JP6203560B2 - Organic wastewater treatment method and organic wastewater treatment apparatus - Google Patents

Organic wastewater treatment method and organic wastewater treatment apparatus Download PDF

Info

Publication number
JP6203560B2
JP6203560B2 JP2013155045A JP2013155045A JP6203560B2 JP 6203560 B2 JP6203560 B2 JP 6203560B2 JP 2013155045 A JP2013155045 A JP 2013155045A JP 2013155045 A JP2013155045 A JP 2013155045A JP 6203560 B2 JP6203560 B2 JP 6203560B2
Authority
JP
Japan
Prior art keywords
wastewater
treatment
concentration
organic
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013155045A
Other languages
Japanese (ja)
Other versions
JP2015024368A (en
Inventor
孝一 副島
孝一 副島
英和 井戸
英和 井戸
一裕 服部
一裕 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2013155045A priority Critical patent/JP6203560B2/en
Publication of JP2015024368A publication Critical patent/JP2015024368A/en
Application granted granted Critical
Publication of JP6203560B2 publication Critical patent/JP6203560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、米ぬか加工廃水等の有機性廃水から窒素とリンを除去する有機性廃水処理方法及び有機性廃水処理装置に関する。   The present invention relates to an organic wastewater treatment method and an organic wastewater treatment apparatus for removing nitrogen and phosphorus from organic wastewater such as rice bran processing wastewater.

米ぬか加工工場から排出される米ぬか加工廃水等の有機性廃水は、デンプン質やタンパク質、脂質などが含まれた廃水である。このような有機性廃水の特徴としては、デンプン質が多く含有されているため有機炭素源濃度の指標であるCOD(Chemical Oxygen Demand:化学的酸素要求量)ならびにBOD(Biochemical Oxygen Demand:生物化学的酸素要求量)が高く、タンパク質由来の窒素成分が含まれている。また、米ぬかから米油を製造する際、その精製段階でリン脂質がカルシウムやマグネシウムイオンなどと結合した不純物を取り除く工程がある。このため、その精製工程の廃水には高濃度のリン酸が含有されていることが特徴であり、米ぬか加工廃水には、水質汚濁で問題視される成分が高濃度に混在した廃水である。   Organic wastewater such as rice bran processing wastewater discharged from the rice bran processing factory is wastewater containing starch, protein, lipids and the like. Such organic wastewater is characterized by COD (Chemical Oxygen Demand) and BOD (Biochemical Oxygen Demand), which are indicators of organic carbon source concentration because of its high starch content. Oxygen demand) is high, and protein-derived nitrogen components are included. In addition, when producing rice oil from rice bran, there is a step of removing impurities in which phospholipids are combined with calcium, magnesium ions and the like in the purification stage. For this reason, the waste water of the refining process is characterized by containing a high concentration of phosphoric acid, and the rice bran processing waste water is a waste water in which components that are considered problematic due to water pollution are mixed at a high concentration.

上述した有機物やリンを含む有機性廃水から有機物及びリンを取り除くためには、有機物及び窒素除去を主目的とする通常の活性汚泥法のほか、リン除去型廃水処理方法の付加が必要となる。しかしながら、一般に適用される活性汚泥法においては、前記有機性廃水中の有機物分解には数日程度の時間を要する。
さらに、米ぬか加工廃水において、食用油の精製プロセスでは、徹底して不純物を除くために大量のリン酸液を油脂に添加する結果、水質汚濁でも問題視されるリン酸が高濃度に含まれる。このため、その除去は一般の活性汚泥法のみでは除去できず、リン除去型廃水処理方法の付加が必要となる。
In order to remove organic matter and phosphorus from the organic wastewater containing organic matter and phosphorus described above, it is necessary to add a phosphorus removal type wastewater treatment method in addition to a normal activated sludge method mainly for removing organic matter and nitrogen. However, in the activated sludge method that is generally applied, the decomposition of organic matter in the organic wastewater requires several days.
Furthermore, in rice bran processing wastewater, in the process of refining edible oil, a large amount of phosphoric acid solution is added to fats and oils in order to thoroughly remove impurities, resulting in high concentrations of phosphoric acid, which is considered a problem even in water pollution. For this reason, the removal cannot be removed only by a general activated sludge method, and the addition of a phosphorus removal type wastewater treatment method is required.

そこで近年、窒素とリンを同時に除去する方法として、下水処理施設等ではA2O法が用いられている。A2O法は、一般に嫌気工程、無酸素工程、好気工程からなる微生物処理工程により、余剰汚泥を一部循環させながら廃水を処理するものである。この方法によれば、リン蓄積細菌(PAO)により嫌気工程でのリン放出と好気工程でのリン摂取が行なわれ、廃水中からリンが汚泥中に取り込まれて廃水中のリンが除去される。一方硝化細菌により好気工程での硝化作用が行なわれ、脱窒細菌により無酸素工程での脱窒作用が行なわれ、廃水中の窒素が除去される。   In recent years, therefore, the A2O method has been used in sewage treatment facilities and the like as a method for simultaneously removing nitrogen and phosphorus. In the A2O method, wastewater is generally treated by partially circulating excess sludge by a microbial treatment process comprising an anaerobic process, an oxygen-free process, and an aerobic process. According to this method, phosphorus is released in the anaerobic process and phosphorus is taken up in the aerobic process by the phosphorus accumulating bacteria (PAO), and phosphorus is taken into the sludge from the wastewater to remove phosphorus in the wastewater. . On the other hand, nitrification bacteria perform nitrification in the aerobic process, and denitrification bacteria perform denitrification in the anaerobic process to remove nitrogen in the wastewater.

さらにこれを応用した技術として、特許文献1(特許第4267860号公報)には、脱窒性リン蓄積細菌(DNPAO)を用いて窒素とリンを同時除去する方法を提案している。これは、脱窒性リン蓄積細菌の存在下で、嫌気工程、好気工程、及び無酸素工程の順に廃水を処理し(AOA法)、さらに好気工程初期に有機炭素源を供給するようにしたものである。脱窒性リン蓄積細菌はAOA法で運転されている汚泥に通常含まれているため、これを有効に活用できる廃水条件とすることで、窒素とリンを効率よく除去することを可能としている。   Furthermore, as a technique to which this is applied, Patent Document 1 (Japanese Patent No. 4267860) proposes a method of simultaneously removing nitrogen and phosphorus using a denitrifying phosphorus accumulating bacterium (DNPAO). In this method, wastewater is treated in the order of anaerobic process, aerobic process, and anaerobic process in the presence of denitrifying phosphorus accumulating bacteria (AOA method), and an organic carbon source is supplied at the beginning of the aerobic process. It is a thing. Since denitrifying phosphorus accumulating bacteria are usually contained in sludge operated by the AOA method, it is possible to efficiently remove nitrogen and phosphorus by using wastewater conditions that can be effectively utilized.

特許第4267860号公報Japanese Patent No. 4267860

上記のAOA法(微生物処理)を用いた窒素・リン除去型廃水処理プロセスによれば、リンを含む有機性廃水から窒素とリンを同時除去することが可能である。一方で、米ぬか加工廃水等の有機性廃水のように、COD及びBOD濃度が高く、また、微生物が分解しにくい難分解性有機物が廃水中に多く存在する場合には、AOA法(微生物処理)の前処理工程にオゾンマイクロバブルにより廃水中の有機物を低分子化することが行われている。
この方法では、有機性廃水にオゾンマイクロバブルを接触しオゾンによる有機物低分子化を前処理として行うことで、処理効率低下の原因となる難分解性有機物を分解して低分子化する。その結果、窒素・リン除去型廃水処理プロセスの有機物、窒素、リン除去性能が、オゾンマイクロバブルによる前処理をしない場合に比べ向上する。
According to the nitrogen / phosphorus removal type wastewater treatment process using the AOA method (microbe treatment), it is possible to simultaneously remove nitrogen and phosphorus from organic wastewater containing phosphorus. On the other hand, when organic wastewater such as rice bran processing wastewater has high COD and BOD concentrations, and there are many persistent organic substances that are difficult for microorganisms to decompose, the AOA method (microbe treatment) In the pretreatment process, organic molecules in wastewater are reduced in molecular weight by ozone microbubbles.
In this method, ozone microbubbles are brought into contact with organic waste water, and organic molecules are reduced in molecular weight by ozone as a pretreatment, thereby decomposing the hardly decomposable organic substances that cause a reduction in processing efficiency to lower the molecular weight. As a result, the organic matter, nitrogen, and phosphorus removal performance of the nitrogen / phosphorus removal type wastewater treatment process is improved as compared with the case where pretreatment with ozone microbubbles is not performed.

しかしながら、このように窒素・リン除去型廃水処理プロセスの前段にオゾンマイクロバブルを用いた前処理工程を行った場合でも、米ぬか加工廃水などのように、例えばpHが3〜4の酸性を示し、又はCOD濃度が6000mg/L程度の高いものであると、有機物並びにリンなどの除去性能が低下しあるいは不安定となる要因となる。   However, even when the pretreatment step using ozone microbubbles is performed in the preceding stage of the nitrogen / phosphorus removal type wastewater treatment process, as shown in the rice bran processing wastewater, for example, it exhibits an acidity of pH 3 to 4, Alternatively, when the COD concentration is as high as about 6000 mg / L, the removal performance of organic substances and phosphorus is lowered or becomes unstable.

すなわち、被処理有機性廃水のpHが4程度以下であれば、AOA法(微生物処理)において有機物等の除去を担う活性汚泥中の菌体がダメージを被り、その結果、後述するMLSS(Mixed Liquor Suspended Solids)濃度が低下する。
また、AOA法(微生物処理)において、廃水処理装置の運転立上げ時ならびに一度MLSS濃度が低下して処理不能に陥った場合の活性汚泥に対して、米ぬか加工廃水等の高濃度のCODを含有する、処理負荷が高い廃水を直接通水してもMLSS濃度は低下したまま回復しない。
That is, if the pH of the organic wastewater to be treated is about 4 or less, the cells in the activated sludge responsible for removing organic substances and the like in the AOA method (microbe treatment) are damaged, and as a result, MLSS (Mixed Liquor described later) is damaged. Suspended Solids) concentration decreases.
In addition, in the AOA method (microbe treatment), it contains high-concentration COD, such as rice bran processing wastewater, at the time of start-up of the wastewater treatment equipment and activated sludge once the MLSS concentration falls and becomes impossible to treat. Even if wastewater having a high processing load is directly passed, the MLSS concentration does not recover while decreasing.

ここで、MLSS濃度(以下において汚泥濃度ともいう)とは、微生物処理において廃水処理を行う菌体を含む活性汚泥の濃度であり、有機性廃水の処理を行うために、MLSS濃度は一定の値以上を維持する必要がある。
MLSSは、廃水を処理するために消費されるが、被処理水のCOD濃度が過度に高くなければ、処理が進むにつれて回復する性質を持っている。しかしながら、その回復速度を超えてMLSS濃度が低下すれば、それ以上の廃水処理は不可能となる。
したがって、被処理有機性廃水が低pHであれば、MLSS濃度が低下し、有機物ならびにリン等の除去プロセス性能の不安定さをもたらす要因となる。また、廃水処理装置の運転立ち上げ時やMLSS濃度が処理不能な状態まで低下した状態で高COD濃度の被処理水を通水すれば、MLSS濃度は低下したまま回復しない。
Here, the MLSS concentration (hereinafter also referred to as sludge concentration) is the concentration of activated sludge containing bacterial cells that perform wastewater treatment in microbial treatment, and the MLSS concentration is a constant value in order to treat organic wastewater. It is necessary to maintain the above.
MLSS is consumed for treating wastewater, but has a property of recovering as the treatment proceeds unless the COD concentration of the treated water is excessively high. However, if the MLSS concentration decreases beyond the recovery rate, further wastewater treatment becomes impossible.
Therefore, if the organic wastewater to be treated has a low pH, the MLSS concentration decreases, which causes instability in the removal process performance of organic substances and phosphorus. In addition, if the water to be treated having a high COD concentration is allowed to flow when the wastewater treatment apparatus is started up or when the MLSS concentration is lowered to an untreatable state, the MLSS concentration is not reduced and does not recover.

