 description 42
- 238000000605 extraction Methods 0.000 description 32
- 239000002002 slurry Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 19
- 230000008569 process Effects 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 12
- 239000005416 organic matter Substances 0.000 description 11
- 238000004090 dissolution Methods 0.000 description 9
- 238000004220 aggregation Methods 0.000 description 8
- 244000005700 microbiome Species 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 238000013019 agitation Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000005189 flocculation Methods 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 5
- 230000016615 flocculation Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000036962 time dependent Effects 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- 206010020710 Hyperphagia Diseases 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- -1 alkalis Substances 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000003977 dairy farming Methods 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- 235000020830 overeating Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000009374 poultry farming Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000007651 self-proliferation Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、各種工場や酪農・養豚・養鶏などの畜産業、養殖漁業、遊戯施設、水族館から排出される産業廃水、鉄道車両や自動車車両、船舶、航空機などの洗浄に用いられた水や搭載水(例えば、冷却水や汚水やバランス/バラスト水)などの排水、ビル、一般家庭、宿泊施設、入浴施設、病院、飲食店、各種学校等の教育施設、運動施設などから排出される生活廃水の水質浄化を目的に設置される凝集処理と活性汚泥処理とを利用した排水処理プラントの運転管理方法に関する。 The present invention relates to various factories, livestock industries such as dairy farming, pig farming, and poultry farming, aquaculture, amusement facilities, industrial wastewater discharged from aquariums, water used for washing railway vehicles, automobile vehicles, ships, aircraft, etc. Wastewater such as water (for example, cooling water, sewage and balance / ballast water), domestic wastewater discharged from buildings, general households, accommodation facilities, bathing facilities, hospitals, restaurants, educational facilities such as schools, exercise facilities, etc. The present invention relates to an operation management method for a wastewater treatment plant that uses coagulation treatment and activated sludge treatment installed for the purpose of water purification.
従来から排水等に含まれている不純物の浄化を行うべく好気性微生物を利用した活性汚泥処理装置が普及している。ここで活性汚泥処理装置は、曝気槽および沈殿槽などの固液分離手段から構成され、好気性微生物の代謝活動を利用し、主として排水等に含まれる有機物を分解処理するもので、有機物の一部はCO2とH2Oに分解されるとともに、その一部は好気性微生物自身の代謝活動や自己増殖に使われる。 Conventionally, activated sludge treatment apparatuses using aerobic microorganisms have been widely used to purify impurities contained in waste water. Here, the activated sludge treatment apparatus is composed of solid-liquid separation means such as an aeration tank and a sedimentation tank, and uses the metabolic activity of aerobic microorganisms to decompose organic substances contained mainly in wastewater and the like. A part is decomposed into CO 2 and H 2 O, and a part thereof is used for metabolic activity and self-proliferation of the aerobic microorganism itself.
このような活性汚泥処理は、前段で凝集処理をした後、活性汚泥処理を行うことも知られている。これは、予め被処理液中の懸濁物質等を凝集処理することによって活性汚泥処理へ持ち込まれる不純物の負荷を減らすために採用される(例えば、特許文献1、2を参照)。
ところで、排水処理プラントにおいて安定した凝集処理を行なうためには、先ず被処理成分に適した凝集剤の選定が必須である。一方、凝集処理に流入する原水の被処理成分濃度は、日々刻々と変化するので、凝集処理に過不足が生じないように薬剤添加量を決定する必要がある。ここで用いられる凝集剤は、専らジャーテストによって凝集に最適な薬剤銘柄や濃度、薬注量が選定される。ちなみに一旦決定した凝集剤や薬注条件は、被処理液の質が著しく変化しない限りほとんど変更されることがない。このため場合によっては、定期的または不定期的に被処理液の質を調査して凝集に最適な添加薬剤や薬注条件を選定し直すこともある。
Such activated sludge treatment is also known to perform activated sludge treatment after coagulation treatment in the previous stage. This is employed in order to reduce the load of impurities brought into the activated sludge process by aggregating suspended substances in the liquid to be treated in advance (see, for example, Patent Documents 1 and 2).
By the way, in order to perform stable flocculation treatment in a wastewater treatment plant, first, selection of a flocculating agent suitable for the component to be treated is essential. On the other hand, since the concentration of components to be treated of raw water flowing into the coagulation process changes every day, it is necessary to determine the amount of added chemical so that the coagulation process does not become excessive or insufficient. As for the flocculant used here, the drug brand, concentration and dosage amount optimal for aggregation are selected exclusively by jar test. Incidentally, the flocculant and the chemical injection conditions once determined are hardly changed unless the quality of the liquid to be treated is remarkably changed. For this reason, in some cases, the quality of the liquid to be treated is periodically or irregularly examined to reselect the optimal additive and chemical injection conditions for aggregation.
この凝集処理における薬剤添加量は、前記ジャーテストで決定した注入量(比率)を基に流入原水量に比例して制御されることが多い。このような凝集処理では、処理水の濁質濃度を計測したり、凝集状態(フロック径やフロック間清澄度)を計測して、これらの計測値を基にフィードバック制御を行って凝集剤添加量を調整することもある。
一方、活性汚泥処理は、流量(原水投入量の設定、沈殿池から曝気槽への汚泥返送流量の決定)、余剰汚泥引抜量、溶存酸素濃度等が管理される。
In many cases, the amount of drug added in the coagulation treatment is controlled in proportion to the amount of raw water flowing in based on the injection amount (ratio) determined in the jar test. In such agglomeration treatment, the turbidity concentration of the treated water is measured, the agglomeration state (floc diameter and inter-floc clarity) is measured, and feedback control is performed based on these measured values to add the amount of flocculant added. May be adjusted.
On the other hand, in the activated sludge treatment, the flow rate (setting of the raw water input amount, determination of the sludge return flow rate from the sedimentation tank to the aeration tank), excess sludge extraction amount, dissolved oxygen concentration, and the like are managed.
まず原水投入量は、排水を受け入れる調整槽や貯槽から原水が溢れない投入量になるよう予め設定される。一方、汚泥の返送流量は、通常、返送比(汚泥返送流量/原水投入流量)がわずかに[1]を超えるように制御することを基本とし、更に沈殿池における汚泥と上澄水の固液分離界面レベルやその変動速度を加味して決定される。具体的には、沈殿池の界面レベルが上昇(下降)するようであれば汚泥返送流量を増やす(減らす)ことが行われる。また該排水処理プラントにおける過去の運転実績における経験値をベースに、活性汚泥処理装置のMLSS濃度を計測し、前日からの増減分を算出するとともに、前記経験値に照らして余剰汚泥引抜量が決定される。
しかしながら、上述した排水処理プラントの運転管理方法は、専ら運転員の経験と勘に頼る方法であった。つまり熟練した運転員に運転管理を委ね、原水流入量調査やMLSS濃度計測、沈殿池の汚泥界面レベルの測定、沈殿沈降性(SV30)等の測定により本日の運転条件を決定したり、時には採取した汚泥を運転員自らが顕微鏡で観察し、その状況によって原水流量を調整したり、排液を投入したり止めたり、といった管理が行われていた。このため運転管理要因に対する具体的な数値指標と管理指標による判断基準がなく、したがって排水処理プラントの自動管理・制御が実現できなかった。 However, the operation management method of the wastewater treatment plant described above is a method that relies exclusively on the experience and intuition of the operator. In other words, the operation management is entrusted to a skilled operator, and today's operating conditions are determined by measuring raw water inflow survey, MLSS concentration measurement, sedimentation basin sludge interface level, sedimentation settling (SV30), etc. The operator himself observed the sludge with a microscope and managed to adjust the flow rate of raw water and to turn on and off the drainage according to the situation. For this reason, there are no specific numerical indexes for operation management factors and judgment criteria based on the management indexes, and therefore automatic management and control of the wastewater treatment plant cannot be realized.
ところで活性汚泥処理では一般に曝気槽で処理が行われた後、後段の沈殿池で処理水と汚泥とが分離される。この沈殿池において処理水と汚泥の分離は、重力による自然沈降に拠っているため、汚泥が十分にフロック化できていないと固液分離性能が低下するという問題がある。これは活性汚泥処理装置の他の一例である一つの処理槽において曝気工程と沈降分離工程を兼用する処理系においても同様の問題を抱える。一方、固液分離手段として、膜分離手段を備え、膜分離によって汚泥と水を分離する場合であっても、汚泥フロックの平均粒子径や粒子径分布によって膜分離性に変化が起こったり、膜を目詰まりさせたりすることが知られている。したがって、汚泥性状は、活性汚泥処理において極めて重要な管理項目である。 By the way, in the activated sludge treatment, after treatment is generally performed in an aeration tank, treated water and sludge are separated in a subsequent sedimentation basin. In this sedimentation basin, the separation of treated water and sludge is based on natural sedimentation due to gravity, and therefore there is a problem that the solid-liquid separation performance is lowered unless the sludge is sufficiently flocked. This also has the same problem in a treatment system that combines an aeration process and a sedimentation separation process in one treatment tank, which is another example of the activated sludge treatment apparatus. On the other hand, even if a membrane separation means is provided as a solid-liquid separation means and sludge and water are separated by membrane separation, the membrane separation performance may change depending on the average particle size or particle size distribution of the sludge floc, It is known to clog. Therefore, the sludge property is a very important management item in the activated sludge treatment.
汚泥フロックは、微生物群の代謝活動によって生成・排出される粘質物によって複数の微生物が集合して形成された状態のものである。しかしながら微生物の性状が悪いと、フロック形成が不完全な状態のままとなる。微生物状態の発生要因と、処理水質悪化の原因を列挙すると概して次のようになる。
〔微生物状態の発生要因〕
(1)分散:原水の有機物濃度が著しく高くなり、処理すべき有機物量(F)と微生物量(M)との比率(F/M比)のバランスが崩れて過食状態となったときに発生する。
(2)解体:原水の有機物濃度が著しく低くなり、F/M比のバランスが崩れて飢餓状態になったときに発生する。もしくは、著しい高温水や強酸、強アルカリ、生物活性を阻害する毒物等が流入したときに発生する。
〔処理水質悪化の原因〕
(1)分散:ほとんど全ての汚泥フロックが一様に小さくなり沈降速度が低下するため、汚泥が処理水と共に系外へ流出しやすい状態にある。このため、処理水質の悪化や原水投入可能水量の低下をきたす。
(2)解体:汚泥が脆弱となり、フロックの一部が脱落したり、文字どおり全体がバラバラに解体したりして、処理水に濁りが発生した状態であり、汚泥の一部が処理水と共に系外へ流出しやすくなる状態にある。このため、処理水質の悪化や原水投入可能水量の低下を招来する。
The sludge floc is a state in which a plurality of microorganisms are aggregated and formed by mucilage produced and discharged by the metabolic activity of the microorganism group. However, if the properties of the microorganism are poor, flock formation remains incomplete. In general, the causes of the microbial state and the causes of the deterioration of treated water are listed as follows.
[Factors causing microbial conditions]
(1) Dispersion: Occurs when the organic matter concentration in the raw water becomes extremely high and the ratio of the amount of organic matter to be treated (F) and the amount of microorganisms (M) (F / M ratio) is lost, resulting in overeating. To do.
(2) Dismantling: Occurs when the organic matter concentration in the raw water becomes extremely low and the balance of the F / M ratio is lost, resulting in starvation. Or it occurs when extremely hot water, strong acid, strong alkali, poisons that inhibit biological activity, etc. flow in.
[Cause of deterioration of treated water quality]
(1) Dispersion: Almost all sludge flocs are uniformly reduced and the sedimentation rate is lowered, so that sludge is likely to flow out of the system together with the treated water. For this reason, the quality of treated water deteriorates and the amount of water that can be fed into the raw water decreases.
(2) Dismantling: Sludge becomes fragile and part of the flocs have dropped off or literally disassembled as a whole, causing turbidity in the treated water. Part of the sludge is treated with the treated water. It is in a state where it tends to flow out. For this reason, the quality of treated water is deteriorated and the amount of water that can be fed into the raw water is reduced.