つまり、窒素・リン除去型廃水処理プロセスに上述のオゾンマイクロバブルを用いた前処理を適用するだけでは、高COD濃度で処理負荷が高い有機性廃水、あるいは低pHの有機性廃水が通水された場合、水質処理に必要なMLSS濃度(汚泥濃度)を保持できなくなる。その結果、有機物やリンの除去性能、すなわち廃水処理性能が損なわれる可能性がある。   In other words, simply applying the above pretreatment using ozone microbubbles to the nitrogen / phosphorus removal type wastewater treatment process allows organic wastewater with high COD concentration and high treatment load or organic wastewater with low pH to pass through. In this case, the MLSS concentration (sludge concentration) necessary for water quality treatment cannot be maintained. As a result, the removal performance of organic matter and phosphorus, that is, the wastewater treatment performance may be impaired.

本発明は、上述の事情に鑑みてなされたものであり、本発明の少なくとも一実施形態は、米ぬか加工廃水等の、難分解性有機物を含有する高COD濃度及び/又は低pHの有機性廃水であっても、安定して廃水処理性能を維持することができる、有機性廃水の処理方法及び処理装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and at least one embodiment of the present invention is an organic wastewater having a high COD concentration and / or a low pH containing a hardly decomposable organic matter such as rice bran processing wastewater. Even so, it is an object of the present invention to provide an organic wastewater treatment method and treatment apparatus capable of stably maintaining wastewater treatment performance.

本発明の少なくとも一実施形態に係る有機性廃水処理方法は、
有機性廃水のCOD濃度及びpHを調整して調整廃水を得る調整工程と、
前記調整廃水にオゾンマイクロバブルを供給し、前記調整廃水中の難分解性有機物を低分子化して前処理廃水を得る前処理工程と、
リン蓄積細菌及び脱窒性リン蓄積細菌のうち少なくとも一方の存在下で、前記前処理廃水に、嫌気処理、好気処理及び無酸素処理を含む微生物処理を行い、前記前処理廃水に含まれる窒素とリンを除去する微生物処理工程と、
前記微生物処理工程におけるMLSS濃度を計測するMLSS計測工程と、を備え、
前記調整工程において、MLSS計測工程でのMLSS濃度計測値が閾値以下であれば、少なくともMLSS濃度計測値が前記閾値に増加するまでの期間、前記有機性廃水のCOD濃度が2000mg/L以下となるように前記有機性廃水のCOD濃度を調整し、その後、得られる前記調整廃水のpHが5.0以上8.0以下となるように前記有機性廃水のpHを調整する。
An organic wastewater treatment method according to at least one embodiment of the present invention includes:
An adjustment step of adjusting the COD concentration and pH of the organic wastewater to obtain the adjusted wastewater;
A pretreatment step of supplying ozone microbubbles to the adjusted wastewater to obtain a pretreated wastewater by reducing the molecular weight of persistent organic substances in the adjusted wastewater;
Nitrogen contained in the pretreatment wastewater by subjecting the pretreatment wastewater to microbial treatment including anaerobic treatment, aerobic treatment and oxygen-free treatment in the presence of at least one of phosphorus accumulating bacteria and denitrifying phosphorus accumulating bacteria And a microbial treatment process for removing phosphorus,
An MLSS measurement step for measuring the MLSS concentration in the microorganism treatment step,
In the adjustment step, if the MLSS concentration measurement value in the MLSS measurement step is equal to or less than the threshold value, the COD concentration of the organic wastewater is equal to or less than 2000 mg / L at least until the MLSS concentration measurement value increases to the threshold value. The COD concentration of the organic wastewater is adjusted as described above, and then the pH of the organic wastewater is adjusted so that the pH of the obtained adjusted wastewater is 5.0 or more and 8.0 or less.

上記において、MLSS濃度の閾値は、MLSS濃度が閾値以上であれば、被処理廃水のCOD濃度が高くても、MLSS濃度を回復することによって微生物処理工程において安定した処理性能が得られるようなMLSS濃度の値である。
上記有機性廃水処理方法では、調整工程において、MLSS濃度の計測値に基づいて被処理廃水である有機性廃水のCOD濃度を所定値以下に調整する。例えば、MLSS濃度の計測値が閾値以下である場合、米ぬか加工廃水等のようにCODの濃度が6000mg/L程度と高濃度である場合にはこれを希釈して2000mg/L以下とする。このため、処理対象の有機性廃水のCODが低下し、その後の微生物処理工程における活性汚泥の処理負荷を軽減させることができる。これにより、通常COD濃度が高く処理負荷が高い廃水処理開始時又は一旦MLSS濃度が低下して廃水処理が不能となった場合であっても、その後MLSS濃度(汚泥濃度)を回復させることが可能となる。又は、廃水処理が不能となる手前でMLSS濃度を回復させることが可能となる。そして、少なくともMLSS濃度計測値が前記閾値まで増加するまで希釈した有機性廃水を微生物処理工程で処理することで、MLSS濃度は前記閾値付近の定常域を維持しやすくなる。その結果、MLSS濃度を安定して維持できるため、微生物処理工程における有機物及びリンの除去性能、すなわち廃水処理性能を安定して維持することができる。
また、COD濃度調整、すなわち有機性廃水の希釈は、廃水処理開始時及び廃水処理性能が悪化した際のスタートアップ時のみであり、MLSS濃度が閾値以上の定常状態に達した場合からは、有機性廃水を希釈しなくともその後の処理が可能となる。このため、COD濃度が高い有機性廃水を全く希釈せずに微生物処理を施すことによって廃水処理性能が低下して処理が滞る場合に比べ、有機物除去時間が短縮し、その結果微生物処理における曝気動力を削減することができる。その結果、廃水処理に要する電力コストを削減することが可能となる。
また、上記有機性廃水処理方法では、調整工程において、上述のようにCOD濃度を調整した有機性廃水のpHを5.0以上8.0以下となるように調整する。このため、その後の微生物処理工程においてpHが5.0以上8.0以下に調整された被処理水が通水されるため、微生物処理工程において有機物等の除去を担う活性汚泥中の菌体が受けるダメージが低減される。その結果、MLSS濃度の低下が抑えられるため、微生物処理工程における廃水処理性能の安定した維持につながる。
このように、MLSS濃度の計測値に基づいて被処理廃水である有機性廃水のCOD濃度及びpHを調整する調整工程を設けることで、米ぬか加工廃水等の高濃度のCOD(炭素源)を含み及び/又は低pHの有機性廃水に対し、安定したMLSS濃度(汚泥濃度)を維持することが可能となり、有機物等の除去性能、すなわち廃水処理性能を改善することができる。
In the above, the MLSS concentration threshold value is such that if the MLSS concentration is equal to or higher than the threshold value, even if the COD concentration of the wastewater to be treated is high, the MLSS concentration can be recovered to restore stable treatment performance in the microbial treatment process. Concentration value.
In the organic wastewater treatment method, in the adjustment step, the COD concentration of organic wastewater that is the wastewater to be treated is adjusted to a predetermined value or less based on the measured value of the MLSS concentration. For example, when the measured value of the MLSS concentration is equal to or lower than the threshold value, when the COD concentration is as high as about 6000 mg / L, such as rice bran processing wastewater, this is diluted to 2000 mg / L or lower. For this reason, the COD of organic wastewater to be treated is reduced, and the treatment load of activated sludge in the subsequent microbial treatment process can be reduced. This makes it possible to recover the MLSS concentration (sludge concentration) afterwards, even when wastewater treatment with a high COD concentration and a high treatment load is started or when the MLSS concentration once decreases and the wastewater treatment becomes impossible. It becomes. Alternatively, the MLSS concentration can be recovered before the wastewater treatment becomes impossible. Then, by treating the organic waste water diluted at least until the MLSS concentration measurement value increases to the threshold value, the MLSS concentration can easily maintain a steady region near the threshold value. As a result, since the MLSS concentration can be stably maintained, the organic matter and phosphorus removal performance in the microbial treatment process, that is, the wastewater treatment performance can be stably maintained.
In addition, COD concentration adjustment, that is, dilution of organic wastewater is only at the start of wastewater treatment and at the start-up when the wastewater treatment performance deteriorates, and from when the MLSS concentration reaches a steady state above the threshold, Subsequent treatment is possible without diluting the wastewater. For this reason, organic matter wastewater with a high COD concentration is subjected to microbial treatment without diluting it at all, so that the wastewater treatment performance is lowered and the treatment is delayed, resulting in a reduction in organic matter removal time. As a result, aeration power in microbial treatment Can be reduced. As a result, the power cost required for wastewater treatment can be reduced.
In the organic wastewater treatment method, in the adjustment step, the pH of the organic wastewater whose COD concentration is adjusted as described above is adjusted to be 5.0 or more and 8.0 or less. For this reason, since the to-be-processed water whose pH was adjusted to 5.0 or more and 8.0 or less is passed in the subsequent microbial treatment process, the microbial cells in the activated sludge responsible for the removal of organic substances and the like in the microbial treatment process Damage received is reduced. As a result, a decrease in the MLSS concentration is suppressed, leading to stable maintenance of wastewater treatment performance in the microbial treatment process.
In this way, by providing an adjustment process that adjusts the COD concentration and pH of the organic wastewater that is the wastewater to be treated based on the measured value of the MLSS concentration, high concentration COD (carbon source) such as rice bran processing wastewater is included. In addition, it is possible to maintain a stable MLSS concentration (sludge concentration) with respect to organic wastewater having a low pH, and it is possible to improve the removal performance of organic substances, that is, the wastewater treatment performance.

幾つかの実施形態では、前記微生物処理工程は、嫌気処理、好気処理及び無酸素処理をこの順に含む。
この場合、微生物処理工程は嫌気処理、好気処理及び無酸素処理の順に処理を行うAOA法である。幾つかの実施形態で微生物処理工程に用いられる脱窒性リン蓄積細菌は、AOA法で運転されている汚泥に大抵含まれているため、この汚泥を有効に活用することで被処理廃水から窒素及びリンを効率よく除去することが可能となる。
In some embodiments, the microbial treatment step includes an anaerobic treatment, an aerobic treatment, and an oxygen-free treatment in this order.
In this case, the microorganism treatment step is an AOA method in which treatment is performed in the order of anaerobic treatment, aerobic treatment, and oxygen-free treatment. In some embodiments, denitrifying phosphorus-accumulating bacteria used in the microbial treatment process are mostly contained in sludge operated by the AOA method. Therefore, by effectively using this sludge, nitrogen can be removed from the wastewater to be treated. And phosphorus can be efficiently removed.

幾つかの実施形態では、前記MLSS濃度計測値の前記閾値が6500mg/Lである。   In some embodiments, the threshold of the MLSS concentration measurement is 6500 mg / L.

また、幾つかの実施形態では、前記有機性廃水が、米加工廃水又は米ぬか加工廃水である。   In some embodiments, the organic wastewater is rice processing wastewater or rice bran processing wastewater.