上記分散汚泥または解体汚泥が発生したときの対処方法は、F/M比を最適化することであり、原水中の有機物濃度、もしくは原水流量を調整するかMLSS濃度を調整してF/M比を最適値にすればよい。
しかしながら原水流量は、通常変更することができない。またMLSS濃度は、余剰汚泥引抜量で調整できるが、その変化させ得る速度は非常に遅い。つまり、余剰汚泥の排出を増大させてMLSS濃度を下げようとした場合、汚泥を脱水処理する脱水機の能力の限界により制限されることがある。
The coping method when the above-mentioned dispersed sludge or demolition sludge is generated is to optimize the F / M ratio. The F / M ratio is adjusted by adjusting the organic matter concentration in the raw water or the raw water flow rate or the MLSS concentration. Should be set to the optimum value.
However, the raw water flow rate cannot usually be changed. The MLSS concentration can be adjusted by the amount of excess sludge withdrawn, but the speed at which it can be changed is very slow. That is, when it is going to reduce the MLSS density | concentration by increasing discharge | emission of excess sludge, it may be restrict | limited by the limit of the capability of the dehydrator which dehydrates sludge.
また逆に汚泥を引抜かない場合には、SRTが長くなることによって菌相が変化し、例えば糸状性バルキングを引き起こすことがある。したがって、MLSS濃度を最適値に調整する手段だけでプラントの変化に追随変化させて調整を図ることが難しいという問題がある。
本発明は、上述した課題を解決するべくなされたもので、その目的とするところは、排水処理プラントにおける活性汚泥の性状を定量的に判定するとともに、この活性汚泥の性状によって迅速かつ適切な対策ができる排水処理プラントの運転管理方法を提供することにある。
On the other hand, when the sludge is not drawn, the microflora may change due to an increase in SRT, which may cause, for example, filamentous bulking. Therefore, there is a problem that it is difficult to make adjustment by following the change of the plant with only means for adjusting the MLSS concentration to the optimum value.
The present invention has been made to solve the above-described problems, and its object is to quantitatively determine the properties of activated sludge in a wastewater treatment plant, and to take quick and appropriate measures depending on the properties of the activated sludge. It is in providing the operation management method of the wastewater treatment plant which can do.
そこで上述した課題を解決するため汚泥フロックの状態を監視しながら、凝集処理と活性汚泥の運転条件をフィードバック制御するために必要とされる技術を列挙すれば、
(A)汚泥フロックの状態監視方法および数値化技術
(B)汚泥フロックの状態にあった対策、すなわち凝集処理の制御および/または活性汚泥側の制御技術
(C)採り得る最適な対策の選定技術
となる。
Therefore, while monitoring the state of the sludge floc in order to solve the above-mentioned problems, enumerating technologies required for feedback control of the operation conditions of the coagulation treatment and activated sludge,
(A) Sludge floc state monitoring method and quantification technology (B) Measures suitable for sludge floc state, ie, control of coagulation treatment and / or activated sludge side control technology (C) Selection technology of optimum measures that can be taken It becomes.
まず(A)の「汚泥フロックの状態監視方法および数値化技術」は、例えば特願2005−23091号の汚泥性状センサに示されるように分散と解体を数値化できる技術が確立されている。また、(B)の「汚泥フロックの状態にあった対策、すなわち凝集処理の制御および/または活性汚泥側の制御技術」としては、
(b1)凝集処理の薬注量制御および/または凝集処理原水の一部,もしくは全量をバイパスして曝気槽に直接流入させる方法、
(b2)余剰汚泥引抜量を制御して、MLSS濃度を調整する方法
などがある。
First, (A) “sludge floc state monitoring method and quantification technique” has been established, for example, as shown in the sludge property sensor of Japanese Patent Application No. 2005-23091. In addition, (B) “Measures in the state of sludge flocs, that is, control of agglomeration and / or control technology on the activated sludge side”
(B1) A method for controlling the chemical injection amount of the coagulation treatment and / or directly flowing into the aeration tank by bypassing a part or all of the coagulation raw water,
(B2) There is a method of adjusting the MLSS concentration by controlling the excess sludge extraction amount.
上記(b2)における余剰汚泥引抜量は、詳細は後述するが活性汚泥処理装置内の汚泥増殖量を監視し、SRTを目安に決定するのがよい。また、MLSS濃度も、同様に後述するSRTを基に管理する方法で決定するのがよい。或いは、特に沈殿池の固液分離能力限界を考慮して、これも後述する1D-flux理論などを利用して求めた目標濃度を限界目安として設定し、制御を行ってもよい。 The amount of surplus sludge withdrawn in (b2) is preferably determined by monitoring the sludge growth amount in the activated sludge treatment apparatus and using SRT as a guide, although details will be described later. Similarly, the MLSS concentration is preferably determined by a method of management based on SRT described later. Alternatively, in consideration of the solid-liquid separation capacity limit of the sedimentation basin in particular, control may be performed by setting a target concentration obtained using a 1D-flux theory, which will be described later, as a limit standard.
一方、(C)の「採り得る最適な対策の選定技術」は、緊急度と即効性を考慮しつつ、プラントに最適な処理を選定する。 On the other hand, (C) “Optimal countermeasure selection technology that can be adopted” selects the optimal treatment for the plant in consideration of urgency and immediate effect .
このような点を踏まえつつ上述した目的を達成するため、本発明の排水処理プラントの運転管理方法は、前段に凝集反応処理装置、および後段に固液分離手段を備えた活性汚泥処理装置を有する排水処理プラントの運転管理方法であって、
前記活性汚泥処理装置における時間当たりの前記活性汚泥の増減量と固液分離手段における汚泥濃縮率とを求めるマスバランス監視手段と、前記活性汚泥処理装置における前記活性汚泥の性状を数値化可能に検出する汚泥性状センサとを備え、
前記マスバランス監視手段が求めた前記活性汚泥処理装置における時間当たりの汚泥の増減量、固液分離手段における汚泥濃縮率および前記汚泥性状センサが検出した活性汚泥の性状情報に従って前記凝集反応装置における薬注量の増減若しくは薬液の濃度変更または薬液の銘柄変更によってCOD成分の増減処理をする前記凝集反応処理装置を制御する制御手段および/または前記凝集反応処理装置に流入する原水の一部または全量を前記活性汚泥処理装置にバイパスさせる原水バイパス制御手段および/または前記活性汚泥処理装置からの余剰汚泥引抜量を制御して活性汚泥処理装置のMLSS濃度を調整するMLSS濃度調整手段を備え、
前記凝集反応処理装置を制御する制御手段、前記原水バイパス処理制御手段、前記MLSS濃度調整手段の少なくとも一つの手段により前記活性汚泥処理装置の負荷を調整して活性汚泥を好ましい性状にすることを特徴としている。
In order to achieve the above-described object in view of such points, the operation management method for a wastewater treatment plant of the present invention has an agglomeration reaction treatment apparatus at the front stage and an activated sludge treatment apparatus provided with a solid-liquid separation means at the rear stage. An operation management method for a wastewater treatment plant,
Mass balance monitoring means for obtaining an increase / decrease amount of the activated sludge per hour in the activated sludge treatment apparatus and a sludge concentration rate in the solid-liquid separation means, and detecting the property of the activated sludge in the activated sludge treatment apparatus in a numerical manner A sludge property sensor that
The amount of sludge increased / decreased per hour in the activated sludge treatment device determined by the mass balance monitoring means, the sludge concentration rate in the solid / liquid separation means, and the activated sludge property information detected by the sludge property sensor, Control means for controlling the agglomeration reaction processing device for increasing / decreasing the COD component by changing the injection amount, changing the concentration of the chemical solution, or changing the brand of the chemical solution and / or a part or all of the raw water flowing into the agglomeration reaction processing device Raw water bypass control means for bypassing the activated sludge treatment device and / or MLSS concentration adjusting means for adjusting the MLSS concentration of the activated sludge treatment device by controlling the amount of excess sludge withdrawn from the activated sludge treatment device,
Adjusting the load of the activated sludge treatment apparatus by at least one of the control means for controlling the agglomeration reaction treatment apparatus, the raw water bypass treatment control means, and the MLSS concentration adjusting means to make the activated sludge have a preferable property. It is said.
好ましくは上記排水処理プラントの運転管理方法は、更に固液分離手段の限界能力を1D−flux理論を利用して定義することが望ましい。つまり、MLSS濃度調整手段は、固液分離手段の固液分離性能における限界能力を計算し、計算した結果に基づき活性汚泥処理装置のMLSS濃度の制御目標値を定め、制御目標値に応じて活性汚泥処理装置からの余剰汚泥引抜量を制御するものであることが望ましい。
したがって上述の排水処理プラントの運転管理方法は、系内汚泥の時間当たりの増減量を求めているので、余剰汚泥引抜量の目安がわかるとともに、MLSS濃度の目標値となるように余剰汚泥引抜量とMLSS濃度調整を制御できる。
Preferably, in the operation management method of the wastewater treatment plant, it is desirable to further define the limit capability of the solid-liquid separation means using 1D-flux theory. That is, the MLSS concentration adjusting means calculates the limit capability in the solid-liquid separation performance of the solid-liquid separation means, determines the control target value of the MLSS concentration of the activated sludge treatment apparatus based on the calculated result, and activates according to the control target value. It is desirable to control the amount of excess sludge withdrawn from the sludge treatment apparatus.
Therefore, since the operation management method of the above-mentioned wastewater treatment plant calculates the amount of increase / decrease per hour of the sludge in the system, the amount of surplus sludge extraction can be understood so that the guideline of the excess sludge extraction amount is obtained and the target value of the MLSS concentration is obtained. And MLSS concentration adjustment can be controlled.
また本発明の排水処理プラントの運転管理方法は、凝集反応処理装置、固液分離手段を備えた活性汚泥処理装置および余剰汚泥濃縮脱水用の脱水機が前段から後段へと順に配設された排水処理プラントの運転管理方法であって、
前記活性汚泥処理装置における時間当たりの汚泥の増減量と前記固液分離手段における汚泥濃縮率とを求めるマスバランス監視手段と、前記活性汚泥処理装置における活性汚泥の性状を数値化可能に検出する汚泥性状センサと、前記脱水機が処理する汚泥の脱水における余剰処理能力を検出する脱水機能力監視手段とを備え、
前記マスバランス監視手段が求めた前記活性汚泥処理装置内における時間当たりの活性汚泥の増減量と前記固液分離手段における汚泥濃縮率、前記汚泥性状センサが検出した前記活性汚泥の性状変化および前記脱水機能力監視手段が検出した前記脱水機の余剰処理能力から薬注量の増減若しくは薬液の濃度変更または薬液の銘柄変更によってCOD成分の増減処理をする前記凝集反応処理装置を制御する制御手段および/または前記凝集反応処理装置に流入する原水の一部または全量を前記活性汚泥処理装置にバイパスさせる原水バイパス制御手段および/または前記活性汚泥処理装置からの余剰汚泥引抜量を制御して活性汚泥処理装置のMLSS濃度を調整するMLSS濃度調整手段を備え、
前記凝集反応処理装置を制御する制御手段、前記原水バイパス処理制御手段、前記MLSS濃度調整手段の少なくとも一つの手段により前記活性汚泥処理装置の負荷を調整して該活性汚泥を好ましい性状にすることを特徴としている。
Further, the operation management method for the wastewater treatment plant of the present invention comprises a coagulation reaction treatment device, an activated sludge treatment device equipped with a solid-liquid separation means, and a dewatering device for surplus sludge concentration and dewatering arranged in order from the front stage to the rear stage. A processing plant operation management method comprising:
Wherein a mass balance monitoring means for determining a sludge concentration rate increase or decrease the amount of sludge per hour in activated sludge treatment apparatus and in the solid-liquid separation means, the sludge for detecting the properties of the activated sludge in the activated sludge treatment apparatus to be quantified A property sensor and a dehydrating function monitoring means for detecting surplus processing capacity in the dewatering of sludge processed by the dehydrator,
Increase / decrease amount of activated sludge per hour in the activated sludge treatment device obtained by the mass balance monitoring means, sludge concentration rate in the solid-liquid separation means, property change of the activated sludge detected by the sludge property sensor and the dehydration Control means for controlling the agglomeration reaction processing apparatus for increasing / decreasing the COD component by increasing / decreasing the drug injection amount, changing the concentration of the chemical solution, or changing the brand of the chemical solution from the surplus processing capacity of the dehydrator detected by the functional force monitoring means, and / or Alternatively, a raw water bypass control means for bypassing part or all of the raw water flowing into the agglomeration reaction treatment device to the activated sludge treatment device and / or an activated sludge treatment device by controlling the amount of excess sludge withdrawn from the activated sludge treatment device MLSS concentration adjusting means for adjusting the MLSS concentration of
Adjusting the load of the activated sludge treatment device by at least one of the control means for controlling the agglomeration reaction treatment apparatus, the raw water bypass treatment control means, and the MLSS concentration adjusting means to make the activated sludge have a preferable property. It is a feature.
したがって上述の排水処理プラントの運転管理方法は、脱水機の余剰能力を超えない範囲で活性汚泥処理装置に流入する原水中の不純物濃度の管理ができ、凝集処理の管理目標が設定できる。
好ましくは前述の排水処理プラントの運転管理方法は、更に前記活性汚泥処理装置における散気装置の余剰能力を検出する散気余剰能力検出手段と、散気装置が消費した電力を検出して該散気装置の電力消費効率を求める消費電力検出手段とを備え、
前記凝集反応処理装置を制御する制御手段は、更に前記散気余剰能力検出手段が検出した前記散気装置の余剰能力および前記消費電力検出手段が求めた前記散気装置の電力消費効率から薬注量の増減若しくは薬液の濃度変更または薬液の銘柄変更によってCOD成分の増減処理をすることを特徴としている。
Therefore, the operation management method of the above-described wastewater treatment plant can manage the concentration of impurities in the raw water flowing into the activated sludge treatment apparatus within the range not exceeding the surplus capacity of the dehydrator, and can set the management target of the coagulation treatment.
Preferably, the operation management method of the wastewater treatment plant described above further includes a diffused surplus capacity detecting means for detecting surplus capacity of the diffuser in the activated sludge treatment apparatus, and detecting the power consumed by the diffuser and Power consumption detection means for determining the power consumption efficiency of the air device,
The control means for controlling the agglomeration reaction processing apparatus is a medicine injection from the surplus capacity of the aeration apparatus detected by the aeration surplus capacity detection means and the power consumption efficiency of the aeration apparatus determined by the power consumption detection means. The COD component is increased or decreased by increasing or decreasing the amount, changing the concentration of the chemical, or changing the brand of the chemical.
したがって上述の排水処理プラントの運転管理方法は、散気装置の消費電力を監視し、電力消費効率を数値化してプラントの余裕度(余裕能力)を評価することで、曝気槽中の活性汚泥に有機物負荷を現時点より更にかけられるか否かの判断ができ、凝集処理の目標管理または原水流入制限管理ができる。
尚、ここで好ましい性状とは、汚泥が分散状態でも解体状態でもない正常な状態にあることをいう。
Therefore, the operation management method of the above-mentioned wastewater treatment plant monitors the power consumption of the air diffuser, evaluates the power margin efficiency (margin capacity) by quantifying the power consumption efficiency, and thereby the activated sludge in the aeration tank. It can be determined whether or not the organic load can be further applied from the present time, and the target management of the coagulation treatment or the raw water inflow restriction management can be performed.
Here, the preferable property means that the sludge is in a normal state that is neither dispersed nor dismantled.
本発明の請求項1〜4に記載の排水処理プラントの運転管理方法によれば、凝集反応処理装置を制御する制御手段によるCOD成分の増減処理および/または原水流入手段による原水のバイパス処理制御を実施して活性汚泥を好ましい性状に制御しているので、前記活性汚泥処理装置に流入する有機物量を調整してBOD汚泥負荷を最適化することによって、活性汚泥の分散状態または解体状態から好ましい性状に回復させることができる。 According to the operation management method for a wastewater treatment plant according to claims 1 to 4 of the present invention, the COD component increase / decrease process by the control means for controlling the coagulation reaction treatment apparatus and / or the raw water bypass process control by the raw water inflow means. Since the activated sludge is controlled to have a preferable property, the amount of organic matter flowing into the activated sludge treatment apparatus is adjusted to optimize the BOD sludge load, thereby improving the preferable property from the dispersed state or the dismantled state of the activated sludge. Can be recovered.
また上述の排水処理プラントの運転管理方法は、系内汚泥の時間当たりの活性汚泥増減量を求めているので、時間当たりまたは一日当たりの余剰汚泥引抜量の目安がわかる。また、曝気槽のMLSS濃度が目標値となるように余剰汚泥引抜量で調整を制御することが可能である。
一方、排水処理プラントの運転管理方法は、脱水機の余剰能力を数値化して制御しているので脱水機の余剰能力を超えない範囲で活性汚泥流入原水中の不純物濃度の管理ができ、凝集処理の管理目標を設定することが可能である。
Moreover, since the operation management method of the above-mentioned wastewater treatment plant calculates | requires the activated sludge increase / decrease amount per time of system sludge, the standard of the excess sludge extraction amount per hour or per day is known. Moreover, it is possible to control the adjustment with the excess sludge extraction amount so that the MLSS concentration in the aeration tank becomes a target value.
On the other hand, the operation management method of the wastewater treatment plant controls the concentration of impurities in the activated sludge inflow raw water within the range not exceeding the excess capacity of the dehydrator because the surplus capacity of the dehydrator is numerically controlled. It is possible to set management goals.
或いは、上述の排水処理プラントの運転管理方法は、散気装置の消費電力を監視して電力消費効率を数値化してプラントの余裕度(余裕能力)を評価しているので、活性汚泥に有機物負荷をかけられるか否かの判断ができ、凝集処理の目標管理または原水流入制限管理ができるという優れた効果を奏し得る。 Or, since the operation management method of the above-mentioned wastewater treatment plant monitors the power consumption of the air diffuser and digitizes the power consumption efficiency to evaluate the margin (capacity) of the plant, the activated sludge is loaded with organic matter. It is possible to determine whether or not it is possible to perform the target management of the coagulation treatment or the raw water inflow restriction management.
以下、本発明の実施の第一の実施形態に係る排水処理プラントの運転管理方法について図面を参照しながら説明する。図1は、本発明の排水処理プラントの運転管理方法が適用される排水処理プラントの一例を示す概略構成図である。この図において1は、排水処理対象の原水を受け入れるとともに、注入した凝集剤と撹拌されて原水に含まれる懸濁物と凝集反応を起こさせる凝集反応処理槽である。この凝集反応処理槽1で凝集剤と撹拌された原水は、凝集沈殿槽2に送られる(本発明では、凝集反応処理槽と凝集沈殿槽とを凝集反応処理装置という)。この凝集沈殿槽2の下方には、凝集反応によって生成された懸濁物が沈殿する一方、凝集沈殿槽2の上方には、上澄水が得られる。この上澄水は、後段の処理工程に送るべく一時的に保管するリザーバタンク3に送られる。
Hereinafter, an operation management method for a wastewater treatment plant according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an example of a wastewater treatment plant to which the operation management method for a wastewater treatment plant of the present invention is applied. In this figure, reference numeral 1 denotes a coagulation reaction treatment tank that receives raw water to be drained and is agitated with the injected coagulant to cause a coagulation reaction with a suspension contained in the raw water. The raw water stirred with the coagulant in the coagulation reaction treatment tank 1 is sent to the coagulation sedimentation tank 2 (in the present invention, the coagulation reaction treatment tank and the coagulation precipitation tank are referred to as an aggregation reaction treatment apparatus). Suspension produced by the coagulation reaction is precipitated below the
リザーバタンク3に保持された原水は、ポンプ4によって次段の活性汚泥処理装置の曝気槽5に送られる。曝気槽5の底方には、散気管5aが設けられてブロワー5bによって空気が送り込まれる。この曝気槽5には、活性汚泥が保持され、活性汚泥の化学的活動によって原水に含まれる有機物がH2OとCO2とに分解される。次いで混合液は、上澄水と汚泥とに分離する次段の固液分離手段としての沈殿池6に送られる。沈殿池6の上澄水は、処理水として排水される一方、この沈殿池6の下方に貯まった汚泥は、ポンプ6aによって沈殿池6から排出され、一部は返送汚泥として再び曝気槽5に送られ、残余は余剰汚泥となって系外に取り出される。
The raw water held in the reservoir tank 3 is sent by the pump 4 to the
また、凝集反応処理槽1と曝気槽5との間には、後述するプラント制御装置10の指令によって凝集反応処理槽1に投入される原水の一部を曝気槽5にバイパスするバイパス弁9a、バイパス管9bおよび流路開閉弁9cを備えて構成される。
尚、凝集沈殿槽2からの沈殿物および沈殿池6からの余剰汚泥は、高分子脱水剤と混合され、脱水機7にてそれぞれに含まれる水分が脱水処理されて脱水ケーキとなる。
Further, between the agglomeration reaction treatment tank 1 and the
The sediment from the
また曝気槽5には、槽内の活性汚泥の性状を検出する汚泥性状センサ8が設けられている。この汚泥性状センサ8は、例えば特願2005−23091号に記載される汚泥性状センサであって、曝気槽5からの汚泥サンプリングポンプ8bによって汲み上げられた被計測汚泥を収容する計測槽8a中の活性汚泥スラリーの水面直下に位置付けられて、この活性汚泥スラリーの濃度と粒子径に応じた検出信号を出力するようになっている。この汚泥性状センサ8が出力する検出信号は、計測槽8a中において、活性汚泥スラリーを自然沈降させたときの濃度と粒子径の経時変化を捉える経時変化検出手段10aと、この経時変化検出手段が捉えた活性汚泥スラリーの濃度と粒子径の経時変化から該活性汚泥スラリーに含まれる活性汚泥の性状を判定する汚泥性状判定手段10b、この汚泥性状判定手段10bが判定した活性汚泥の性状によってプラントにおける汚泥性状を好ましい性状に制御する制御部10cとを備えるプラント制御装置10に与えられる。
The
制御部10cは、図2に示すように汚泥性状センサ8が検出した活性汚泥の性状から薬注量の増減若しくは薬液の濃度変更または薬液の銘柄変更によってCOD成分の増減処理をする凝集反応処理装置を制御する凝集反応処理装置制御手段100、凝集反応処理槽1に流入する原水の一部または全量を曝気槽5にバイパスさせる原水バイパス制御手段101、沈殿池6から脱水機7に移送される余剰汚泥引抜量を制御して曝気槽5のMLSS濃度を調整するMLSS濃度調整手段102、排水処理プラント系内における時間当たりの活性汚泥の増減量と沈殿池6における汚泥濃縮率とを求めるマスバランス監視手段103、脱水機7が処理する汚泥の脱水における余剰処理能力を検出する脱水機能力監視手段104、曝気槽5における散気装置の余剰能力を検出する散気余剰能力検出手段105、散気装置が消費した電力を検出して該散気装置の電力消費効率を求める消費電力検出手段106、マスバランス監視手段103が検出した排水処理系内における時間当たりの汚泥の増減量と沈殿池6における汚泥濃縮率、汚泥性状センサ8が検出した活性汚泥の性状変化、前記脱水機能力監視手段104が検出した前記脱水機の余剰処理能力、散気余剰能力検出手段105が検出した前記散気装置の余剰能力および消費電力検出手段106が求めた前記散気装置の電力消費効率から薬注量の増減若しくは薬液の濃度変更または薬液の銘柄変更によってCOD成分の増減処理を制御できる凝集反応処理装置の制御を補正する凝集反応処理補正制御手段107を備えている。
As shown in FIG. 2, the
また経時変化検出手段10aは、汚泥性状センサ8の検出データから計測槽8a内の活性汚泥スラリーが沈降して堆積する活性汚泥の経時変化を検出する。そして汚泥性状判定手段10bは、経時変化検出手段10aが検出した活性汚泥の経時変化から活性汚泥スラリーに含まれる活性汚泥の性状を判定するようになっている。具体的に汚泥性状判定は、図10に示すフローチャートに基づき行われる。
The temporal change detection means 10a detects the temporal change of the activated sludge in which the activated sludge slurry in the
汚泥性状判定は、まず計測槽8aに収容された活性汚泥スラリーを所定の手段により均一になるように撹拌したとき、または撹拌直後、汚泥性状センサ8として例えば前述した特願2005−23091号に記載される汚泥性状センサ(散乱光センサ)から出力される検出信号を用いて活性汚泥スラリーの初期濃度情報S0および初期粒子径情報N0を検出する[ステップS100]。次いで、これらの情報を受けて活性汚泥スラリーに含まれる活性汚泥の性状を判定する汚泥性状判定手段10bは、初期濃度情報S0が所定の濃度レベルC1未満かどうかを判定する[ステップS101]。このとき汚泥性状判定手段10bは、[C1>S0]であると判定したとき活性汚泥スラリーの濃度が計測範囲外にあると判定する[ステップS102]。すなわち汚泥性状判定手段10bは、希釈不良であると判定する。
The sludge property determination is described in, for example, Japanese Patent Application No. 2005-23091 described above as the sludge property sensor 8 when the activated sludge slurry accommodated in the
一方、ステップS101で経時変化検出手段10aは、汚泥性状判定手段10bが[C1≧S0]であると判定したとき、所定時間経過後、汚泥性状センサ8から出力される検出信号から計測槽8a内における活性汚泥スラリーの濃度情報Stおよび粒子径情報Ntを検出する[ステップS103]。次いで経時変化検出手段10aは、初期濃度情報S0から所定時間経過後の濃度情報Stとの差[S0−St]を求める一方、汚泥性状判定手段10bは、この値が所定の濃度レベルC2(ただし、C2>C1)より大きいかどうかを調べる[ステップS104]。
On the other hand, when the sludge
ステップS104で汚泥性状判定手段10bは、所定の濃度レベルC2より大きいと判定したとき、更に初期濃度情報S0から所定時間経過後の濃度情報Stとの差[S0−St]が所定の濃度レベルC3(ただし、C3>C2)以上あるかどうかを調べる[ステップS105]。汚泥性状判定手段10bは、ステップS105で所定の濃度レベルC3以上あると判定したとき、活性汚泥スラリーに含まれる活性汚泥が好ましい性状にあると判定する[ステップS106]。
Sludge
一方、ステップS104で汚泥性状判定手段10bは、初期濃度情報S0から所定時間経過後の濃度情報Stとの差[S0−St]が所定の濃度レベルC2以下であると判定したとき、更にステップS100で検出した初期粒子径情報N0と、ステップS103で検出した粒子径情報Ntとの差[N0−Nt]を求め、求めた値が0以上であるかどうかを調べる[ステップS8]。次いで汚泥性状判定手段10bは、ステップS107で[N0−Nt]が0以上であると判定したとき、更に初期粒子径情報N0が所定の粒子径C4以下であるかを判定し[ステップS108]、[N0≦C4]と判定したとき活性汚泥スラリーに含まれる活性汚泥の性状が分散汚泥であると判定する[ステップS109]。
On the other hand, the sludge
他方、汚泥性状判定手段10bはステップS107で、ステップS4で検出した粒子径情報Ntとの差[N0−Nt]が0未満であるとき散乱光センサに汚れ、藻、汚泥の固まり、その他固形物等の異物が付着したと判定する[ステップS110]。
また、ステップS108で汚泥性状判定手段10bは、初期粒子径情報N0が所定の粒子径C4未満であると判定したとき、活性汚泥スラリーに糸状性バルキングまたは粘質性バルキングの発生、その他の異常が発生したものと判定する[ステップS111]。
On the other hand, the sludge property determining means 10b in step S107, dirt scattered light sensor when the difference [N 0 -N t] is less than 0 and particle size information N t detected in step S4, algae, sludge mass, It is determined that other foreign matter such as solid matter has adhered [step S110].