本発明の少なくとも一実施形態に係る有機性廃水処理装置は、
有機性廃水処理に含まれる有機物とリンを除去する有機性廃水処理装置であって、
有機性廃水のCOD濃度を調整するCOD濃度調整手段と、
前記有機性廃水のpHを調製するpH調整手段と、
マイクロバブルにオゾンを溶解させてオゾンマイクロバブルを生成するオゾンマイクロバブル生成手段と、
前記有機性廃水に、前記オゾンマイクロバブル生成手段で生成したオゾンマイクロバブルを供給して前記有機性廃水中の難分解性有機物を低分子化して前記処理廃水を得る前処理手段と、
前記前処理手段の後段に接続され、リン蓄積細菌及び脱窒性リン蓄積細菌のうち少なくとも一方の存在下で、前記前処理廃水に、嫌気処理、好気処理及び無酸素処理を含む微生物処理を行い前記前処理排水に含まれる窒素とリンを除去する微生物処理手段と、
前記微生物処理手段におけるMLSS濃度を計測するMLSS計測手段と、
前記MLSS計測工程でのMLSS濃度の計測値に基づいて、前記COD濃度調整手段により調整される後の前記有機性廃水のCOD濃度である目標COD濃度を決定し、前記有機性廃水のCOD濃度が前記目標COD濃度となるように前記COD濃度調整手段を制御する制御手段と、を備える。
An organic wastewater treatment apparatus according to at least one embodiment of the present invention,
An organic wastewater treatment apparatus for removing organic substances and phosphorus contained in organic wastewater treatment,
COD concentration adjusting means for adjusting the COD concentration of organic waste water;
PH adjusting means for adjusting the pH of the organic waste water;
Ozone microbubble generating means for generating ozone microbubbles by dissolving ozone in microbubbles;
Pretreatment means for obtaining the treated wastewater by supplying ozone microbubbles generated by the ozone microbubble generating means to the organic wastewater to lower the molecular weight of the hardly decomposable organic matter in the organic wastewater;
In the presence of at least one of phosphorus-accumulating bacteria and denitrifying phosphorus-accumulating bacteria, connected to the subsequent stage of the pretreatment means, the pretreatment wastewater is subjected to microbial treatment including anaerobic treatment, aerobic treatment and oxygen-free treatment. Microbial treatment means for removing nitrogen and phosphorus contained in the pretreatment wastewater,
MLSS measuring means for measuring the MLSS concentration in the microorganism treatment means;
Based on the measured value of the MLSS concentration in the MLSS measurement step, a target COD concentration that is the COD concentration of the organic wastewater after being adjusted by the COD concentration adjusting means is determined, and the COD concentration of the organic wastewater is Control means for controlling the COD concentration adjusting means so as to achieve the target COD concentration.

上記有機性廃水処理装置では、COD調整手段及び制御手段により、MLSS濃度の計測値に基づいて被処理廃水である有機性廃水のCOD濃度を所定値以下に調整し、pH調整手段により有機性廃水のpHを調整することができる。
制御手段によりCOD調整手段を制御することにより処理対象の有機性廃水のCOD濃度を調整し、これにより、その後の微生物処理工程における活性汚泥の処理負荷を軽減させることができる。したがって、廃水処理開始時又は一旦MLSS濃度が低下して廃水処理が不能となった場合であっても、その後MLSS濃度(汚泥濃度)を回復させることが可能となる。又は、廃水処理が不能となる手前でMLSS濃度を回復させることが可能となる。その結果、MLSS濃度を安定して維持できるため、微生物処理工程における有機物及びリンの除去性能、すなわち廃水処理性能を安定して維持することができる。
また、pH調整手段により、処理対象の有機性廃水のpHを所定範囲内に調製することにより、微生物処理工程において有機物等の除去を担う活性汚泥中の菌体が受けるダメージを低減することができる。その結果、MLSS濃度の低下が抑えられるため、微生物処理工程における廃水処理性能の安定した維持につながる。
このように、上記装置では、MLSS濃度の計測値に基づいて被処理廃水である有機性廃水のCOD濃度及びpHを調整するCOD調整手段及びpH調整手段を設けられる。このため、COD調整手段及びpH調整手段の後に被処理水が通水される微生物処理手段において、米ぬか加工廃水等の高濃度のCOD(炭素源)を含み及び/又は低pHの有機性廃水に対し、安定したMLSS濃度(汚泥濃度)を維持することが可能となる。したがって、有機物等の除去性能、すなわち廃水処理性能を改善することができる。
In the organic wastewater treatment device, the COD adjusting means and the control means adjust the COD concentration of the organic wastewater that is the wastewater to be treated to a predetermined value or less based on the measured value of the MLSS concentration, and the organic wastewater by the pH adjusting means. The pH of the can be adjusted.
By controlling the COD adjusting means by the control means, the COD concentration of the organic waste water to be treated can be adjusted, thereby reducing the treatment load of activated sludge in the subsequent microbial treatment process. Therefore, even when the wastewater treatment is started or when the MLSS concentration once decreases and the wastewater treatment becomes impossible, the MLSS concentration (sludge concentration) can be recovered thereafter. Alternatively, the MLSS concentration can be recovered before the wastewater treatment becomes impossible. As a result, since the MLSS concentration can be stably maintained, the organic matter and phosphorus removal performance in the microbial treatment process, that is, the wastewater treatment performance can be stably maintained.
In addition, by adjusting the pH of the organic wastewater to be treated within a predetermined range by the pH adjusting means, it is possible to reduce damage to the cells in the activated sludge that is responsible for removing organic substances and the like in the microorganism treatment step. . As a result, a decrease in the MLSS concentration is suppressed, leading to stable maintenance of wastewater treatment performance in the microbial treatment process.
Thus, the apparatus is provided with COD adjusting means and pH adjusting means for adjusting the COD concentration and pH of the organic wastewater that is the wastewater to be treated based on the measured value of the MLSS concentration. For this reason, in the microbial treatment means in which treated water is passed after the COD adjustment means and the pH adjustment means, high-concentration COD (carbon source) such as rice bran processing wastewater and / or low pH organic wastewater In contrast, a stable MLSS concentration (sludge concentration) can be maintained. Therefore, the removal performance of organic substances, that is, the wastewater treatment performance can be improved.

本発明の少なくとも一実施形態によれば、米ぬか加工廃水等の、難分解性有機物を含有する高COD濃度及び/又は低pHの有機性廃水であっても、安定して廃水処理性能を維持することができる。   According to at least one embodiment of the present invention, wastewater treatment performance is stably maintained even with organic wastewater having a high COD concentration and / or low pH containing a hardly decomposable organic matter such as rice bran processing wastewater. be able to.

一実施形態に係る有機性廃水処理方法を示すフロー図である。It is a flowchart which shows the organic wastewater treatment method which concerns on one Embodiment. 一実施形態に係る有機性廃水処理装置の構成例を示す全体図である。1 is an overall view showing a configuration example of an organic wastewater treatment apparatus according to an embodiment. 一実施形態に係る有機性廃水処理装置のCOD濃度調整手段及びpH調整手段の概略構成図である。It is a schematic block diagram of the COD density | concentration adjustment means and pH adjustment means of the organic wastewater treatment apparatus which concerns on one Embodiment. 一実施形態に係る有機性廃水処理装置の前処理槽の概略構成図である。It is a schematic block diagram of the pretreatment tank of the organic wastewater treatment apparatus which concerns on one Embodiment. 実施例における試験結果であり、従来の処理方法及び本発明の処理方法におけるMLSS濃度(汚泥濃度)の径時変化を示すグラフである。It is a test result in an Example, and is a graph which shows the time change of the MLSS density | concentration (sludge density | concentration) in the conventional processing method and the processing method of this invention. 実施例における試験結果であり、好気処理におけるCOD濃度の経時変化を示すグラフである。It is a test result in an Example and is a graph which shows the time-dependent change of the COD density | concentration in an aerobic process. 実施例における試験結果であり、COD濃度の除去性能を示したグラフである。It is the test result in an Example, and is the graph which showed the removal performance of COD density | concentration.

以下、添付図面を参照して本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状及びその相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。なお、以下の実施形態における処理対象の有機性廃水は、米ぬか加工工場等から排出された米ぬかや米のとぎ汁等を含む米ぬか加工廃水であり、BOD、COD、窒素、リンを含む有機性廃水である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, and relative arrangements of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only. The organic wastewater to be treated in the following embodiments is rice bran processing wastewater containing rice bran and rice broth discharged from a rice bran processing factory, etc., and is an organic wastewater containing BOD, COD, nitrogen, and phosphorus. is there.

図1は、一実施形態に係る有機性廃水処理方法を示すフロー図である。
図1を参照して、本発明の一実施形態に係る有機性廃水処理方法の基本フローを説明する。
本実施形態に係る米ぬか加工廃水の処理方法は、主に、調整工程1と、前処理工程2と、嫌気処理工程3、好気処理工程4、無酸素処理工程5を含む微生物処理工程6と、MLSS計測工程7とを備える。この処理方法は、微生物処理工程6の後、微生物処理工程で得られる処理水と余剰汚泥を分離する固液分離工程8をさらに備えてもよい。
FIG. 1 is a flowchart showing an organic wastewater treatment method according to an embodiment.
With reference to FIG. 1, the basic flow of the organic wastewater treatment method which concerns on one Embodiment of this invention is demonstrated.
The rice bran processing wastewater treatment method according to the present embodiment mainly includes an adjustment step 1, a pretreatment step 2, an anaerobic treatment step 3, an aerobic treatment step 4, and a microbial treatment step 6 including an oxygen-free treatment step 5. MLSS measurement step 7. This treatment method may further include a solid-liquid separation step 8 for separating the treated water and excess sludge obtained in the microorganism treatment step after the microorganism treatment step 6.

次に、一実施形態に係る有機性廃水処理方法の各工程について説明する。   Next, each step of the organic wastewater treatment method according to an embodiment will be described.

調整工程1では、処理対象の有機性廃水のCOD濃度及びpHを調整し調整廃水を得る。この調整工程1においては、後述するMLSS計測工程7でのMLSS濃度計測値が閾値以下であれば、処理対象の有機性廃水のCOD濃度が2000mg/L以下となるように前記有機性廃水のCOD濃度を調整し、その後、得られる前記調整廃水のpHが5.0以上8.0以下となるように前記有機性廃水のpHを調整する。   In the adjustment step 1, the adjustment wastewater is obtained by adjusting the COD concentration and pH of the organic wastewater to be treated. In the adjustment step 1, if the MLSS concentration measurement value in the MLSS measurement step 7 described later is equal to or less than the threshold value, the COD concentration of the organic waste water is adjusted so that the COD concentration of the organic waste water to be treated is 2000 mg / L or less. The concentration is adjusted, and then the pH of the organic wastewater is adjusted so that the pH of the obtained adjusted wastewater is 5.0 or more and 8.0 or less.

COD濃度の調整は、MLSS計測工程7でのMLSS濃度計測値に基づいて米ぬか加工処理水(有機性廃水)の原水を希釈することによって行う。すなわち、MLSS濃度が閾値以下であれば、少なくともMLSS濃度計測値が前記閾値となるまでの期間、有機性廃水を水で希釈することによりCOD濃度を調整する。一方、MLSS濃度が閾値よりも高ければ希釈によるCOD濃度調整は行わない。
一実施形態においては、COD濃度が2000mg/L以下となるように有機性廃水を水で希釈する。COD濃度が2000mg/L程度以下であると、MLSS濃度が低下して微生物工程6における廃水処理性能が低下しても、COD濃度が抑制されていることにより汚泥の処理負荷が少なくとも一時的に低下する。このため、低下したMLSS濃度を回復(増加)させることが可能となる。
一実施形態において、MLSS濃度の上記閾値は、6500mg/Lである。他の実施形態においてはMLSS濃度の上記閾値は、5000mg/L〜7000mg/Lの範囲で調整される。
また、他の実施形態においては、上記のMLSS濃度計測値に基づいたCOD濃度調整に加え、有機性廃水処理の開始時にCOD濃度を調整してもよい。廃水処理開始時は、微生物工程6における汚泥の処理負荷が大きいため、有機性廃水を希釈してCOD濃度を低下させることによってMLSS濃度が回復しやすくなり、微生物処理工程6における廃水処理性能が維持されやすくなる。
他の実施形態において、COD濃度調整後のCOD濃度は、1500mg/L以下である。
The adjustment of the COD concentration is performed by diluting raw rice bran processing water (organic wastewater) based on the MLSS concentration measurement value in the MLSS measurement step 7. That is, if the MLSS concentration is equal to or lower than the threshold value, the COD concentration is adjusted by diluting the organic waste water with water at least until the MLSS concentration measurement value reaches the threshold value. On the other hand, if the MLSS concentration is higher than the threshold value, the COD concentration adjustment by dilution is not performed.
In one embodiment, the organic wastewater is diluted with water such that the COD concentration is 2000 mg / L or less. When the COD concentration is about 2000 mg / L or less, even if the MLSS concentration is reduced and the wastewater treatment performance in the microbial process 6 is reduced, the treatment load of sludge is at least temporarily reduced because the COD concentration is suppressed. To do. For this reason, it is possible to recover (increase) the lowered MLSS concentration.
In one embodiment, the threshold for MLSS concentration is 6500 mg / L. In another embodiment, the threshold value for MLSS concentration is adjusted in the range of 5000 mg / L to 7000 mg / L.
In another embodiment, in addition to the COD concentration adjustment based on the MLSS concentration measurement value, the COD concentration may be adjusted at the start of the organic wastewater treatment. At the start of wastewater treatment, the sludge treatment load in the microbial process 6 is large. Therefore, the MLSS concentration is easily recovered by diluting the organic wastewater to reduce the COD concentration, and the wastewater treatment performance in the microbial treatment process 6 is maintained. It becomes easy to be done.
In another embodiment, the COD concentration after adjusting the COD concentration is 1500 mg / L or less.