Also, sludge
一方、汚泥性状判定手段10bは、ステップS105で、期濃度情報S0から所定時間経過後の濃度情報Stとの差[S0−St]が所定の濃度レベルC3以下であると判定したとき、更にステップS1で検出した初期粒子径情報N0と、ステップS103で検出した粒子径情報Ntとの差[N0−Nt]を求め、求めた値が0以上であるかどうかを調べる[ステップS112]。汚泥性状判定手段10bは、このステップS112で[N0−Nt]が0以上であると判定したとき、活性汚泥スラリーに含まれる活性汚泥の性状が解体汚泥であると判定する[ステップS113]一方、[N0−Nt]が0未満であると判定したとき汚泥性状センサ8に気泡等の異物が付着して計測不能状態にあると判定する[ステップS114]。
On the other hand, the sludge
ところで分散状態にある汚泥は、全体の粒子径が小さいため終末沈降速度が小さく、したがって自然沈降させても汚泥堆積層を形成せず、堆積層と水層との境界が現れない状態にある。一方、解体状態にある汚泥は、活性汚泥スラリーに含まれるフロック形成力を有する大きな粒子径の汚泥群が存在する。このため、この解体汚泥を含む活性汚泥スラリーを例えば容器内で均一に撹拌したのち静置すると時間の経過とともに容器の底部に汚泥が沈降して堆積し、汚泥堆積層を形成する一方、フロックが解体して発生した小さな粒子は沈降することができず、このため上澄水となるべき水層には濁りが発生した状態になる。他方、好ましい性状の活性汚泥は、所定の容器に入れた活性汚泥スラリーを均一に撹拌した後、所定時間放置すると容器内の活性汚泥スラリーが堆積層と上澄水とに分離する。 By the way, sludge in a dispersed state has a low terminal sedimentation speed because of its small particle size, and therefore, even if it is naturally settled, a sludge accumulation layer is not formed, and a boundary between the accumulation layer and the water layer does not appear. On the other hand, sludge in a dismantled state has a sludge group with a large particle diameter having floc-forming power contained in the activated sludge slurry. For this reason, when the activated sludge slurry containing this dismantled sludge is stirred uniformly in a container and then allowed to stand, for example, the sludge settles and accumulates at the bottom of the container with the passage of time, forming a sludge accumulation layer, Small particles generated by dismantling cannot settle, and the water layer that should become the supernatant water becomes turbid. On the other hand, the activated sludge having a preferable property is obtained by uniformly stirring the activated sludge slurry contained in a predetermined container and then leaving it for a predetermined time, so that the activated sludge slurry in the container is separated into a deposited layer and a supernatant water.
さて、このようなプラント制御装置10を用いた本発明の第一の実施形態に係る排水処理プラントの運転管理方法は、プラント制御装置10によって活性汚泥プロセスにおける活性汚泥の性状(分散汚泥、解体汚泥または正常汚泥)を数値化して評価するものである。
具体的に分散汚泥の場合は、凝集反応処理槽1の凝集反応を最適化させ、曝気槽5中の活性汚泥への有機物持込みを最低限に抑える必要がある。このため、凝集反応処理槽1への凝集剤の薬注量を増大させるか薬剤銘柄を再選定し、効果的なものに変更すればよい。
Now, the operation management method of the wastewater treatment plant according to the first embodiment of the present invention using such a
Specifically, in the case of dispersed sludge, it is necessary to optimize the agglomeration reaction in the agglomeration reaction treatment tank 1 and to minimize the bringing of organic substances into the activated sludge in the
まず薬注量を増大させるには、薬注ポンプP1の吐出量を上げるか薬剤濃度を高くすればよい。また、原水中の基質(有機物の成分)の変化があった場合は、ジャーテストを行なって効果的な薬剤を選定して変更すればよい。そして、プラント制御装置10が出力する活性汚泥が好ましい性状(正常汚泥)になるまで調整を続け、凝集反応処理槽1の凝集反応が最適になる凝集剤の薬注量並びに薬剤銘柄を選定し、これを新しい運転条件として設定する。
First, in order to increase the amount of drug injection, the discharge amount of the drug injection pump P1 may be increased or the drug concentration may be increased. In addition, if there is a change in the substrate (organic component) in the raw water, a jar test is performed to select and change an effective drug. Then, the adjustment is continued until the activated sludge output from the
一方、解体汚泥の場合、原水の一部もしくは全量を凝集反応処理槽1を介さずに一時的に曝気槽5に直接流入させる。
或いは、凝集剤として、特に有機物吸着物質(COD低減剤)を単独または併用している場合には、この添加量を一時停止するか、添加量を減らし、凝集処理水の有機物濃度を上昇させて、曝気槽5に流入させる。そしてプラント制御装置10が出力する活性汚泥が好ましい性状になるまで調整を続ける。このようにして活性汚泥が好ましい性状になったときの凝集剤の添加量および曝気槽5への原水バイパス量を新しい運転条件として設定する。
On the other hand, in the case of demolition sludge, a part or all of the raw water is temporarily directly introduced into the
Alternatively, particularly when an organic substance adsorbing substance (COD reducing agent) is used alone or in combination as a flocculant, this addition amount is temporarily stopped or the addition amount is reduced to increase the organic concentration of the agglomerated water. , Flow into the
尚、上述の操作を実施した場合、汚泥のSRTの1/2の時間を経過しても効果が現れないときは、バイパス弁9aを開き、バイパス管9bを介して原水の曝気槽5へのバイパス量を増大させる処理および/または薬注ポンプP1の駆動を制御して凝集剤添加量を減らす処理を検討し、プラント制御装置10が出力する活性汚泥が好ましい性状になるまで調整を繰り返す。
In addition, when the above-mentioned operation is carried out, if the effect does not appear even after ½ time of sludge SRT has elapsed, the
かくして本発明の第一の実施形態に係る排水処理プラントの運転管理方法は、上述した操作によって、汚泥が分散状態にあるときは凝集反応処理槽1の凝集反応が最適になる凝集剤の薬注量並びに薬剤銘柄を選定する一方、解体状態にあるときは、凝集剤の添加量および曝気槽5への原水バイパス量を制御して曝気槽5に流入する有機物量を調整し、BOD汚泥負荷を最適化しているので活性汚泥の分散状態または解体状態から好ましい性状への回復を図ることができる。
Thus, according to the operation management method of the wastewater treatment plant according to the first embodiment of the present invention, when the sludge is in a dispersed state by the above-described operation, the flocculant chemical injection that optimizes the flocculation reaction in the flocculation reaction treatment tank 1 is performed. While the amount and drug brand are selected, when in the dismantled state, the amount of organic substances flowing into the
次に本発明の第二の実施形態に係る排水処理プラントの運転管理方法について説明する。この実施形態が上述した第一の実施形態と異なる所は、第一の実施形態に加えて余剰汚泥引抜量の制御を加味した点にある。
まず分散汚泥の場合は、上述したように凝集反応処理における薬注量を増大させるか、余剰汚泥引抜量を低減させればよい。つまり、凝集反応処理において薬注量を増大させて凝集反応を最適化させ、曝気槽5への有機物持込みを最低限に抑えることと、余剰汚泥引抜量を低減させ、曝気槽5のMLSS濃度を増大させてBOD汚泥負荷を下げて活性汚泥の好ましい性状を維持するよう制御すれば適切な排水処理プラントの運転管理ができる。
Next, the operation management method for the wastewater treatment plant according to the second embodiment of the present invention will be described. This embodiment is different from the first embodiment described above in that the control of the excess sludge extraction amount is taken into consideration in addition to the first embodiment.
First, in the case of dispersed sludge, as described above, the chemical injection amount in the coagulation reaction process may be increased, or the excess sludge extraction amount may be reduced. That is, in the agglomeration reaction process, the amount of chemical injection is increased to optimize the agglomeration reaction, to minimize the amount of organic matter brought into the
しかしながら上述の凝集反応処理における薬注量の増大は、即効性がある一方、余剰汚泥引抜量の低減によるMLSS濃度の調整は、最適条件となるまで時間がかかる。したがって、まず凝集反応処理における薬注量の増大を行って汚泥の改善を図り、次いで余剰汚泥引抜量を低減するように調整する。そうして最終的に、プラント制御装置10が出力する活性汚泥が好ましい性状になるまで余剰汚泥引抜量を低減の調整・制御を繰り返せばよい。
However, while the increase in the amount of chemical injection in the above-described agglomeration reaction treatment is immediate, the adjustment of the MLSS concentration by reducing the excess sludge extraction amount takes time until the optimum condition is reached. Therefore, the amount of chemical injection in the coagulation reaction treatment is first increased to improve the sludge, and then adjusted so as to reduce the excess sludge extraction amount. Then, finally, adjustment and control for reducing the amount of excess sludge withdrawing may be repeated until the activated sludge output from the
次に解体汚泥の場合、凝集剤の添加量を減らすか、一時的に薬液を停止させて凝集処理水の有機物濃度を上昇させて曝気槽5に流入させるかして、原水の一部または全量を直接曝気槽5に流入させれば適切な排水処理プラントの運転管理を行うことができる。
この方法について具体的な例を挙げれば、設計段階における凝集反応処理槽1の原水BODが10000mg/L、凝集反応処理槽1の処理水BODが1000mg/Lであった場合、次に示すように制御が行われる。
Next, in the case of dismantled sludge, the amount of flocculant added is reduced, or the chemical solution is temporarily stopped to increase the organic matter concentration of the agglomerated treated water and flow into the
As a specific example of this method, when the raw water BOD of the agglomeration reaction treatment tank 1 at the design stage is 10000 mg / L and the treated water BOD of the agglomeration reaction treatment tank 1 is 1000 mg / L, as shown below Control is performed.
まず凝集反応処理槽1に流入する原水水量の制御として例えば原水全量の1/10を曝気槽に直接流入させる一方、残りの原水(9/10)を凝集反応処理槽1に通し、この処理水を曝気槽5に流入させる(24時間連続)。すると本来の負荷は、
1000[kg/m3]×y[m3/日]
であるが、本実施形態の場合のかけられる負荷は、
10000[kg/m3]×1/10y[m3/日]
+1000[kg/m3]×9/10y[m3/日]
=1900[kg/m3]×y[m3/日]
となる。即ち、対策前の1.9倍の負荷をかけることができる。
First, as a control of the amount of raw water flowing into the agglomeration reaction treatment tank 1, for example, 1/10 of the total amount of raw water is directly introduced into the aeration tank, while the remaining raw water (9/10) is passed through the agglomeration reaction treatment tank 1, Is allowed to flow into the aeration tank 5 (continuous for 24 hours). Then the original load is
1000 [kg / m 3 ] × y [m 3 / day]
However, the load applied in this embodiment is
10000 [kg / m 3 ] × 1/10 y [m 3 / day]
+1000 [kg / m 3 ] × 9/10 y [m 3 / day]
= 1900 [kg / m 3 ] × y [m 3 / day]
It becomes. That is, a load 1.9 times that before the countermeasure can be applied.
次に原水の1倍量を1時間、曝気槽5に直接流入させる。そして残りの23時間を凝集反応処理槽1の処理水を曝気槽5に流入させる。すると本来の負荷は、
1000[kg/m3]×y[m3/日]
であるが、本実施形態の場合のかけられる負荷は、
10000[kg/m3]×1/24y[m3/日]
+1000[kg/m3]×23/24y[m3/日]
=1750[kg/m3]×y[m3/日]
となる。即ち、対策前の1.75倍の負荷をかけることができる。
Next, 1 times the amount of raw water is allowed to flow directly into the
1000 [kg / m 3 ] × y [m 3 / day]
However, the load applied in this embodiment is
10,000 [kg / m 3 ] × 1 / 24y [m 3 / day]
+1000 [kg / m 3 ] × 23 / 24y [m 3 / day]
= 1750 [kg / m 3 ] × y [m 3 / day]
It becomes. That is, a load 1.75 times before the countermeasure can be applied.
次に凝集反応処理槽1の制御について説明する。この制御は、凝集剤の添加量を減らすか、間欠的に薬液供給を停止することで凝集処理水の有機物濃度を上昇させて曝気槽5に流入させるものである。更にプラント制御装置10は、余剰汚泥引抜量を増大させて曝気槽5のMLSS濃度を低減し、BOD汚泥負荷を上げることにより最適値に制御する。
或いはプラント制御装置10は、上述した薬注ポンプP1の駆動を制御して凝集反応処理槽1に投入する薬注量の増加或いはバイパス管9bを介して原水の曝気槽5へのバイパス量を増大させる処理および余剰汚泥引抜量の増大のうち、少なくとも一つの制御を行い活性汚泥が好ましい性状になるまで調整を繰り返す。
Next, control of the agglomeration reaction treatment tank 1 will be described. This control is to reduce the amount of the flocculant added or intermittently stop the supply of the chemical solution to increase the organic matter concentration of the agglomerated treated water and flow it into the
Alternatively, the
次いでプラント制御装置10は、凝集反応処理槽1の薬注量を適正化して処理を正常に戻し、プラント制御装置10が出力する活性汚泥の性状を監視しながら余剰汚泥引抜量の増大の制御を続けて、MLSS濃度を適正化させる。
具体的に上述した第二の実施形態に係る排水処理プラントの運転管理方法は、図3および図4に示すフローチャートの手順に従って実施される。これは上述した汚泥性状センサ8の計測結果を用いた排水処理プラントの運転管理方法の一例である。
Next, the
The operation management method of the wastewater treatment plant according to the second embodiment specifically described above is performed according to the procedure of the flowcharts shown in FIGS. 3 and 4. This is an example of the operation management method of the wastewater treatment plant using the measurement result of the sludge property sensor 8 described above.
この排水処理プラントの運転管理方法は、該運転管理方法が適用される排水プラントのプラント制御装置10が備える汚泥性状センサ8の検出結果から活性汚泥の性状判定を行う[ステップS1]。この活性汚泥の性状判定は、前述したように活性汚泥の性状が正常汚泥か、分散汚泥であるか或いは、解体汚泥であるかを判定するものである。プラント制御装置10は、ステップS1で活性汚泥の性状が分散汚泥または解体汚泥の何れでもない場合、正常汚泥として以後の処理を行わない。
In the operation management method of the wastewater treatment plant, the activated sludge property is determined from the detection result of the sludge property sensor 8 provided in the
次にステップS1で活性汚泥の性状が分散汚泥であると判定されたとき、プラント制御装置10は、汚泥センサが出力した活性汚泥の性状を所定のレベル付け(例えば5段階評価)をして検出データの数値化を行う[ステップS2]。この所定のレベル付けは、汚泥の分散が進行し、緊急な対応が必要な活性汚泥の性状を示すレベルを例えば[5]、軽微な分散汚泥の状態を例えば[1]とする。次いでプラント制御装置10は、数値化した活性汚泥の性状を示すレベルから処理の緊急度の有無を判定する[ステップS3]。ステップS3で制御装置は、ステップS2でレベル付けがなされた検出データが[5]であり、緊急に対応する必要があると判断したとき、凝集反応処理槽1に投入する凝集剤の薬注量を増大させる[ステップS4]とともに、活性汚泥の余剰引抜量を低減させる[ステップS5]。
Next, when it is determined in step S1 that the activated sludge is a dispersed sludge, the
そしてプラント制御装置10は、汚泥性状センサ8の検出結果から活性汚泥の性状判定を行う[ステップS6]。ステップS6でプラント制御装置10は、活性汚泥の性状が悪いと判定したとき(活性汚泥の性状を示すレベルが例えば3以上)、再びステップS5に戻り余剰汚泥引抜量を低減させる。またステップS6でプラント制御装置10は、活性の性状が異常に悪いと判定したとき(活性の性状を示すレベルが例えば4以上)、凝集反応処理槽1に流入する原水水量を一時的に低下させる[ステップS7]。次いでステップS7の効果を見るために活性汚泥の性状判定を行う[ステップS8]。効果があるときは、再びステップS5に戻り活性汚泥の余剰引抜量を低減させる。一方、効果が見られないときは、再度原水水量をさらに低下させる。尚、ステップS6でプラント制御装置10は、活性汚泥が好ましい性状になったと判定したとき、現在の凝集剤の薬注量および余剰汚泥引抜量を新しい運転管理値として登録する[ステップS9]。
And the
一方、プラント制御装置10は、ステップS3で、緊急に対応する必要がないと判断したとき(活性汚泥の性状を示すレベルが例えば4以下)、余剰汚泥引抜量を低減する[ステップS10]。そしてプラント制御装置10は、汚泥性状センサ8の検出結果から活性汚泥の性状判定を行う[ステップS11]。ステップS11でプラント制御装置10は、ステップS10の余剰汚泥引抜量低減の効果があると判定したとき、再びステップS10に戻り余剰汚泥引抜量の低減を進める。一方、プラント制御装置10は、ステップS11で活性汚泥の性状判定を行った結果、効果がないと判定したとき、凝集反応処理槽1に投入する凝集剤の薬注量を増大させる[ステップS12]。尚、プラント制御装置10は、ステップS11で活性汚泥の性状判定を行った結果、活性汚泥の性状が良くなったと判定したとき(活性汚泥の性状を示すレベルが例えば2以下)、現在の凝集剤の薬注量および余剰汚泥引抜量を新しい運転管理値として登録する[ステップS9]。
On the other hand, when the
一方、プラント制御装置10は、ステップS1で活性汚泥の性状判定を行った結果、解体汚泥であると判定したとき、汚泥センサが出力した活性汚泥の性状を所定のレベル付け(例えば5段階評価)して検出データの数値化を行う[ステップS20]。この所定のレベル付けは、汚泥の解体が進行し、緊急な対応が必要な活性汚泥の性状を示すレベルを例えば[5]、軽微な解体汚泥の状態を例えば[1]とする。次いでプラント制御装置10は、活性汚泥の性状を数値化してレベル付けした値から処理の緊急度の有無を判定する[ステップS21]。ステップS21でプラント制御装置10は、ステップS20でレベル付けがなされた検出データが[5]であり、緊急に対応する必要があると判断したとき、凝集反応処理槽1に流入する原水の一部を曝気槽5に流入させる[ステップS22]とともに、凝集反応処理槽1に投入する凝集剤の添加量を減らすか、間欠的に薬液供給を停止することで薬注量を低減させ[ステップS23]、活性汚泥の余剰汚泥引抜量を増加させる[ステップS24]。
On the other hand, when the
そしてプラント制御装置10は、汚泥性状センサ8の検出結果から活性汚泥の性状判定を行う[ステップS25]。ステップS25で制御装置は、活性汚泥の性状が悪いと判定したとき(活性汚泥の性状を示すレベルが例えば3以上)、再びステップS24に戻り余剰汚泥引抜量を増加させる。またステップS25でプラント制御装置10は、活性汚泥の性状が異常に悪いと判定したとき(活性汚泥の性状を示すレベルが例えば4以上)、ステップS22またはステップS23に戻り、凝集反応処理槽1に流入する原水の一部をさらに多く曝気槽5に流入させる[ステップS22]とともに、凝集反応処理槽1に投入する凝集剤の薬注量をさらに低減させ[ステップS23]、余剰汚泥引抜量をさらに増加させ[ステップS24]、その後、再びステップS25で活性汚泥の性状判定を繰り返す。尚、ステップS25でプラント制御装置10は、活性汚泥の性状が良くなったと判定したとき(活性汚泥の性状を示すレベルが例えば2以下)、現在の凝集剤の薬注量、余剰汚泥引抜量および曝気槽5への原水バイパス量を新しい運転管理値として登録する[ステップS26]。
And the
一方、プラント制御装置10は、ステップS21で、緊急に対応する必要がないと判断したとき、余剰汚泥引抜量を増加する[ステップS27]。そしてプラント制御装置10は、汚泥性状センサ8の検出結果から活性汚泥の性状判定を行う[ステップS28]。ステップS28でプラント制御装置10は、ステップS27の余剰汚泥引抜量増加の効果があると判定したとき、再びステップS27に戻り余剰汚泥引抜量の増加を一層進める。一方、制御装置は、ステップS28で活性汚泥の性状判定を行った結果、効果がないと判定したとき、凝集反応処理槽1に流入する原水の一部をバイパスして曝気槽5に流入させる[ステップS29]とともに、凝集反応処理槽1に投入する凝集剤の薬注量を低減させる[ステップS30]。そして再びステップS28に戻り制御装置は、汚泥性状センサ8の検出結果から活性汚泥の性状判定を行う。
On the other hand, when the
尚、ステップS28でプラント制御装置10は、活性汚泥の性状が良くなったと判定したとき、現在の凝集剤の薬注量、余剰汚泥引抜量および曝気槽5への原水バイパス量を新しい運転管理値として登録する[ステップS26]。
一方、ステップS21でプラント制御装置10は、突如、解体汚泥の発生が検出されたと判定したとき、原水に毒物・アルカリまたは酸・高温水等の混入があり原水に何らかの異常があるとし、曝気槽5に流入する原水を停止する[ステップS31]。
When the
On the other hand, when the
かくして本発明の第二の実施形態に係る排水処理プラントの運転管理方法は、上述したプラント制御装置10の操作によって、曝気槽5に流入する有機物量を調整し、BOD汚泥負荷を最適化することによって、活性汚泥の分散状態または解体状態からの好ましい性状への回復を図ることができる。
次に本発明の第三の実施形態に係る排水処理プラントの運転管理方法について説明する。この第三の実施形態が上述した実施形態と異なる所は、マスバランス監視によって系内汚泥の時間当りの増減量と固液分離手段としての沈殿池6での汚泥濃縮率を数値化した点にある。
Thus, the operation management method for the wastewater treatment plant according to the second embodiment of the present invention adjusts the amount of organic matter flowing into the
Next, an operation management method for a wastewater treatment plant according to a third embodiment of the present invention will be described. This third embodiment differs from the above-described embodiment in that the amount of increase / decrease of sludge in the system per time and the sludge concentration rate in the