また、有機性廃水のpHの調整は、上記COD濃度の調整を行った後、40質量%の水酸化ナトリウム水溶液を加えることでpHが5.0以上8.0以下となるように調整する。このようにpHを調整すると、その後の微生物処理工程においてpHが5.0以上8.0の中性付近に調整された被処理水が通水されるため、微生物処理工程において有機物等の除去を担う活性汚泥中の菌体が受けるダメージが低減される。その結果、MLSS濃度の低下が抑えられるため、微生物処理工程における廃水処理性能の安定した維持につながる。
他の実施形態では、pHが6.0以上7.0以下となるように調節する。
Further, the pH of the organic wastewater is adjusted so that the pH becomes 5.0 or more and 8.0 or less by adding a 40% by mass aqueous sodium hydroxide solution after adjusting the COD concentration. When the pH is adjusted in this way, water to be treated whose pH is adjusted to about 5.0 to 8.0 in the subsequent microbial treatment step is passed, so that organic substances and the like are removed in the microbial treatment step. Damage to the cells in the activated sludge is reduced. As a result, a decrease in the MLSS concentration is suppressed, leading to stable maintenance of wastewater treatment performance in the microbial treatment process.
In another embodiment, the pH is adjusted to be 6.0 or more and 7.0 or less.

前処理工程2では、マイクロバブルにオゾンを溶解させたオゾンマイクロバブルを、調整工程1でCOD濃度及びpHを調整した米ぬか加工廃水(調整廃水)に供給して、該調整廃水に含まれる難分解性有機物を低分子化し、前処理廃水を得る。
マイクロバブルとは、大きさ(径)が10〜数10μm程度の微細な気泡であり、好適には気泡が発生した時の大きさが50μmより小さい気泡である。調整廃水にオゾンマイクロバブルを供給することで、調整廃水中の難分解性有機物の低分子化を行い、嫌気性処理でリン蓄積細菌類、脱窒素リン蓄積細菌類による有機物の取り込みを容易にさせる。
In the pretreatment step 2, ozone microbubbles in which ozone is dissolved in the microbubbles are supplied to the rice bran processing wastewater (adjusted wastewater) adjusted in COD concentration and pH in the adjustment step 1, and the hard decomposition contained in the adjusted wastewater To reduce the molecular weight of organic substances and obtain pretreatment wastewater.
The microbubble is a fine bubble having a size (diameter) of about 10 to several tens of μm, and preferably a bubble having a size smaller than 50 μm when the bubble is generated. By supplying ozone microbubbles to the adjusted wastewater, the molecular weight of persistent organic substances in the adjusted wastewater is reduced, and the organic matter is easily taken up by phosphorus accumulating bacteria and denitrified phosphorus accumulating bacteria by anaerobic treatment. .

より具体的には、オゾンの酸化力により調整廃水中の難分解性有機物を低分子化するとともに、マイクロバブルの消滅により生成するOHラジカルの酸化力により難分解性有機物を低分子化する。このとき、マイクロバブルの電荷により難分解性有機物を低分子化が促進されると考えられる。さらに、マイクロバブルは超微細であるため、その上昇速度はストークスの式にほぼ従うとされ、マイクロバブルの上昇速度は非常に遅い。したがってマイクロバブルの液中滞留時間が長いため、難分解性有機物とオゾン又はOHラジカルとの接触効率が極めて高くなり、難分解性有機物を高効率で低分子化することが可能となる。
なお、前処理工程の前段にて、処理対象の廃水中の夾雑物を除去したり、廃水の温度調整を行うなどの予備処理を施しておくことが好ましい。
More specifically, the molecular weight of the hardly decomposable organic substance in the adjusted wastewater is reduced by the oxidizing power of ozone, and the molecular weight of the hardly decomposable organic substance is reduced by the oxidizing power of the OH radical generated by the disappearance of the microbubbles. At this time, it is considered that the molecular weight of the hardly decomposable organic substance is promoted by the charge of the microbubbles. Furthermore, since the microbubbles are ultrafine, the rising speed is assumed to substantially follow the Stokes equation, and the rising speed of the microbubbles is very slow. Accordingly, since the microbubbles stay in the liquid for a long time, the contact efficiency between the hardly-decomposable organic substance and ozone or OH radicals becomes extremely high, and it becomes possible to reduce the molecular weight of the hardly-decomposable organic substance with high efficiency.
In addition, it is preferable to perform preliminary treatments such as removing impurities in the wastewater to be treated or adjusting the temperature of the wastewater in the previous stage of the pretreatment step.

本実施形態の微生物処理工程6では、脱窒性リン蓄積細菌の存在下で、前処理工程2で得られた前処理廃水に、嫌気処理、好気処理及び無酸素処理をこの順に含む微生物処理を行い、前記前処理廃水に含まれる窒素とリンを除去する。
他の実施形態においては、脱窒性リン蓄積細菌に代えてリン蓄積細菌の存在下、又はリン蓄積細菌及び脱窒性リン蓄積細菌の存在下で微生物処理を行ってもよい。
また、他の実施形態においては、微生物処理は嫌気処理、好気処理及び無酸素処理を任意の順に含む。
In the microorganism treatment step 6 of the present embodiment, a microorganism treatment including anaerobic treatment, aerobic treatment, and oxygen-free treatment in this order in the pretreatment wastewater obtained in the pretreatment step 2 in the presence of denitrifying phosphorus-accumulating bacteria. To remove nitrogen and phosphorus contained in the pretreatment wastewater.
In another embodiment, the microbial treatment may be performed in the presence of phosphorus accumulating bacteria instead of denitrifying phosphorus accumulating bacteria, or in the presence of phosphorus accumulating bacteria and denitrifying phosphorus accumulating bacteria.
In another embodiment, the microbial treatment includes anaerobic treatment, aerobic treatment, and anoxic treatment in any order.

嫌気処理工程3は、リン蓄積細菌及び脱窒性リン蓄積細菌の少なくとも一方の存在下で、前処理工程2で得られた前処理廃水を嫌気処理する。ここでリン蓄積細菌及び脱窒性リン蓄積細菌は、前処理廃水に含まれる炭素源(有機物)を取り込み、リンを放出する。このとき、前処理工程3で米ぬか加工廃水(調整廃水)中の難分解性有機物が低分子化しているため、嫌気処理での炭素源の取り込みが円滑に行われる。
好適には、嫌気処理工程には、リン蓄積細菌及び脱窒性リン蓄積細菌の少なくとも一方を含む汚泥(活性汚泥)若しくはこれらの少なくとも一方が固定化された生物膜が用いられる。
In the anaerobic treatment step 3, the pretreatment wastewater obtained in the pretreatment step 2 is anaerobically treated in the presence of at least one of phosphorus accumulating bacteria and denitrifying phosphorus accumulating bacteria. Here, the phosphorus accumulating bacteria and the denitrifying phosphorus accumulating bacteria take up the carbon source (organic matter) contained in the pretreated wastewater and release phosphorus. At this time, since the hard-to-decompose organic matter in the rice bran processing wastewater (conditioned wastewater) is reduced in the pretreatment step 3, the carbon source can be smoothly taken up in the anaerobic treatment.
Preferably, in the anaerobic treatment step, sludge (activated sludge) containing at least one of phosphorus accumulating bacteria and denitrifying phosphorus accumulating bacteria or a biofilm on which at least one of them is immobilized is used.

主として、脱窒性リン蓄積細菌を含む汚泥を用いて嫌気性処理を行う場合には、脱窒性リン蓄積細菌を含む汚泥を嫌気/無酸素条件で馴養し、脱窒性リン蓄積細菌を優占化させる。この馴養では、嫌気性処理終時に硝酸ナトリウム等の硝酸イオン源を微生物の活性状態により適宜添加してもよく、また処理対象の調整廃水を供給しつつ各処理を脱窒性リン蓄積細菌が優占化するまでこれらの処理を繰り返し行うことが好ましい。主として、脱窒性リン蓄積細菌が固定化された生物膜を用いて嫌気性処理を行う場合には、増殖速度の遅い硝化細菌が生物膜内側に、脱窒性リン蓄積細菌が生物膜外側に局在化するような生物膜を用いることが好ましい。   When anaerobic treatment is mainly performed using sludge containing denitrifying phosphorus-accumulating bacteria, the sludge containing denitrifying phosphorus-accumulating bacteria is acclimatized under anaerobic / anoxic conditions, and the denitrifying phosphorus-accumulating bacteria are favored. Fortune-telling. In this acclimatization, a nitrate ion source such as sodium nitrate may be appropriately added at the end of the anaerobic treatment depending on the activity state of the microorganism, and each treatment is preferentially performed by denitrifying phosphorus-accumulating bacteria while supplying adjusted wastewater to be treated. It is preferable to repeat these processes until they are occupied. Mainly, when anaerobic treatment is performed using a biofilm on which denitrifying phosphorus-accumulating bacteria are immobilized, nitrifying bacteria with a slow growth rate are placed inside the biofilm, and denitrifying phosphorus-accumulating bacteria are placed outside the biofilm. It is preferable to use a biofilm that can be localized.

好気処理工程4は、処理対象の調整廃水中に空気を供給して好気条件とし、ここで硝化細菌によるアンモニア態窒素の硝酸態窒素への酸化、及びリン蓄積細菌によるリンの取り込みが行われる。なお、この好気処理工程4では、リン蓄積細菌による過剰なリン取り込みを防止するために、好気処理工程初期に有機炭素源を少量添加し、リン取り込み量を制限することが好ましい。これにより、後の無酸素処理工程5において、脱窒性リン蓄積細菌による硝酸態窒素の取り込みを十分に行うことが可能となる。   In the aerobic treatment step 4, air is supplied into the conditioned wastewater to be treated to obtain an aerobic condition, where oxidation of ammonia nitrogen to nitrate nitrogen by nitrifying bacteria and uptake of phosphorus by phosphorus accumulating bacteria are performed. Is called. In this aerobic treatment step 4, in order to prevent excessive phosphorus uptake by phosphorus accumulating bacteria, it is preferable to add a small amount of an organic carbon source at the initial stage of the aerobic treatment step to limit the phosphorus uptake amount. This makes it possible to sufficiently take up nitrate nitrogen by the denitrifying phosphorus-accumulating bacteria in the subsequent oxygen-free treatment step 5.

無酸素処理工程5は、空気の供給を停止して無酸素条件とし、ここで脱窒性リン蓄積細菌による脱窒反応及びリンの取り込みが行われる。
無酸素処理工程4の終了後は、余剰汚泥と処理水とを分離する固液分離工程8が行われる。固液分離工程8は、例えば、沈殿、膜分離等の公知の方法が用いられ、凝集剤を投入して汚泥を凝集沈殿させてもよい。
In the oxygen-free treatment step 5, the supply of air is stopped to make oxygen-free conditions, where denitrification reaction and phosphorus uptake by denitrifying phosphorus-accumulating bacteria are performed.
After the end of the oxygen-free treatment step 4, a solid-liquid separation step 8 for separating excess sludge and treated water is performed. In the solid-liquid separation step 8, for example, a known method such as precipitation or membrane separation is used, and a flocculant may be added to coagulate and precipitate sludge.