このマスバランス監視は、系内汚泥の時間当りの増減量と沈殿池6での濃縮率を後述する計算によって数値化するものである。このマスバランス監視は、図5に示すように所定時間当たりに曝気槽で増減した汚泥量をA、所定時間当たりに沈殿池6で増減した汚泥量をB、所定時間当たり系外に排出された汚泥量をCとすれば、系内汚泥の所定時間当たりの増減量は、[A+B+C]で求めることができるというものである。ここに、上述したA,B,Cは、それぞれ次式に示されるように定義できる。
In this mass balance monitoring, the amount of increase / decrease of sludge in the system per hour and the concentration rate in the
A=(XF現在−XFk時間前)×V
B=Σ{XF×(QI+QR)−XR×QB}/k
ただし、Σはk時間前〜現在までの総和
C=Σ(XF×QT)/k
ただし、Σはk時間前〜現在までの総和
また、XF : 曝気槽のMLSS濃度
XF現在 : 現在の曝気槽のMLSS濃度
XFk時間前 : k時間前の曝気槽のMLSS濃度
XR : 返送汚泥のMLSS濃度
QI : 曝気槽流入原水流量
QR : 曝気槽流入返送汚泥流量
QT : 余剰汚泥排出流量
QB : 沈殿池から引き抜かれる汚泥流量(QB=QR+QT)
また、上述した値から沈殿池6での汚泥濃縮率を[(QB×XR)/(QI×XF)]として定義する。そうしてプラント制御装置10は、前述した第二の実施形態と同様の制御を行い曝気槽5に流入する有機物量を調整し、BOD汚泥負荷を最適化すれば、活性汚泥の分散状態から好ましい性状へと回復を図ることができる。
A = (X F present- X Fk hours ago ) x V
B = Σ {X F × (Q I + Q R ) −X R × Q B } / k
However, Σ is the total from k hours ago to the present C = Σ (X F × Q T ) / k
However, the sum of up to Σ is k times before-present also, X F: MLSS concentration X F Current aeration tank: MLSS concentration of the current aeration tank X Fk time ago: k MLSS concentration time previous aeration tank X R: MLSS concentration of return sludge Q I : Raw water flow rate of inflow into aeration tank Q R : Return flow rate of sludge returned to aeration tank Q T : Excess sludge discharge flow rate Q B : Sludge flow rate withdrawn from sedimentation tank (Q B = Q R + Q T )
Moreover, the sludge concentration rate in the
ただし前述した第二の実施形態と異なり系内汚泥の所定時間当りの増減量を前記計算によって求めているため、第三の実施形態は余剰汚泥の引抜量の目安を得ることも可能である。また求めた汚泥濃縮率から、沈殿池6での汚泥界面が上昇しないように、曝気槽流入原水流量を決定することができる。
尚、系内汚泥の所定時間当たりの増減量の余剰汚泥引抜量と等置して後述する式に適用すれば汚泥の系内滞留時間(現在のSRT)を求めることができる。ちなみに現在のSRTは、[(系内の汚泥保持量)/(系内から排出された24時間当りの汚泥量)]である。
However, since the amount of increase / decrease of the sludge in the system per predetermined time is obtained by the above calculation unlike the second embodiment described above, the third embodiment can also obtain an indication of the amount of excess sludge withdrawn. Further, the flow rate of the raw water flowing into the aeration tank can be determined from the obtained sludge concentration rate so that the sludge interface in the
The sludge retention time (current SRT) can be obtained by applying the above-described equation to the amount of surplus sludge withdrawn in an increased or decreased amount per predetermined time. Incidentally, the current SRT is [(sludge retention amount in the system) / (sludge amount per 24 hours discharged from the system)].
ここで系内の汚泥保持量は、曝気槽5内の汚泥存在量、沈殿池6内の堆積汚泥量、汚泥中間貯留槽(図示せず)内の保有汚泥量および各槽間を連結する配管内に存在する汚泥量の総和である。或いは、系内の汚泥保持量を曝気槽5の汚泥存在量として近似してもよい。この場合、曝気槽5の汚泥存在量は、曝気槽5内のMLSS濃度と曝気槽5の容積の積として求めることができる。
The amount of sludge retained in the system is the amount of sludge present in the
このように管理すればSRTを基準として、余剰汚泥引抜量の管理ができ、SRTの基準値(通常は、5〜30日であるが好ましくは、7〜14日)を設定し、現在のSRTと、SRTの基準値とが等しくなるように余剰汚泥引抜量を決定することができる。つまり余剰汚泥引抜量は、系内の汚泥保持量をSRTの基準値で除した値として求まることになる。 If managed in this way, the excess sludge extraction amount can be managed based on the SRT, and the SRT reference value (usually 5 to 30 days, but preferably 7 to 14 days) is set, and the current SRT is set. And the surplus sludge extraction amount can be determined so that the reference value of SRT becomes equal. That is, the excess sludge extraction amount is obtained as a value obtained by dividing the sludge retention amount in the system by the SRT reference value.
またこのSRTを指標として、曝気槽5のMLSS濃度の目標値を決定することもできる。具体的に曝気槽5のMLSS濃度の目標値は、[SRTの基準値×系内で24時間当りに増減した汚泥量/曝気槽容積]として求めることができる。
上述したようにして求められる曝気槽5のMLSS濃度の最適値を用いた排水処理プラントの運転管理手順について図6および図3を用いて説明する。図6は、前述した図3に示す排水処理プラントの運転管理方法と同様の処理手順に加えて曝気槽5の余剰能力を判定して制御を行うフローチャートを示したものであり、図3と同一の処理には同符号を付し、その説明を省略する。
Moreover, the target value of the MLSS concentration of the
The operation management procedure of the wastewater treatment plant using the optimum value of the MLSS concentration of the
まず、プラント制御装置10は、上述したようにして曝気槽5のMLSS濃度の最適値を算出する[ステップS40]。次いでプラント制御装置10は、沈殿池6の固液分離の余剰能力を判定する[ステップS41]。ステップS41でプラント制御装置10は、沈殿池6に固液分離の余剰能力があると判定したとき、ステップS24またはステップS27の処理に係る余剰汚泥引抜量の増加指令を出力する。一方、プラント制御装置10は、ステップS41で沈殿池6に余剰能力がないと判定したとき、曝気槽5に流入する原水流量を一時低下させる。そうしてプラント制御装置10は、活性汚泥を速やかに好ましい性状になるようにする。
First, the
かくして本発明の第三の実施形態に係る排水処理プラントの運転管理方法は、上述したようにして算出した曝気槽5のMLSS濃度の目標値となるように余剰汚泥引抜量、曝気槽5のMLSS濃度調整を制御しているので活性汚泥を好ましい性状に維持する運転管理ができる。
次に本発明の第四の実施形態に係る排水処理プラントの運転管理方法について説明する。この第四の実施形態が上述した実施形態と異なる所は、1D−flux理論を適用した点にある。
Thus, in the operation management method of the wastewater treatment plant according to the third embodiment of the present invention, the surplus sludge extraction amount and the MLSS of the
Next, an operation management method for a wastewater treatment plant according to a fourth embodiment of the present invention will be described. The fourth embodiment is different from the above-described embodiment in that 1D-flux theory is applied.
1D−flux理論を適用するに先立ち、装置設計の限界値をQImax1、沈殿池流入汚泥濃度および汚泥沈降指標によって定まる限界値をQImax2とする。そしてQImax1を沈殿池水面積負荷の設計値と沈殿池の水面積の積として定義する。ただし、水面積負荷の設計値は、通常5〜10[m/h]とする。一方、QImax2は、1D−flux理論による汚泥沈降速度と沈殿池の水面積との積として定義し、沈殿池流入汚泥濃度は、曝気槽5のMLSS濃度と、汚泥を静的に重力沈降させたときの指標であるSV30、希釈SV30(DSV30)、撹拌したSV30(SSV30)等の汚泥沈降指標から定める。
Prior to applying the 1D-flux theory, the limit value of the device design is Q Imax1 , and the limit value determined by the sedimentation basin sludge concentration and sludge settling index is Q Imax2 . Q Imax1 is defined as the product of the design value of the sedimentation basin area load and the water area of the sedimentation basin. However, the design value of the water area load is normally 5 to 10 [m / h]. On the other hand, Q Imax2 is defined as the product of the sludge sedimentation rate based on the 1D-flux theory and the water area of the sedimentation basin. The sedimentation basin sludge concentration is the MLSS concentration in the
すると1D−flux理論(Daiggerの近似式)による汚泥沈降速度は、[V0e−nX]として定義することができる。
ただし、
V0:汚泥の終末沈降速度[m/h]
n=0.103+0.002555×DSVI
DSVI=DSV30/DSV30測定時の初期汚泥濃度
X=固液分離に関わる部位の汚泥濃度
=沈殿池フィードウェル周辺の汚泥濃度もしくは汚泥堆積層上部の汚泥濃度
≒曝気槽のMLSS濃度
ここに上記式中の[n]は、DSVIを用いた近似式を示したが、この他、SVI,SSVIを用いた近似式を適用してもよい。
Then, the sludge settling velocity according to the 1D-flux theory (Daiger's approximate expression) can be defined as [V 0 e −nX ].
However,
V 0 : Terminal sedimentation velocity of sludge [m / h]
n = 0.103 + 0.002555 × DSVI
DSVI = Initial sludge concentration at DSV30 / DSV30 measurement X = Sludge concentration at the part related to solid-liquid separation = Sludge concentration around the sedimentation basin feedwell or sludge concentration at the top of the sludge accumulation layer ≒ MLSS concentration in the aeration tank [N] represents an approximate expression using DSVI, but an approximate expression using SVI or SSVI may be applied.