上記した微生物処理工程6は、バッチ式であっても連続式であってもよい。連続式の場合には、固液分離工程8で分離した余剰汚泥の一部を嫌気処理工程3に返送し、MLSS濃度を維持することが好ましい。
本実施形態によれば、前処理工程2及び微生物処理工程6の前に調整工程1を設けたことにより、微生物処理工程における廃水処理性能が維持されることで、リンの除去性能が向上することが期待できる。これにより、微生物処理工程に用いられる汚泥中のリン濃度が高くなり、汚泥からリンを回収する従来手法を採用した場合に、リン回収率の向上が期待できる。
The above-described microorganism treatment step 6 may be a batch type or a continuous type. In the case of a continuous type, it is preferable to return a part of the excess sludge separated in the solid-liquid separation step 8 to the anaerobic treatment step 3 to maintain the MLSS concentration.
According to this embodiment, by providing the adjustment process 1 before the pretreatment process 2 and the microorganism treatment process 6, the wastewater treatment performance in the microorganism treatment process is maintained, thereby improving the phosphorus removal performance. Can be expected. Thereby, the phosphorus density | concentration in the sludge used for a microorganism treatment process becomes high, and when the conventional method of collect | recovering phosphorus from sludge is employ | adopted, the improvement of a phosphorus collection | recovery rate can be anticipated.

MLSS計測工程7では、微生物処理工程6におけるMLSS濃度を計測する。MLSS濃度は活性汚泥法における曝気槽内の活性汚泥量をmg/Lで表したものであり、本実施形態においては、微生物処理工程6における処理対象の前処理廃水と、微生物処理工程6で用いるリン蓄積細菌及び脱窒性リン蓄積細菌の少なくとも一方を含む汚泥(活性汚泥)との混合液中の汚泥の濃度(mg/L)である。
MLSS濃度の計測には、一般に用いられるMLSS計を使用することができる。
In the MLSS measurement step 7, the MLSS concentration in the microorganism treatment step 6 is measured. The MLSS concentration is the amount of activated sludge in the aeration tank in the activated sludge method expressed in mg / L. In this embodiment, the pretreatment waste water to be treated in the microorganism treatment step 6 and the microorganism treatment step 6 are used. It is the density | concentration (mg / L) of the sludge in a liquid mixture with the sludge (active sludge) containing at least one of phosphorus accumulation bacteria and denitrification phosphorus accumulation bacteria.
A commonly used MLSS meter can be used to measure the MLSS concentration.

次に、図2〜図4を参照して、一実施形態に係る有機性廃水処理装置の構成について説明する。   Next, with reference to FIGS. 2-4, the structure of the organic waste water treatment apparatus which concerns on one Embodiment is demonstrated.

図2は一実施形態に係る有機性廃水処理装置の構成例を示す全体図であり、図3は、一実施形態に係る有機性廃水処理装置のCOD濃度調整手段及びpH調整手段の概略構成図である。
図2に示すように、有機性廃水処理装置110は、主に、COD濃度調整手段50と、pH調整手段60と、オゾンマイクロバブル生成手段11と、前処理槽10を含む前処理手段と、微生物処理槽35を含む微生物処理手段と、MLSS計56を含むMLSS計測手段と、コントローラ100を含む制御手段と、を備える。微生物処理槽35は、嫌気性処理工程、好気性処理工程、無酸素処理工程をそれぞれ別個に行う槽を複数設け、これらを直列に接続してもよいし、同図に示すように槽内の条件を変化させて嫌気性処理工程、好気性処理工程、無酸素処理工程を単一槽で行うようにしてもよいが、装置の設置面積の削減及び装置の小型化ができることから、特に単一槽であることが好ましい。
FIG. 2 is an overall view showing a configuration example of an organic wastewater treatment apparatus according to an embodiment, and FIG. 3 is a schematic configuration diagram of COD concentration adjusting means and pH adjustment means of the organic wastewater treatment apparatus according to one embodiment. It is.
As shown in FIG. 2, the organic wastewater treatment apparatus 110 mainly includes a COD concentration adjusting means 50, a pH adjusting means 60, an ozone microbubble generating means 11, a pretreatment means including a pretreatment tank 10, A microbial treatment means including a microbial treatment tank 35, an MLSS measurement means including an MLSS meter 56, and a control means including a controller 100 are provided. The microbial treatment tank 35 may be provided with a plurality of tanks for performing the anaerobic treatment process, the aerobic treatment process, and the anaerobic treatment process separately, and these may be connected in series, as shown in FIG. The anaerobic treatment process, the aerobic treatment process, and the anaerobic treatment process may be performed in a single tank by changing the conditions. However, since the installation area of the apparatus can be reduced and the apparatus can be reduced in size, A tank is preferred.

以下に、有機性廃水処理装置の詳細な構成を説明する。
処理対象の有機性廃水は、ポンプ20により一旦貯水タンク21に貯留される。貯水タンク21には、有機性廃水のpHや温度を測定するセンサ22が設置されている。
貯水タンク21の米加工廃水は、廃水供給ライン23を介してポンプ24により前処理槽10に送給される。廃水供給ライン23上にはバルブ25が設けられており、このバルブ25により前処理槽10へ供給する廃水処理量が調整される。また、廃水供給ライン23から分岐した廃水の一部を貯水タンク21へ返送する返送ライン26を設けてもよく、廃水返送量はバルブ27により調整される。
Below, the detailed structure of an organic wastewater treatment apparatus is demonstrated.
The organic waste water to be treated is temporarily stored in the water storage tank 21 by the pump 20. The water storage tank 21 is provided with a sensor 22 for measuring the pH and temperature of organic wastewater.
Rice processing wastewater in the water storage tank 21 is fed to the pretreatment tank 10 by a pump 24 through a wastewater supply line 23. A valve 25 is provided on the wastewater supply line 23, and the amount of wastewater supplied to the pretreatment tank 10 is adjusted by the valve 25. A return line 26 for returning a part of the waste water branched from the waste water supply line 23 to the water storage tank 21 may be provided, and the amount of waste water returned is adjusted by a valve 27.

前処理槽10には、オゾンマイクロバブル生成手段11で生成されたオゾンマイクロバブルが供給される。具体的には、オゾンマイクロバブル生成手段11には、循環ライン17(17a、17b)が接続されており、前処理槽10に送給された有機性廃水がこの循環ライン17(17a、17b)を介して前処理槽10とマイクロバブル発生装置16間を循環することにより、廃水中にオゾンマイクロバブルが供給される。循環ライン17(17a、17b)上にはバルブ18(18a、18b)が設けられており、ここで循環量が調整される。なお、オゾンマイクロバブル生成手段11は、図2で説明したものと同一である。
また、前処理槽10には、槽内を撹拌する撹拌機19と、前処理槽10内の廃水中のオゾン濃度を測定するオゾンモニタ28と、有機性廃水のpHや温度を測定するセンサ29が設置されている。
The pretreatment tank 10 is supplied with ozone microbubbles generated by the ozone microbubble generating means 11. Specifically, a circulation line 17 (17a, 17b) is connected to the ozone microbubble generating means 11, and the organic waste water fed to the pretreatment tank 10 is the circulation line 17 (17a, 17b). By circulating between the pretreatment tank 10 and the microbubble generator 16 through the ozone microbubbles are supplied to the wastewater. Valves 18 (18a, 18b) are provided on the circulation line 17 (17a, 17b), and the amount of circulation is adjusted here. In addition, the ozone microbubble production | generation means 11 is the same as what was demonstrated in FIG.
The pretreatment tank 10 includes a stirrer 19 for stirring the inside of the tank, an ozone monitor 28 for measuring the ozone concentration in the wastewater in the pretreatment tank 10, and a sensor 29 for measuring the pH and temperature of the organic wastewater. Is installed.

前処理槽10から排出された有機性廃水は、廃水供給ライン30を介してポンプ31により微生物処理槽35に送給される。廃水供給ライン30上には、バルブ32等が設けられており、このバルブ32等により微生物処理槽35へ供給する廃水処理量が調整される。
微生物処理槽35には、循環ライン37(37a、37b)を介してマイクロバブル発生装置36が接続されている。マイクロバブル発生装置36は、廃水中に空気のマイクロバブルを供給して微生物処理槽35内を好気条件にするための装置である。空気の供給量(曝気量)はバルブ38(38a、38b)により調整される。
The organic waste water discharged from the pretreatment tank 10 is fed to the microorganism treatment tank 35 by the pump 31 through the waste water supply line 30. A valve 32 and the like are provided on the waste water supply line 30, and the amount of waste water to be supplied to the microorganism treatment tank 35 is adjusted by the valve 32 and the like.
A microbubble generator 36 is connected to the microorganism treatment tank 35 via a circulation line 37 (37a, 37b). The microbubble generator 36 is an apparatus for supplying microbubbles of air into wastewater to make the inside of the microorganism treatment tank 35 aerobic. The supply amount of air (aeration amount) is adjusted by the valve 38 (38a, 38b).

また、微生物処理槽35には、循環ライン41(41a、41b)を介して槽内の温度調整を行う空冷チラー40が接続されており、循環ライン41aには圧力脈動を防止するための膨張タンク43が接続されている。
さらにまた、微生物処理槽35には、槽内を撹拌する撹拌機44と、微生物処理槽内の廃水のpHや温度を測定するセンサ45が設置されている。
The microorganism treatment tank 35 is connected with an air cooling chiller 40 for adjusting the temperature in the tank via a circulation line 41 (41a, 41b), and the circulation line 41a is an expansion tank for preventing pressure pulsation. 43 is connected.
Further, the microorganism treatment tank 35 is provided with a stirrer 44 for stirring the inside of the tank and a sensor 45 for measuring the pH and temperature of waste water in the microorganism treatment tank.

上記した構成を備える微生物処理槽35において、各処理工程の条件に合わせて、各バルブを開度調整して槽内の状態を変化させるとよい。例えば、好気性処理工程では、マイクロバブル発生装置36のバルブ38(38a、38b)を開にして微生物処理槽35内に空気のマイクロバブルを供給して好気条件とする。また、温度調整を行う場合には、空冷チラー40のバルブ42(42a、42b)を調整する。
この微生物処理槽35で、嫌気性処理工程、好気性処理工程、無酸素処理工程からなる一連の処理工程が終了したら、排出ライン70より処理水を排出し、後段の固液分離装置(図示略)に送給する。
In the microorganism treatment tank 35 having the above-described configuration, it is preferable to change the state of the tank by adjusting the opening of each valve in accordance with the conditions of each treatment process. For example, in the aerobic treatment process, the valve 38 (38a, 38b) of the microbubble generator 36 is opened to supply microbubbles of air into the microorganism treatment tank 35 to obtain an aerobic condition. Moreover, when adjusting temperature, the valve | bulb 42 (42a, 42b) of the air cooling chiller 40 is adjusted.
When a series of treatment steps including an anaerobic treatment step, an aerobic treatment step, and an anaerobic treatment step are completed in the microbial treatment tank 35, the treated water is discharged from the discharge line 70, and a subsequent solid-liquid separation device (not shown). ).

貯水タンク21、前処理槽10、微生物処理槽35それぞれに設置されたセンサ22,29,45により測定されたpHや温度の測定値のデータは、後述するコントローラ100に送信される。   Data of measured values of pH and temperature measured by sensors 22, 29, and 45 installed in the water storage tank 21, the pretreatment tank 10, and the microorganism treatment tank 35 are transmitted to the controller 100 described later.

一実施形態において、貯水タンク21には、処理対象の廃水のCOD濃度を調整するCOD濃度調整手段50が接続される。一実施形態においては、図2及び図3に示すように、COD濃度調整手段50は、貯水タンク21において処理対象の廃水のCOD濃度を希釈するための希釈水を貯留する希釈水タンク52と、希釈水流量制御弁54とを含む。希釈水タンク52から貯水タンク21に供給される希釈水の量は、希釈水流量制御弁54の開閉状態により制御される。希釈水流量制御弁54の開閉状態は、後述のコントローラ100により制御される。
他の実施形態では、希釈水タンク21及び希釈水流量制御弁54を含むCOD濃度調整手段50は前処理槽10に接続され、前処理槽10に送給された処理対象の廃水を希釈するように構成されてもよい。
In one embodiment, the COD concentration adjusting means 50 for adjusting the COD concentration of the waste water to be treated is connected to the water storage tank 21. In one embodiment, as shown in FIGS. 2 and 3, the COD concentration adjusting means 50 includes a dilution water tank 52 that stores dilution water for diluting the COD concentration of wastewater to be treated in the water storage tank 21, and Dilution water flow control valve 54. The amount of dilution water supplied from the dilution water tank 52 to the water storage tank 21 is controlled by the open / close state of the dilution water flow rate control valve 54. The open / close state of the dilution water flow control valve 54 is controlled by a controller 100 described later.
In another embodiment, the COD concentration adjusting means 50 including the dilution water tank 21 and the dilution water flow rate control valve 54 is connected to the pretreatment tank 10 so as to dilute the wastewater to be treated supplied to the pretreatment tank 10. May be configured.

前処理槽10には、処理対象の廃水のpHを調整するpH調整手段60が接続される。一実施形態においては、図2及び図3に示すように、pH調整手段60は、処理対象の廃水のpHを調整するためのpH調整剤を貯留するためのpH調整剤タンク62と、pH調整剤タンク62内のpH調整剤を前処理槽10内に送出するためのpH調整ポンプ64とを含む。後述のコントローラ100がpH調整ポンプ64を制御することにより、pH調整ポンプ64から前処理槽10内に送出されるpH調整剤の量が制御される。
なお、pH調整ポンプ64としては、例えば電磁定量ポンプを使用することができる。また、pH調整剤としては、アルカリ性の被処理廃水にたいしては酸性の水溶液を、酸性の被処理廃水に対しては塩基性の水溶液を用いることができる。一実施形態においては、pHが低い米ぬか加工排水(有機性廃水)のpHを増加させるため、40質量%の水酸化ナトリウム水溶液をpH調整剤として用いる。
A pH adjusting means 60 for adjusting the pH of waste water to be treated is connected to the pretreatment tank 10. In one embodiment, as shown in FIG. 2 and FIG. 3, the pH adjusting means 60 includes a pH adjusting agent tank 62 for storing a pH adjusting agent for adjusting the pH of waste water to be treated, and a pH adjustment. A pH adjusting pump 64 for delivering the pH adjusting agent in the agent tank 62 into the pretreatment tank 10. When the controller 100 described later controls the pH adjustment pump 64, the amount of the pH adjusting agent delivered from the pH adjustment pump 64 into the pretreatment tank 10 is controlled.
As the pH adjustment pump 64, for example, an electromagnetic metering pump can be used. As the pH adjuster, an acidic aqueous solution can be used for alkaline treated wastewater, and a basic aqueous solution can be used for acidic treated wastewater. In one embodiment, in order to increase the pH of rice bran processing wastewater (organic wastewater) having a low pH, a 40% by mass aqueous sodium hydroxide solution is used as a pH adjuster.

なお、いくつかの実施形態では、COD濃度調整手段50やpH調整手段60により処理対象の廃水のCOD濃度やpHの調整は、微生物処理槽35内の温度にも影響されるため、微生物処理槽35内の温度は冷却または必要にあわせて加温調節が可能なチラー40等により処理槽内温度が30〜35℃に調節される。   In some embodiments, the adjustment of the COD concentration and pH of the wastewater to be treated by the COD concentration adjusting means 50 and the pH adjusting means 60 is also affected by the temperature in the microbial treatment tank 35. The temperature in 35 is adjusted to 30 to 35 ° C. by a chiller 40 or the like that can be cooled or adjusted for heating according to need.

微生物処理槽35には、微生物処理槽内のMLSS濃度を計測するためのMLSS計56が接続される。MLSS計56により計測されたMLSS計測値のデータは、コントローラ100に送信される。   An MLSS meter 56 for measuring the MLSS concentration in the microorganism treatment tank is connected to the microorganism treatment tank 35. The data of the MLSS measurement value measured by the MLSS meter 56 is transmitted to the controller 100.

コントローラ100は、貯水タンク21、前処理槽10、微生物処理槽35それぞれに設置されたセンサ22,29,45から送信されるpHや温度の測定値のデータやMLSS計56から送信されるMLSS計測値のデータを受信し、これらの値に基づいて、COD濃度調整手段50やpH調整手段60を制御する。
例えば、コントローラ100が取得したMLSS測定値が予め設定された閾値以下である場合に、貯水タンク21内の被処理廃水のCOD濃度が一定値(例えば2000mg/L)以下となるような量の希釈水を、希釈水タンク52から貯水タンク21に送出するように、希釈水流量制御弁を制御する。そして、MLSS計測値が一定値(例えば7000mg/L)となるまでの期間、上記のように被処理廃水が希釈されるように制御する。
また、例えば、前処理槽10に設置されたセンサ29からコントローラ100に送信されたpHが一定範囲(例えば5.0以上8.0以下)外である場合には、pHが前記範囲内となるのに必要な量だけ、pH調整剤タンク62内に貯留されたpH調整剤を前処理槽10内に送出するように、pH調整ポンプ64を制御する。
The controller 100 is configured to measure pH and temperature values transmitted from the sensors 22, 29, and 45 installed in the water storage tank 21, the pretreatment tank 10, and the microorganism treatment tank 35, and MLSS measurement transmitted from the MLSS meter 56. Value data is received, and the COD concentration adjusting means 50 and the pH adjusting means 60 are controlled based on these values.
For example, when the MLSS measurement value acquired by the controller 100 is equal to or less than a preset threshold, the amount of dilution is such that the COD concentration of the wastewater to be treated in the water storage tank 21 is equal to or less than a certain value (for example, 2000 mg / L). The dilution water flow control valve is controlled so that water is sent from the dilution water tank 52 to the water storage tank 21. And it controls so that a to-be-processed wastewater is diluted as mentioned above during the period until MLSS measurement value becomes a fixed value (for example, 7000 mg / L).
For example, when the pH transmitted from the sensor 29 installed in the pretreatment tank 10 to the controller 100 is outside a certain range (for example, 5.0 or more and 8.0 or less), the pH is within the above range. The pH adjusting pump 64 is controlled so that the pH adjusting agent stored in the pH adjusting agent tank 62 is fed into the pretreatment tank 10 by an amount necessary for the above.

図4は、一実施形態に係る有機性廃水処理装置の前処理槽を示す概略構成図である。
前処理槽10には、オゾンマイクロバブル生成手段11からオゾンマイクロバブルが供給される。
オゾンマイクロバブル生成手段11は、空気を吸気して高濃度の酸素を生成する酸素濃縮機12と、酸素からオゾンを生成するオゾン発生装置13と、マイクロバブルにオゾンを溶解したオゾンマイクロバブルを生成するマイクロバブル発生装置16とを含む。なお、オゾンマイクロバブル生成手段11は、同図では一例として気液混合ポンプ型を示したが、これに限定されず、旋回流ノズル型等の他の型式であってもよいし、空気からオゾンを生成する手段であってもよい。
FIG. 4 is a schematic configuration diagram illustrating a pretreatment tank of an organic wastewater treatment apparatus according to an embodiment.
Ozone microbubbles are supplied to the pretreatment tank 10 from the ozone microbubble generating means 11.
The ozone microbubble generating means 11 generates an oxygen concentrator 12 that inhales air to generate high-concentration oxygen, an ozone generator 13 that generates ozone from oxygen, and ozone microbubbles in which ozone is dissolved in microbubbles. And a microbubble generator 16. Note that the ozone microbubble generating means 11 is shown as a gas-liquid mixing pump type as an example in the figure, but is not limited to this, and may be another type such as a swirling nozzle type, or ozone from air. It may be a means to generate.

酸素濃縮機12から排出された酸素(好ましくは酸素濃度90%以上)はオゾン発生装置13に供給され、ここで酸素を原料としてオゾンが生成される。このオゾンは、オゾン発生装置13からオゾン供給ライン14を通ってマイクロバブル発生装置16に供給される。このとき、オゾン供給ライン14上の流量調整バルブ15でオゾン流量が調整される。
前処理槽10とマイクロバブル発生装置16とは循環ライン17(17a,17b)で接続されており、循環ライン17(17a,17b)上で循環する米ぬか加工廃水は、マイクロバブル発生装置16でオゾンマイクロバブルの供給を受け、廃水中の難分解性有機物が低分子化される。
このように米ぬか加工廃水にオゾンマイクロバブルを供給しながら該廃水を循環させることにより、米ぬか加工廃水とオゾンマイクロバブルとの接触効率が向上して、処理時間の短縮化が図れる。
Oxygen discharged from the oxygen concentrator 12 (preferably an oxygen concentration of 90% or more) is supplied to the ozone generator 13 where ozone is generated using oxygen as a raw material. This ozone is supplied from the ozone generator 13 to the microbubble generator 16 through the ozone supply line 14. At this time, the ozone flow rate is adjusted by the flow rate adjustment valve 15 on the ozone supply line 14.
The pretreatment tank 10 and the microbubble generator 16 are connected by a circulation line 17 (17a, 17b), and rice bran processing wastewater circulating on the circulation line 17 (17a, 17b) is converted into ozone by the microbubble generator 16. The supply of microbubbles reduces the molecular weight of persistent organic substances in wastewater.
Thus, by circulating the wastewater while supplying the ozone microbubbles to the rice bran processing wastewater, the contact efficiency between the rice bran processing wastewater and the ozone microbubbles is improved, and the processing time can be shortened.

なお、前処理槽10では、上記した構成の他に、槽底部に設けた曝気管(不図示)よりオゾンマイクロバブルを供給してもよいし、また、槽内に撹拌手段を設けてオゾンマイクロバブルと米加工廃水との接触効率をさらに向上させるようにしてもよい。
前処理槽10から排出された米ぬか加工廃水は、前処理済みの前処理廃水として後段の微生物処理槽35へ送給される。
In the pretreatment tank 10, in addition to the above-described configuration, ozone microbubbles may be supplied from an aeration tube (not shown) provided at the bottom of the tank, or a stirring means is provided in the tank to provide ozone microbubbles. The contact efficiency between the bubble and the rice processing wastewater may be further improved.
The rice bran processing wastewater discharged from the pretreatment tank 10 is supplied to the subsequent microorganism treatment tank 35 as pretreated wastewater that has been pretreated.