これらの式によれば、沈殿池6における固液分離性能を評価することができる。
上述したようにして求められる曝気槽5のMLSS濃度の最適値を用いた排水処理プラントの運転管理手順は、前述した第二の実施形態の制御フローを示す図3と同様な排水処理プラントの手順を行い、活性汚泥が速やかに好ましい性状になるよう制御する。
かくして本発明の第四の実施形態に係る排水処理プラントの運転管理方法は、上述した計算を行うことによって曝気槽5のMLSS濃度の管理指標を得ることができ、求めた値を制御目標値として設定しているので活性汚泥の好ましい性状を維持した排水処理プラントの運転管理を行うことができる。
According to these formulas, the solid-liquid separation performance in the
The operation management procedure of the wastewater treatment plant using the optimum value of the MLSS concentration of the
Thus, the operation management method of the wastewater treatment plant according to the fourth embodiment of the present invention can obtain the management index of the MLSS concentration of the
次に本発明の第五の実施形態に係る排水処理プラントの運転管理方法について説明する。この第五の実施形態が上述した実施形態と異なる所は、脱水機7の余剰能力評価を加味した点にある。
脱水機7の余剰能力評価は、まず脱水機7の現在の能力を、脱水機にかけられた汚泥量を脱水機の稼働時間で除した値として求め、次いで脱水機7にかけられた汚泥量を、活性汚泥から排出された24時間当りの汚泥量と、凝集反応処理槽1から排出された24時間当りの汚泥量と、その他の24時間当りに流入した汚泥量との総和として求める。そして脱水機7の余剰能力を脱水機の限界能力と脱水すべき汚泥量との差分として定義する。すると脱水機7の限界能力は、[脱水機の現在能力×(24/現在の脱水機の稼働時間)]として求めることができる。
Next, an operation management method for a wastewater treatment plant according to a fifth embodiment of the present invention will be described. This fifth embodiment is different from the above-described embodiment in that the surplus capacity evaluation of the
The surplus capacity of the
ここに、脱水機7の余剰能力度を脱水機の余剰能力を脱水機の限界能力で除した値として定め、脱水機7の余剰能力率を脱水機の余剰能力度×100[%]とすれば、脱水機7の余剰能力評価ができる。そしてプラント制御装置10は、上述した式を用いて求めることができる脱水機の余剰能力度が[1]または脱水機の余剰能力率が[100%]をそれぞれ超えないように管理すればよい。そして脱水機余剰能力度が[1]または脱水機の余剰能力率が[100%]を超える場合、曝気槽5での汚泥増殖を抑えればよい。
Here, the surplus capacity of the
上述したようにして求められる脱水機7の余剰能力評価値を用いた排水処理プラントの運転管理手順について図7および図8を用いて説明する。この図は、前述した第二の実施形態の処理手順を示す図3および図4と同様の処理に加えて脱水機7の余剰能力を判定して制御を行うフローチャートを示したものであり、図3および図4と同一の処理にはそれぞれ同符号を付し、その説明を省略する。
The operation management procedure of the wastewater treatment plant using the surplus capacity evaluation value of the
まず、プラント制御装置10は、上述したようにして脱水機7の余剰能力を算出する[ステップS50]。次いでプラント制御装置10は、脱水機7の処理に余剰能力があるか否かを判定する[ステップS51]。ステップS51で脱水機7の処理に余剰能力がないと判定したプラント制御装置10は、ステップS4またはステップS12の処理に係る凝集剤の薬注量に対して更に増加指令を出力する。或いは、ステップS51で脱水機7の処理に余剰能力があると判定したプラント制御装置10は、続いてMLSS濃度の最適値を算出する[ステップS40]。次いで沈殿池6の固液分離の余剰能力を判定するステップS41を経て、沈殿池6に固液分離の余剰能力があると判断した場合には、ステップS24またはステップS27に係る余剰汚泥の引抜量を増加させる指令を出力する。そうしてプラント制御装置10は、活性汚泥が速やかに好ましい性状になるよう制御する。
First, the
かくして本発明の第五の実施形態に係る排水処理プラントの運転管理方法は、上述した計算を行っているので凝集処理の管理目標を排水処理プラントに適するよう設定することができる。更には、活性汚泥を安定化させるために、上述した計算を行えば、原水に応じた曝気槽5のMLSS濃度が設定できるとともに、設定した結果をプラント制御装置10の検出結果を確認しながら、系内にフィードバックして原水流量の増・減、停止を判断することが可能となる。
Thus, since the operation management method of the wastewater treatment plant according to the fifth embodiment of the present invention performs the above-described calculation, the management target of the aggregation treatment can be set to be suitable for the wastewater treatment plant. Furthermore, in order to stabilize activated sludge, if the above-described calculation is performed, the MLSS concentration of the
次に本発明の第六の実施形態に係る排水処理プラントの運転管理方法について説明する。この第六の実施形態が上述した実施形態と異なる所は、曝気槽5が備える散気装置の余剰能力評価を加味した点にある。
さて排水処理プラントに適用される散気装置は、ブロワー5bによるものと、表面撹拌(図1には図示せず)によるものとに分けて考えることができる。
Next, an operation management method for a wastewater treatment plant according to a sixth embodiment of the present invention will be described. The sixth embodiment is different from the above-described embodiment in that the surplus capacity evaluation of the aeration apparatus provided in the
Now, the air diffuser applied to the wastewater treatment plant can be divided into those by the
まず散気装置がブロワー5bによるものである場合、ブロワー5bの余剰能力は、ブロワー5bの最大能力と現在のブロワー能力との差分として求めることができる。
ここに、ブロワー能力は、[BWe−kt]で示される。この式において、B:電力消費量に対する送風量基準値[m3/W]、W:電力消費量[W]、k:ブロワー装置固有の温度依存送風効率、t:送風する空気の温度とする。このブロワー5bの余剰能力を用いれば、ブロワー5bの余剰能力度をブロワー5bの余剰能力をブロワー5bの最大能力で除した値として、またブロワー5bの余剰能力率をブロワー5bの余剰能力度を100倍した値[%]として定めることができる。
First, when the diffuser is the
Here, the blower capability is indicated by [BWe- kt ]. In this equation, B: reference value [m 3 / W] for the air consumption with respect to the electric power consumption, W: electric power consumption [W], k: temperature-dependent air blowing efficiency specific to the blower device, and t: temperature of the air to be blown. . If the surplus capacity of the
ちなみにブロワー5bの運転による酸素溶解理論値は、前述した現在のブロワー能力を用いれば、[現在のブロワー能力×e−βqt]として求めることができる。この式においてβ:塩類など該水質に依存した酸素溶解効率、q:該水温に依存した酸素溶解効率、t:水温である。すると活性汚泥が利用した酸素量(見積り値)は、散気装置の運転による酸素溶解理論値から[DO:計器によって計測した溶存酸素濃度の現在値]を差し引いた値として求めることができ、上述したようにしてブロワー5bにおける諸量を定めることができる。
Incidentally, the theoretical oxygen dissolution value by the operation of the
次に散気装置が表面撹拌によるものである場合、表面撹拌装置の余剰能力は、撹拌機の最大能力と現在の撹拌機能力との差分として求めることができる。
尚、撹拌機能力は、[CWe−αpt]として定義する。この式において、C:電力消費量に対する撹拌機の散水量基準値[m3/W]、W:電力消費量[W]、α:撹拌機固有のスラリー粘度(もしくは濃度)依存散水効率、p:撹拌機固有の温度依存散水効率、t:散水する水の温度である。
Next, when the air diffuser is based on surface agitation, the surplus capacity of the surface agitation apparatus can be obtained as a difference between the maximum capacity of the agitator and the current agitation function power.
The stirring function force is defined as [CWe− αpt ]. In this equation, C: reference value [m 3 / W] of the stirrer for the power consumption, W: power consumption [W], α: slurry viscosity (or concentration) dependent watering efficiency peculiar to the stirrer, p : Temperature dependent watering efficiency specific to the stirrer, t: Temperature of water to be sprinkled.
このようにして求めることができる表面撹拌装置の余剰能力を用いれば、表面撹拌装置の余剰能力度は、撹拌機の余剰能力を撹拌機の最大能力で除した値として、表面撹拌装置の余剰能力率は、撹拌機の余剰能力度を100倍した値[%]としてそれぞれ定義することができる。
ちなみに表面撹拌装置の運転による酸素溶解理論値は、上述した現在の撹拌機能力を用いれば、[現在の撹拌機能力×e−βqt]として求めることができる。ここに、β:塩類など該水質に依存した酸素溶解効率、q:該水温に依存した酸素溶解効率、t:水温である。よって、活性汚泥が利用した酸素量(見積り値)は、散気装置の運転による酸素溶解理論値から[DO:計器によって計測した溶存酸素濃度の現在値]を差し引いた値として求めることができる。
If the surplus capacity of the surface agitator that can be obtained in this way is used, the surplus capacity of the surface agitator is obtained by dividing the surplus capacity of the agitator by the maximum capacity of the agitator, and the surplus capacity of the surface agitator. The rate can be defined as a value [%] obtained by multiplying the surplus capacity of the stirrer by 100.
Incidentally, the theoretical value of oxygen dissolution by the operation of the surface agitator can be obtained as [current agitation function force × e −βqt ] if the current agitation function force described above is used. Here, β: oxygen dissolution efficiency depending on the water quality such as salts, q: oxygen dissolution efficiency depending on the water temperature, and t: water temperature. Therefore, the oxygen amount (estimated value) utilized by the activated sludge can be obtained as a value obtained by subtracting [DO: the current value of dissolved oxygen concentration measured by a meter] from the theoretical oxygen dissolution value obtained by operating the diffuser.
このように定義すれば表面撹拌装置における諸量を定めることができる。したがって、散気装置の余剰能力度が1を超えないように排水処理プラントの運転管理を行えばよい。
更に散気装置の消費電力監視装置による電力消費効率は、活性汚泥が利用した酸素量を散気装置の運転による酸素溶解理論値で除した値として数値化することもできる。
上述したようにして求められる散気装置の余剰能力評価を適用した排水処理プラントの運転管理手順について図9、図3および図4を用いて説明する。これらの図は、前述した第二の実施形態の処理手順を示す図3および図4と同様の処理に加えて散気装置の余剰能力を判定して制御を行うフローチャートを示したものであり、図3および図4と同一の処理は、その説明を省略する。
If it defines in this way, various quantities in a surface stirring device can be defined. Therefore, the operation management of the wastewater treatment plant may be performed so that the excess capacity of the air diffuser does not exceed 1.
Further, the power consumption efficiency by the power consumption monitoring device of the air diffuser can be quantified as a value obtained by dividing the amount of oxygen used by the activated sludge by the theoretical value of oxygen dissolution by the operation of the air diffuser.
The operation management procedure of the wastewater treatment plant to which the surplus capacity evaluation of the air diffuser obtained as described above is applied will be described with reference to FIG. 9, FIG. 3, and FIG. These diagrams show a flowchart for performing control by determining the surplus capacity of the air diffuser in addition to the same processing as FIG. 3 and FIG. 4 showing the processing procedure of the second embodiment described above, The description of the same processing as in FIGS. 3 and 4 is omitted.
まず、プラント制御装置10は、上述したようにして散気装置の余剰能力を算出する[ステップS60]。次いでプラント制御装置10は、散気装置の余剰能力を判定する[ステップS61]。プラント制御装置10は、ステップS61で散気装置の余剰能力がないと判定したとき、ステップS4またはステップS12の処理に係る凝集剤の薬注量を増大させる指令を出力する。一方、プラント制御装置10は、ステップS61で散気装置に余剰能力があると判定したとき、ステップS60に戻り、引き続き散気装置の余剰能力評価を行う。そうしてプラント制御装置10は、活性汚泥が速やかに好ましい性状になるよう制御する。
First, the
かくして本発明の第六の実施形態に係る排水処理プラントの運転管理方法は、上述した演算を行うことによって散気装置の消費電力効率を数値化し、排水処理プラントの余裕度(余剰能力)を評価することできる。したがって、活性汚泥に対して更に有機物負荷をかけて良いか否かの判断をすることができ、凝集処理の目標管理または原水流入管理を行うことができる。 Thus, the operation management method for a wastewater treatment plant according to the sixth embodiment of the present invention numerically evaluates the power consumption efficiency of the air diffuser by performing the above-described calculation, and evaluates the margin (surplus capacity) of the wastewater treatment plant. Can do. Therefore, it can be determined whether or not the organic sludge can be further loaded on the activated sludge, and target management or raw water inflow management of the flocculation process can be performed.
尚、本発明の排水処理プラントの運転管理方法は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば凝集反応処理装置は、凝集反応と固液分離処理が一体化した装置を用いてもよいし、活性汚泥処理装置も曝気槽と沈殿槽が一体化した装置を用いてもよい。また凝集処理装置と活性汚泥処理装置において、固液分離手段として沈殿池に限らず、膜分離装置を採用してもよい。 It should be noted that the operation management method for the wastewater treatment plant of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention. For example, an apparatus in which the aggregation reaction and the solid-liquid separation process are integrated may be used as the aggregation reaction processing apparatus, and an apparatus in which the aeration tank and the precipitation tank are integrated may be used as the activated sludge treatment apparatus. Further, in the coagulation treatment device and the activated sludge treatment device, the solid-liquid separation means is not limited to the sedimentation basin, and a membrane separation device may be employed.