[実施例1]
実施例1として、米ぬか加工廃水の処理におけるMLSS濃度の経時変化を調べる試験を行った。
図2に示す有機性廃水処理装置を用い、調整工程でのCOD濃度及びpHの調整は行わずに、米ぬか加工廃水原水のまま、下記に示す条件下で前処理工程及び微生物処理工程のうち好気工程を行った。なお、調整前のCOD濃度は、6000mg/L程度であった。
本法では、槽内で、COD濃度及びpHの調整を行う調整工程を加え、上記と同様の条件下で前処理を行った。
前記調整工程においては、微生物処理工程におけるMLSS濃度の測定値が6500mg/L以下である場合に、MLSS濃度計測値が7000mg/Lとなるまで、米ぬか加工廃水の原水をCOD濃度が2000mg/L以下となるように希釈し、COD濃度を調整した。COD濃度の調整後、40質量%の水酸化ナトリウム水溶液を用いてpHが6.5となるように調整した。
<前処理工程における条件>
酸素濃縮機12からオゾン発生装置13への酸素流入量:1[L/min](酸素濃度90%以上)
オゾン発生装置13のオゾン発生量:9.66[g/h](161[mg/min])
オゾン濃度:161[g/nm
マイクロバブル循環量:24.5[L/min]
前処理槽10における被処理廃水とオゾンマイクロバブルとの反応時間:90分間
[Example 1]
As Example 1, the test which investigates the time-dependent change of MLSS density | concentration in the process of rice bran processing wastewater was done.
Using the organic wastewater treatment apparatus shown in FIG. 2, without adjusting the COD concentration and pH in the adjustment step, the raw rice bran processing wastewater remains the same as the pretreatment step and the microorganism treatment step under the conditions shown below. A gas step was performed. The COD concentration before adjustment was about 6000 mg / L.
In this method, the adjustment process which adjusts COD density | concentration and pH was added in the tank, and the pre-processing was performed on the conditions similar to the above.
In the said adjustment process, when the measured value of MLSS density | concentration in a microorganism treatment process is 6500 mg / L or less, until the MLSS density | concentration measured value becomes 7000 mg / L, the raw | natural water of rice bran processing wastewater is 2000 mg / L or less COD density | concentration The COD concentration was adjusted by dilution. After adjusting the COD concentration, the pH was adjusted to 6.5 using a 40% by mass aqueous sodium hydroxide solution.
<Conditions in pretreatment process>
Oxygen inflow from the oxygen concentrator 12 to the ozone generator 13: 1 [L / min] (oxygen concentration 90% or more)
Ozone generation amount of the ozone generator 13: 9.66 [g / h] (161 [mg / min])
Ozone concentration: 161 [g / nm 3 ]
Microbubble circulation rate: 24.5 [L / min]
Reaction time of wastewater to be treated and ozone microbubbles in the pretreatment tank 10: 90 minutes

処理開始時から30日経過までは調整工程を行わずに前処理工程及び微生物処理工程を行う従来の処理方法を行い、30日経過後からは上記処理を行った場合のMLSS濃度の経時変化の測定結果を図5に示す。
pH及びCOD濃度を調整する調整工程を行わずに前処理工程及び微生物処理工程を行う従来の処理方法を行った処理開始時から30日経過までは、初め3400mg/L程度のMLSS濃度が、一時は増加したものの29日で2000mg/Lを下回り、処理不能となりそれ以上回復(増加)しなかった。このことから、COD濃度が6000mg/L程度と高い廃水では、微生物処理工程での汚泥による処理が米ぬか加工廃水の負荷に耐えられず、処理性能が低下し、MLSS濃度(汚泥濃度)の減少にもつながることが分かった。
その後、調整工程を加えた本発明の処理方法に切り替えられると、当初3600mg/L程度のMLSS濃度が、徐々に増加傾向を示し、80日経過時で6300mg/L、117日経過時で7000mg/Lまで増加した。このことから、調整工程を加えた本発明の処理方法を付加することで、MLSS濃度を7000mg/L程度に維持することができ、高濃度COD廃水に対応できる汚泥濃度を維持できることが分かった。
The conventional treatment method in which the pretreatment step and the microorganism treatment step are performed without performing the adjustment step from the start of treatment until 30 days have elapsed, and the change in MLSS concentration over time when the above treatment is carried out after 30 days have elapsed. The results are shown in FIG.
The MLSS concentration of about 3400 mg / L is initially temporarily from the start of the treatment in which the conventional treatment method in which the pretreatment step and the microorganism treatment step are performed without adjusting the pH and the COD concentration until 30 days have elapsed. Although it increased, it fell below 2000 mg / L in 29 days, and it became unprocessable and did not recover (increase) any more. For this reason, in wastewater with a high COD concentration of about 6000 mg / L, treatment with sludge in the microbial treatment process cannot withstand the load of rice bran processing wastewater, resulting in reduced treatment performance and a reduction in MLSS concentration (sludge concentration). I found out that it was also connected.
Thereafter, when switching to the treatment method of the present invention with an adjustment step added, the MLSS concentration of about 3600 mg / L initially shows a gradual increasing tendency, 6300 mg / L after 80 days, and 7000 mg / L after 117 days. Increased to L. From this, it was found that the MLSS concentration can be maintained at about 7000 mg / L by adding the treatment method of the present invention to which an adjustment step is added, and the sludge concentration that can correspond to the high concentration COD wastewater can be maintained.

[実施例2]
実施例2として、米ぬか加工廃水のCOD濃度の経時変化を調べる試験を行った。
図2に示す有機性廃水処理装置を用い、調整工程及び前処理工程を下記の条件で行った後、嫌気処理を4時間施し、続いて好気処理を施した。好気処理下において、被処理廃水のCOD濃度の経時変化を測定した。上記調整工程においては、希釈後のCOD濃度を変化させて試験を行った。なお、嫌気処理及び好気処理は連続式で行った。
[Example 2]
As Example 2, the test which investigates the time-dependent change of the COD density | concentration of rice bran processing wastewater was done.
The organic wastewater treatment apparatus shown in FIG. 2 was used to perform the adjustment step and the pretreatment step under the following conditions, followed by an anaerobic treatment for 4 hours, followed by an aerobic treatment. Under aerobic treatment, the change over time in the COD concentration of the wastewater to be treated was measured. In the adjustment step, the test was performed by changing the diluted COD concentration. In addition, the anaerobic process and the aerobic process were performed by the continuous type.

<調整工程における条件>
調整工程後のCOD濃度(初期COD濃度):
7440, 6160,
5200, 5120, 3840, 3000, 2260, 1880, 1600, 1250, 1110, 740, 280(mg/L)の13種類
調整工程後のpH:6.5(40質量%の水酸化ナトリウム水溶液を用いて調整)
<前処理工程における条件>
酸素濃縮機12からオゾン発生装置13への酸素流入量:1[L/min](酸素濃度90%以上)
オゾン発生装置13のオゾン発生量:9.66[g/h](161[mg/min])
オゾン濃度:161[g/nm
マイクロバブル循環量:24.5[L/min]
前処理槽10における被処理廃水とオゾンマイクロバブルとの反応時間:90分間
<Conditions in the adjustment process>
COD concentration after the adjustment process (initial COD concentration):
7440, 6160,
13 types of 5200, 5120, 3840, 3000, 2260, 1880, 1600, 1250, 1110, 740, 280 (mg / L) pH after adjustment step: 6.5 (using 40 mass% sodium hydroxide aqueous solution) Adjustment)
<Conditions in pretreatment process>
Oxygen inflow from the oxygen concentrator 12 to the ozone generator 13: 1 [L / min] (oxygen concentration 90% or more)
Ozone generation amount of the ozone generator 13: 9.66 [g / h] (161 [mg / min])
Ozone concentration: 161 [g / nm 3 ]
Microbubble circulation rate: 24.5 [L / min]
Reaction time of wastewater to be treated and ozone microbubbles in the pretreatment tank 10: 90 minutes

米ぬか加工廃水のCOD濃度の経時変化の測定結果を、図6に示す。
図6において、横軸は好気処理開始後からの経過時間(単位:時間)を示し、縦軸はCOD濃度(単位:mg/L)を示す。
調整工程において、COD濃度をそれぞれ280、740、1110、1250、1600、2260(mg/L)に調製した米ぬか加工排水については、好気処理開始から15〜36時間でCOD濃度を90%以上低下させることができた。
一方、調整工程においてCOD濃度をそれぞれ1880、3000、3840、5120、5200、6160、7440(mg/L)に調製した米ぬか加工排水については、好気処理開始から5時間しても、初期濃度よりもCOD濃度が低下することはなかった。
この結果によれば、調整工程においてCOD濃度を2000mg/L程度以下に調製することで、その後の微生物処理においてCOD濃度が順調に減少し、微生物処理工程における処理性能が維持されることがわかった。
The measurement result of the time-dependent change of COD density | concentration of rice bran processing wastewater is shown in FIG.
In FIG. 6, the horizontal axis indicates the elapsed time (unit: time) after the start of the aerobic treatment, and the vertical axis indicates the COD concentration (unit: mg / L).
In rice bran processing wastewater adjusted to COD concentrations of 280, 740, 1110, 1250, 1600, and 2260 (mg / L) in the adjustment step, the COD concentration decreases by 90% or more in 15 to 36 hours from the start of aerobic treatment. I was able to.
On the other hand, in the adjustment process, the rice bran processing wastewater prepared with COD concentrations of 1880, 3000, 3840, 5120, 5200, 6160, 7440 (mg / L), respectively, from the initial concentration even after 5 hours from the start of the aerobic treatment However, the COD concentration did not decrease.
According to this result, it was found that by adjusting the COD concentration to about 2000 mg / L or less in the adjustment step, the COD concentration decreases smoothly in the subsequent microbial treatment, and the treatment performance in the microbial treatment step is maintained. .

[実施例3]
実施例3として、COD濃度を希釈して調整した米ぬか加工廃水の微生物処理後のCOD濃度を確認した。
図2に示す有機性廃水処理装置を用い、調整工程後のCOD濃度を1800〜2500mg/Lに調製した米ぬか加工廃水について、上記実施例2と同様の条件で調整工程(pH調整)及び前処理工程を行った後、下記の条件で微生物処理工程を行った。なお、微生物処理工程は連続式で行った。
<微生物処理の各工程の処理時間>
嫌気処理:4時間
好気処理:26時間
無酸素処理:3時間
[Example 3]
As Example 3, the COD concentration after microbial treatment of rice bran processing wastewater adjusted by diluting the COD concentration was confirmed.
For the rice bran processing wastewater prepared using the organic wastewater treatment apparatus shown in FIG. 2 and having a COD concentration of 1800 to 2500 mg / L after the adjustment step, the adjustment step (pH adjustment) and pretreatment are performed under the same conditions as in Example 2 above. After performing the process, the microorganism treatment process was performed under the following conditions. The microbial treatment process was performed continuously.
<Processing time for each process of microbial treatment>
Anaerobic treatment: 4 hours Aerobic treatment: 26 hours Anaerobic treatment: 3 hours

微生物処理前後のCOD濃度の測定結果を図7に示す。この結果、微生物処理工程後のCOD濃度は、いずれも90%以上低下したことがわかった。これにより、本発明の一実施形態に係る処理方法及び処理装置を用いることで、高い炭素源(有機物)処理性能が得られることがわかった。   The measurement results of the COD concentration before and after the microorganism treatment are shown in FIG. As a result, it was found that the COD concentration after the microbial treatment process decreased by 90% or more. Thereby, it turned out that high carbon source (organic matter) processing performance is obtained by using the processing method and processing device concerning one embodiment of the present invention.

1 調整工程
2 前処理工程
3 嫌気性処理工程
4 好気性処理工程
5 無酸素処理工程
6 微生物処理工程
7 MLSS計測工程
8 固液分離工程
10 前処理槽
11 オゾンマイクロバブル生成手段
12 酸素濃縮機
13 オゾン発生装置
16 マイクロバブル発生装置
35 微生物処理槽
50 COD濃度調整手段
56 MLSS計
60 pH調整手段
62 pH調整剤タンク
64 pH調整ポンプ
100 コントローラ
110 有機性廃水処理装置
DESCRIPTION OF SYMBOLS 1 Adjustment process 2 Pretreatment process 3 Anaerobic treatment process 4 Aerobic treatment process 5 Oxygen treatment process 6 Microbial treatment process 7 MLSS measurement process 8 Solid-liquid separation process 10 Pretreatment tank 11 Ozone microbubble production | generation means 12 Oxygen concentrator 13 Ozone generator 16 Microbubble generator 35 Microbial treatment tank 50 COD concentration adjusting means 56 MLSS meter 60 pH adjusting means 62 pH adjusting agent tank 64 pH adjusting pump 100 Controller 110 Organic waste water treatment apparatus

Claims (6)

有機性廃水のCOD濃度及びpHを調整して調整廃水を得る調整工程と、
前処理槽内の前記調整廃水にオゾンマイクロバブルを供給し、前記調整廃水中の難分解性有機物を低分子化して前処理廃水を得る前処理工程と、
前記前処理槽の後段に設けられる微生物処理槽において、リン蓄積細菌及び脱窒性リン蓄積細菌のうち少なくとも一方の存在下で、前記前処理廃水に、嫌気処理、好気処理及び無酸素処理を含む微生物処理を行い、前記前処理廃水に含まれる窒素とリンを除去する微生物処理工程と、
前記微生物処理工程における前記微生物処理槽のMLSS濃度を計測するMLSS計測工程と、を備える有機性廃水処理方法であって、
前記調整工程において、MLSS計測工程での前記微生物処理槽のMLSS濃度計測値が閾値よりも大きい場合には前記有機性廃水のCOD濃度の調整は行わず、該MLSS濃度計測値が前記閾値以下であれば、少なくともMLSS濃度計測値が前記閾値に増加するまでの期間、前記前処理槽よりも前段側において前記有機性廃水のCOD濃度が2000mg/L以下となるように前記有機性廃水のCOD濃度を調整し、その後、得られる前記調整廃水のpHが5.0以上8.0以下となるように前記有機性廃水のpHを調整するとともに、
前記調整工程では、
前記前処理槽の前段側に位置する貯水タンク内の前記有機性廃水を希釈水により希釈することで、前記有機性廃水の前記COD濃度を調整し、
前記前処理槽内の前記調整廃水にpH調整剤を添加することで前記調整廃水のpHを調整する
有機性廃水処理方法。
An adjustment step of adjusting the COD concentration and pH of the organic wastewater to obtain the adjusted wastewater;
A pretreatment step of supplying ozone microbubbles to the adjusted wastewater in the pretreatment tank to obtain a pretreated wastewater by depolymerizing the hardly decomposable organic matter in the adjusted wastewater;
In the microbial treatment tank provided in the subsequent stage of the pretreatment tank, anaerobic treatment, aerobic treatment and oxygen-free treatment are performed on the pretreatment wastewater in the presence of at least one of phosphorus accumulating bacteria and denitrifying phosphorus accumulating bacteria. A microbial treatment step of performing microbial treatment including removing nitrogen and phosphorus contained in the pretreatment wastewater;
An MLSS measurement step for measuring the MLSS concentration of the microorganism treatment tank in the microorganism treatment step, and an organic wastewater treatment method comprising:
In the adjustment step, when the MLSS concentration measurement value of the microorganism treatment tank in the MLSS measurement step is larger than the threshold value , the COD concentration of the organic waste water is not adjusted, and the MLSS concentration measurement value is equal to or less than the threshold value . If present, at least the period until the MLSS concentration measurement value increases to the threshold value, the COD concentration of the organic waste water is such that the COD concentration of the organic waste water is 2000 mg / L or less on the upstream side of the pretreatment tank. And then adjusting the pH of the organic wastewater so that the pH of the obtained adjusted wastewater is 5.0 or more and 8.0 or less ,
In the adjustment step,
Adjusting the COD concentration of the organic wastewater by diluting the organic wastewater in the water storage tank located on the front side of the pretreatment tank with dilution water;
An organic wastewater treatment method for adjusting the pH of the adjusted wastewater by adding a pH adjuster to the adjusted wastewater in the pretreatment tank .
前記微生物処理工程は、嫌気処理、好気処理及び無酸素処理をこの順に含む請求項1に記載の有機性廃水処理方法。   The organic wastewater treatment method according to claim 1, wherein the microorganism treatment step includes anaerobic treatment, aerobic treatment, and oxygen-free treatment in this order. 前記MLSS濃度計測値の前記閾値が6500mg/Lである請求項1又は2に記載の有機性廃水処理方法。   The organic wastewater treatment method according to claim 1 or 2, wherein the threshold value of the MLSS concentration measurement value is 6500 mg / L. 前記有機性廃水が、米加工廃水又は米ぬか加工廃水である請求項1乃至3の何れか一項に記載の有機性廃水処理方法。   The organic wastewater treatment method according to any one of claims 1 to 3, wherein the organic wastewater is rice processing wastewater or rice bran processing wastewater. 前記pH調整剤は、水酸化ナトリウム水溶液である
ことを特徴とする請求項1乃至4の何れか一項に記載の有機性廃水処理方法。
The organic wastewater treatment method according to any one of claims 1 to 4, wherein the pH adjuster is an aqueous sodium hydroxide solution .
有機性廃水処理に含まれる窒素とリンを除去する有機性廃水処理装置であって、
有機性廃水のCOD濃度を調整するCOD濃度調整手段と、
前記有機性廃水のpHを調製するpH調整手段と、
マイクロバブルにオゾンを溶解させてオゾンマイクロバブルを生成するオゾンマイクロバブル生成手段と、
前処理槽内の前記有機性廃水に、前記オゾンマイクロバブル生成手段で生成したオゾンマイクロバブルを供給して前記有機性廃水中の難分解性有機物を低分子化して前処理廃水を得る前処理手段と、
前記前処理槽の後段に設けられる微生物処理槽において、リン蓄積細菌及び脱窒性リン蓄積細菌のうち少なくとも一方の存在下で、前記前処理廃水に、嫌気処理、好気処理及び無酸素処理を含む微生物処理を行い前記前処理廃水に含まれる窒素とリンを除去する微生物処理手段と、
前記微生物処理手段の前記微生物処理槽におけるMLSS濃度を計測するMLSS計測手段と、
前記微生物処理槽のMLSS濃度の計測値が閾値よりも大きい場合には前記有機性廃水のCOD濃度の調整は行わず、該MLSS濃度の計測値が前記閾値以下である場合、少なくともMLSS濃度計測値が前記閾値に増加するまでの期間、前記前処理槽よりも前段側において前記有機性廃水のCOD濃度が2000mg/L以下となるように前記COD濃度調整手段を制御するとともに、前記COD濃度の調整により得られる前記調整廃水のpHが5.0以上8.0以下に調整するように前記pH調整手段を制御する制御手段と、を備え
前記COD濃度調整手段は、前記前処理槽の前段側に位置する貯水タンク内の前記有機性廃水を希釈水により希釈することで、前記有機性廃水の前記COD濃度を調整するように構成され、
前記pH調整手段は、前記前処理槽内の前記調整廃水にpH調整剤を添加することで前記調整廃水のpHを調整するように構成された
有機性廃水処理装置。
An organic wastewater treatment device for removing nitrogen and phosphorus contained in organic wastewater treatment,
COD concentration adjusting means for adjusting the COD concentration of organic waste water;
PH adjusting means for adjusting the pH of the organic waste water;
Ozone microbubble generating means for generating ozone microbubbles by dissolving ozone in microbubbles;
Pretreatment means for obtaining pretreatment wastewater by supplying ozone microbubbles generated by the ozone microbubble generation means to the organic wastewater in the pretreatment tank to lower the molecular weight of persistent organic substances in the organic wastewater. When,
In the microbial treatment tank provided in the subsequent stage of the pretreatment tank, anaerobic treatment, aerobic treatment and oxygen-free treatment are performed on the pretreatment wastewater in the presence of at least one of phosphorus accumulating bacteria and denitrifying phosphorus accumulating bacteria. Microbial treatment means for performing microbial treatment including removing nitrogen and phosphorus contained in the pretreatment wastewater;
MLSS measurement means for measuring the MLSS concentration in the microorganism treatment tank of the microorganism treatment means;
When the measured value of the MLSS concentration of the microorganism treatment tank is larger than the threshold value, the COD concentration of the organic waste water is not adjusted. When the measured value of the MLSS concentration is equal to or lower than the threshold value , at least the measured MLSS concentration value During the period until the threshold value increases to the threshold value, the COD concentration adjusting means is controlled so that the COD concentration of the organic waste water is 2000 mg / L or less on the upstream side of the pretreatment tank, and the adjustment of the COD concentration Control means for controlling the pH adjusting means so that the pH of the adjusted waste water obtained by the method is adjusted to 5.0 or more and 8.0 or less ,
The COD concentration adjusting means is configured to adjust the COD concentration of the organic waste water by diluting the organic waste water in a water storage tank located on the upstream side of the pretreatment tank with dilution water,
The organic wastewater treatment apparatus , wherein the pH adjusting means is configured to adjust the pH of the adjusted wastewater by adding a pH adjuster to the adjusted wastewater in the pretreatment tank .
JP2013155045A 2013-07-25 2013-07-25 Organic wastewater treatment method and organic wastewater treatment apparatus Active JP6203560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155045A JP6203560B2 (en) 2013-07-25 2013-07-25 Organic wastewater treatment method and organic wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155045A JP6203560B2 (en) 2013-07-25 2013-07-25 Organic wastewater treatment method and organic wastewater treatment apparatus

Publications (2)

Publication Number Publication Date
JP2015024368A JP2015024368A (en) 2015-02-05
JP6203560B2 true JP6203560B2 (en) 2017-09-27

Family

ID=52489487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155045A Active JP6203560B2 (en) 2013-07-25 2013-07-25 Organic wastewater treatment method and organic wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP6203560B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152358A (en) * 2015-09-14 2015-12-16 天津大学 Combined method for restoring eutrophicated water body on basis of SMFC (sediment microbial fuel cell) and filamentous green algae
KR102049670B1 (en) * 2018-05-31 2020-01-08 김준홍 Organic Material treatment apparatus using microorganisms and the method thereof
CN112093997A (en) * 2020-09-28 2020-12-18 尹伟康 Treatment method of waste water of wine village
CN112939207B (en) * 2021-01-29 2022-06-03 联合环境技术(天津)有限公司 Method for accurately adjusting sludge concentration of aerobic tank of sewage plant
CN113562935A (en) * 2021-08-17 2021-10-29 伊犁新天煤化工有限责任公司 Artificial intelligence control system and method for reducing foam of coal gas industrial wastewater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4267860B2 (en) * 2002-03-28 2009-05-27 学校法人早稲田大学 Nitrogen and phosphorus simultaneous removal type wastewater treatment method
JP4900556B2 (en) * 2005-09-09 2012-03-21 栗田工業株式会社 Wastewater treatment plant operation management method
JP2011067730A (en) * 2009-09-24 2011-04-07 Daiichi Kankyo Aqua Kk Method and apparatus for water treatment
JP4947741B2 (en) * 2009-10-08 2012-06-06 康介 千葉 CO2 reduction wastewater treatment apparatus and CO2 reduction wastewater treatment method
JP5566147B2 (en) * 2010-03-23 2014-08-06 株式会社前川製作所 Rice processing wastewater treatment method and equipment
JP2012210584A (en) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd Method for treating kraft pulp wastewater

Also Published As

Publication number Publication date
JP2015024368A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5566147B2 (en) Rice processing wastewater treatment method and equipment
JP6203560B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
US10479710B2 (en) Granule-forming method and waste water treatment method
WO2016117210A1 (en) Denitrification method and denitrification apparatus for nitrogen-containing waste water
JP6720100B2 (en) Water treatment method and water treatment device
JP6877255B2 (en) Wastewater treatment system and wastewater treatment method
US8323487B2 (en) Waste water treatment apparatus
JP2009186438A (en) Method and apparatus for treating nitrate waste liquid
JP5914964B2 (en) Ultrapure water production method
KR20140063454A (en) Apparatus and method for treatment wastewater
JP3275351B2 (en) Anaerobic treatment of organic wastewater
JP5702221B2 (en) Method and apparatus for treating wastewater containing ethanolamine and hydrazine
KR101533979B1 (en) Treatment of wastewater containing ethanolamine in secondary system of nuclear power plant
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
WO2012128212A1 (en) Water treatment method and ultrapure water production method
JP2012011376A (en) Sewage treatment method and apparatus
JP2009531159A (en) Excess sludge digestion method and equipment
JP5170155B2 (en) Wastewater treatment equipment containing organic sulfur compounds
JP2016059843A (en) Method and apparatus for biological treatment
JP6639211B2 (en) Phosphate fertilizer production method and phosphate fertilizer production apparatus
JP2007209889A (en) Surplus sludge treatment method
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
JP2007098279A (en) Apparatus and method for treating waste water by using microbe
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
JPH11347588A (en) Methane fermentation treatment apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170830

R150 Certificate of patent or registration of utility model

Ref document number: 6203560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250