1 凝集反応処理槽
2 凝集沈殿槽
3 リザーバタンク
4 ポンプ
5 曝気槽
5a 散気管
5b ブロワー
6 沈殿池
7 脱水機
8 汚泥性状センサ
9a バイパス弁
10 プラント制御装置
10b 汚泥性状判定手段
10a 経時変化検出手段
10c 制御部
DESCRIPTION OF SYMBOLS 1 Coagulation
Claims (4)
前記活性汚泥処理装置における時間当たりの前記活性汚泥の増減量と固液分離手段における汚泥濃縮率とを求めるマスバランス監視手段と、
前記活性汚泥処理装置における前記活性汚泥の性状を数値化可能に検出する汚泥性状センサと
を備え、
前記マスバランス監視手段が求めた前記活性汚泥処理装置における時間当たりの汚泥の増減量、固液分離手段における汚泥濃縮率および前記汚泥性状センサが検出した活性汚泥の性状情報に従って前記凝集反応処理装置における薬注量の増減若しくは薬液の濃度変更または薬液の銘柄変更によってCOD成分の増減処理をする前記凝集反応処理装置を制御する制御手段および/または前記凝集反応処理装置に流入する原水の一部または全量を前記活性汚泥処理装置にバイパスさせる原水バイパス制御手段および/または前記活性汚泥処理装置からの余剰汚泥引抜量を制御して活性汚泥処理装置のMLSS濃度を調整するMLSS濃度調整手段を備え、
前記凝集反応処理装置を制御する制御手段、前記原水バイパス処理制御手段、前記MLSS濃度調整手段の少なくとも一つの手段により前記活性汚泥処理装置の負荷を調整して活性汚泥を好ましい性状にすることを特徴とする排水処理プラントの運転管理方法。 It is an operation management method for a wastewater treatment plant having an agglomeration reaction treatment apparatus at the front stage and an activated sludge treatment apparatus equipped with a solid-liquid separation means at the rear stage,
Mass balance monitoring means for obtaining an increase / decrease amount of the activated sludge per hour in the activated sludge treatment apparatus and a sludge concentration rate in the solid-liquid separation means,
A sludge property sensor for detecting the property of the activated sludge in the activated sludge treatment device so as to be quantifiable;
In the coagulation reaction treatment device according to the amount of sludge increase / decrease per hour in the activated sludge treatment device obtained by the mass balance monitoring means, the sludge concentration rate in the solid-liquid separation means and the property information of the activated sludge detected by the sludge property sensor. Control means for controlling the agglomeration reaction processing device for increasing / decreasing the COD component by increasing / decreasing the chemical injection amount, changing the concentration of the chemical solution, or changing the brand of the chemical solution and / or a part or all of the raw water flowing into the agglutination reaction processing device Raw water bypass control means for bypassing the activated sludge treatment apparatus and / or MLSS concentration adjusting means for adjusting the MLSS concentration of the activated sludge treatment apparatus by controlling the amount of excess sludge withdrawn from the activated sludge treatment apparatus,
Adjusting the load of the activated sludge treatment apparatus by at least one of the control means for controlling the agglomeration reaction treatment apparatus, the raw water bypass treatment control means, and the MLSS concentration adjusting means to make the activated sludge have a preferable property. Operation management method of wastewater treatment plant.
前記MLSS濃度調整手段は、前記固液分離手段の固液分離性能における限界能力を計算し、該計算した結果に基づき前記活性汚泥処理装置のMLSS濃度の制御目標値を定め、該制御目標値に応じて前記活性汚泥処理装置からの余剰汚泥引抜量を制御するものである排水処理プラントの運転管理方法。 An operation management method for a wastewater treatment plant according to claim 1 ,
The MLSS concentration adjusting means calculates a limit capability in the solid-liquid separation performance of the solid-liquid separation means, determines a control target value of the MLSS concentration of the activated sludge treatment apparatus based on the calculated result, and sets the control target value to the control target value. An operation management method for a wastewater treatment plant that controls the amount of excess sludge drawn from the activated sludge treatment apparatus accordingly.
前記活性汚泥処理装置における時間当たりの汚泥の増減量と前記固液分離手段における汚泥濃縮率とを求めるマスバランス監視手段と、
前記活性汚泥処理装置における活性汚泥の性状を数値化可能に検出する汚泥性状センサと、
前記脱水機が処理する汚泥の脱水における余剰処理能力を検出する脱水機能力監視手段と
を備え、
前記マスバランス監視手段が求めた前記活性汚泥処理装置内における時間当たりの活性汚泥の増減量と前記固液分離手段における汚泥濃縮率、前記汚泥性状センサが検出した前記活性汚泥の性状変化および前記脱水機能力監視手段が検出した前記脱水機の余剰処理能力から薬注量の増減若しくは薬液の濃度変更または薬液の銘柄変更によってCOD成分の増減処理をする前記凝集反応処理装置を制御する制御手段および/または前記凝集反応処理装置に流入する原水の一部または全量を前記活性汚泥処理装置にバイパスさせる原水バイパス制御手段および/または前記活性汚泥処理装置からの余剰汚泥引抜量を制御して活性汚泥処理装置のMLSS濃度を調整するMLSS濃度調整手段を備え、
前記凝集反応処理装置を制御する制御手段、前記原水バイパス処理制御手段、前記MLSS濃度調整手段の少なくとも一つの手段により前記活性汚泥処理装置の負荷を調整して該活性汚泥を好ましい性状にすることを特徴とする排水処理プラントの運転管理方法。 An operation management method for a wastewater treatment plant in which an agglomeration reaction treatment device, an activated sludge treatment device equipped with solid-liquid separation means, and a dehydrator for excess sludge concentration and dewatering are sequentially arranged from the front stage to the rear stage,
And mass balance monitoring means for determining a sludge concentration ratio in the activated sludge treatment the solid-liquid separation means and decrease the amount of sludge per hour in the apparatus,
A sludge property sensor for detecting the property of the activated sludge in the activated sludge treatment device so as to be quantifiable;
A dehydrating function monitoring means for detecting surplus processing capacity in the dewatering of sludge processed by the dehydrator,
Increase / decrease amount of activated sludge per hour in the activated sludge treatment device obtained by the mass balance monitoring means, sludge concentration rate in the solid-liquid separation means, property change of the activated sludge detected by the sludge property sensor and the dehydration Control means for controlling the agglomeration reaction processing apparatus for increasing / decreasing the COD component by increasing / decreasing the drug injection amount, changing the concentration of the chemical solution, or changing the brand of the chemical solution from the surplus processing capacity of the dehydrator detected by the functional force monitoring means, and / or Alternatively, a raw water bypass control means for bypassing part or all of the raw water flowing into the agglomeration reaction treatment device to the activated sludge treatment device and / or an activated sludge treatment device by controlling the amount of excess sludge withdrawn from the activated sludge treatment device MLSS concentration adjusting means for adjusting the MLSS concentration of
Adjusting the load of the activated sludge treatment device by at least one of the control means for controlling the agglomeration reaction treatment apparatus, the raw water bypass treatment control means, and the MLSS concentration adjusting means to make the activated sludge have a preferable property. An operation management method for a wastewater treatment plant.
更に前記活性汚泥処理装置における散気装置の余剰能力を検出する散気余剰能力検出手段と、
散気装置が消費した電力を検出して該散気装置の電力消費効率を求める消費電力検出手段と
を備え、
前記凝集反応処理装置を制御する制御手段は、更に前記散気余剰能力検出手段が検出した前記散気装置の余剰能力および前記消費電力検出手段が求めた前記散気装置の電力消費効率から薬注量の増減若しくは薬液の濃度変更または薬液の銘柄変更によってCOD成分の増減処理をするものである排水処理プラントの運転管理方法。 An operation management method for a wastewater treatment plant according to claim 3 ,
Further, a diffused surplus capacity detecting means for detecting surplus capacity of the diffuser in the activated sludge treatment apparatus,
Power consumption detecting means for detecting the power consumed by the diffuser and obtaining the power consumption efficiency of the diffuser,
The control means for controlling the agglomeration reaction processing apparatus is a medicine injection from the surplus capacity of the aeration apparatus detected by the aeration surplus capacity detection means and the power consumption efficiency of the aeration apparatus determined by the power consumption detection means. An operation management method for a wastewater treatment plant in which the COD component is increased or decreased by increasing or decreasing the amount, changing the concentration of the chemical, or changing the brand of the chemical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005262195A JP4900556B2 (en) | 2005-09-09 | 2005-09-09 | Wastewater treatment plant operation management method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005262195A JP4900556B2 (en) | 2005-09-09 | 2005-09-09 | Wastewater treatment plant operation management method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007069182A JP2007069182A (en) | 2007-03-22 |
JP4900556B2 true JP4900556B2 (en) | 2012-03-21 |
Family
ID=37931098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005262195A Active JP4900556B2 (en) | 2005-09-09 | 2005-09-09 | Wastewater treatment plant operation management method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4900556B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5315118B2 (en) * | 2009-04-20 | 2013-10-16 | 神鋼環境メンテナンス株式会社 | Operation method of organic wastewater treatment facility |
US8932466B2 (en) * | 2009-12-01 | 2015-01-13 | Jinmin Li | Method and apparatus for sluge treatment and use thereof in sewage biotreatment |
JP5782931B2 (en) * | 2011-09-05 | 2015-09-24 | 富士電機株式会社 | Water treatment method and water treatment apparatus |
JP5701325B2 (en) * | 2013-02-25 | 2015-04-15 | 三菱重工業株式会社 | Ballast water treatment system |
JP6203560B2 (en) * | 2013-07-25 | 2017-09-27 | 株式会社前川製作所 | Organic wastewater treatment method and organic wastewater treatment apparatus |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52118947A (en) * | 1976-03-31 | 1977-10-05 | Hitachi Ltd | Control device for treating activated sludge water |
JP3340477B2 (en) * | 1992-09-22 | 2002-11-05 | 日本製紙株式会社 | Coagulation treatment of organic wastewater |
JPH07155784A (en) * | 1993-12-08 | 1995-06-20 | Kubota Corp | Treatment of organic waste water |
JP3886069B2 (en) * | 1997-05-19 | 2007-02-28 | 株式会社荏原製作所 | Treatment of return water for sewage sludge intensive treatment |
JP3912535B2 (en) * | 2003-04-17 | 2007-05-09 | 栗田工業株式会社 | Biological sludge monitoring device |
JP2005177628A (en) * | 2003-12-19 | 2005-07-07 | Kobe Steel Ltd | Wastewater treatment method and wastewater treatment apparatus |
JP4788182B2 (en) * | 2005-04-14 | 2011-10-05 | パナソニック株式会社 | Organic waste water treatment apparatus and organic waste water treatment method |
-
2005
- 2005-09-09 JP JP2005262195A patent/JP4900556B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007069182A (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102089278B1 (en) | A water-purifying treatment device with renewable energy generation plant and using waste glass and artificial filter medium Manufactured by Method | |
CN110456754A (en) | A kind of the monitoring processing system and intellectual analysis processing method, storage medium of sewage | |
JP3434438B2 (en) | Wastewater treatment method and wastewater treatment device | |
JP4900556B2 (en) | Wastewater treatment plant operation management method | |
CN110188946A (en) | A kind of prediction technique and sewage forecasting system of wastewater parameters | |
CN213950917U (en) | Wisdom sewage treatment control system | |
CN112645536A (en) | Sewage treatment control method, device and system | |
CN108911365A (en) | A kind of gelatine wastewater treatment process | |
KR100945458B1 (en) | Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. | |
CN206915885U (en) | A kind of integrated sewage treating apparatus | |
JP2007038107A (en) | Method for treating organic drainage | |
JP2008149226A (en) | Wastewater treatment system | |
JPH0381645A (en) | Method, device and facility for treating suspended material in liquid | |
CN101823817B (en) | Self-cleaning type ammonia-nitrogen wastewater treatment set device | |
JP6103231B2 (en) | Method and system for dewatering sewage sludge | |
JP2016193386A (en) | Method for forming aerobic granule, apparatus for forming aerobic granule, wastewater treatment method, and wastewater treatment apparatus | |
JP3588047B2 (en) | Biological phosphorus removal method in oxidation ditch | |
JP6829585B2 (en) | Sewage treatment system and sewage treatment method | |
JP6583876B1 (en) | Wastewater treatment facility test method | |
JPWO2005068379A1 (en) | Wastewater purification system | |
JP2009214073A (en) | Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor | |
JP2003266096A (en) | Wastewater treatment apparatus | |
JPH1157771A (en) | Biological water treatment and equipment therefor | |
JP3030024B1 (en) | Raw water treatment equipment | |
JP6702656B2 (en) | Granule forming method and granule forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4900556 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |