JPH02217363A - Production of ain sintered compact having high heat conductivity - Google Patents

Production of ain sintered compact having high heat conductivity

Info

Publication number
JPH02217363A
JPH02217363A JP1038260A JP3826089A JPH02217363A JP H02217363 A JPH02217363 A JP H02217363A JP 1038260 A JP1038260 A JP 1038260A JP 3826089 A JP3826089 A JP 3826089A JP H02217363 A JPH02217363 A JP H02217363A
Authority
JP
Japan
Prior art keywords
gas
inert gas
ain
furnace
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1038260A
Other languages
Japanese (ja)
Other versions
JP2721535B2 (en
Inventor
Hiroshi Isozaki
磯崎 啓
Joji Ichihara
市原 譲治
Yasuo Imamura
保男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1038260A priority Critical patent/JP2721535B2/en
Publication of JPH02217363A publication Critical patent/JPH02217363A/en
Application granted granted Critical
Publication of JP2721535B2 publication Critical patent/JP2721535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To stably obtain AIN sintered compact having high conductivity by feeding an inert gas so that CO gas concentration in burning atmosphere at >=1500 deg.C is specific value or below in a case of sintering of AIN powder. CONSTITUTION:An AIN power mixture containing a sintering auxiliary is molded into a desired shape and burned while feeding an inert gas so that CO gas concentration in burning atmosphere at >=1500 deg.C is <=900ppm. The CO gas is generated by reaction of carbon source of carbonaceous substance added to a furnace material made of carbon, vessel and raw material with oxygen source contained in AIN powder or oxygen source penetrating from outside of the furnace. Though feed of inert gas, control of temperature-raising rate, selection of material of the furnace or vessel, etc., is considered as a means for controlling concentration of CO gas to <=900ppm, feed means of inert gas is essentially used and other means is preferably arbitrarily carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高熱伝導性のAlN焼結体の製法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing a highly thermally conductive AlN sintered body.

〔従来の技術〕[Conventional technology]

AlN焼結体は高熱伝導性、耐熱性、耐食性等に優れ、
汎用セラミックスであるAt203焼結体に代る半導体
装置の絶縁性基板用材料として注目されている。
AlN sintered body has excellent thermal conductivity, heat resistance, corrosion resistance, etc.
It is attracting attention as a material for insulating substrates of semiconductor devices in place of the At203 sintered body, which is a general-purpose ceramic.

AlN粉末の焼結は通常焼結助剤を添加混合し、緻密性
と高熱伝導性を得ているが、さらに高熱伝導率を得るた
めに焼結方法の検討が種々なされている。例えば特開昭
63−100069号公報にはQ、1Vol 4以上の
還元性ガスを含む不活性ガス雰囲気中で焼結することが
、また特開昭66−303863号公報には焼成中にカ
ーボンガス雰囲気をつくり出す容器を用いることが提案
されている。
In sintering AlN powder, a sintering aid is usually added and mixed to obtain denseness and high thermal conductivity, but various studies have been made on sintering methods to obtain even higher thermal conductivity. For example, JP-A-63-100069 discloses that sintering is carried out in an inert gas atmosphere containing a reducing gas of Q, 1 Vol 4 or more, and JP-A-66-303,863 discloses that carbon gas is It has been proposed to use containers that create an atmosphere.

しかしながら、これらの従来技術では安定して高熱伝導
率のAlN焼結体を得ることが難しく、原料の純度、酸
素含有量、焼成雰囲気の変動等の要因に大きく影響され
、これらを制御することは困難であった。
However, with these conventional techniques, it is difficult to stably obtain an AlN sintered body with high thermal conductivity, and it is greatly affected by factors such as the purity of raw materials, oxygen content, and fluctuations in the firing atmosphere, and it is difficult to control these factors. It was difficult.

雰囲気の制御により安定に達成する製法について鋭意検
討した結果.AlN粉末の焼結に際し、温度1500°
C以上における焼成雰囲気のCOガス濃度をコントロー
ルすることにより可能となることを見い出し、本発明を
完成するに到った。
This is the result of intensive research into a manufacturing method that achieves stability by controlling the atmosphere. When sintering AlN powder, the temperature is 1500°.
They have discovered that it is possible to achieve this by controlling the CO gas concentration in the firing atmosphere above C and have completed the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、以下を要旨とするものである。 That is, the present invention has the following gist.

1、焼結助剤を含むAlN粉末混合物を所望形状に成形
した後、温度1500°C以上における焼成雰囲気のC
Oガス濃度が900 ppm以下となるように不活性ガ
スを供給して焼結することを特徴とする高熱伝導性Al
N焼結体の製法。
1. After molding the AlN powder mixture containing the sintering aid into the desired shape, carbon in the firing atmosphere at a temperature of 1500°C or higher
High thermal conductivity Al characterized by being sintered by supplying an inert gas so that the O gas concentration is 900 ppm or less
Manufacturing method of N sintered body.

2、  AlN粉末混合物はさらに炭素質物質を含んで
なるものであることを特徴とする請求項1記載の高熱伝
導性AlN焼結体の製法。
2. The method for producing a highly thermally conductive AlN sintered body according to claim 1, wherein the AlN powder mixture further contains a carbonaceous material.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いるAlN粉末は、通常、酸素含有量が6重
量−以下好ましくは1.5重量−以下のものが使用され
る。
The AlN powder used in the present invention usually has an oxygen content of 6 weight or less, preferably 1.5 weight or less.

焼結助剤としては、CaO、BaO等のIla族酸化物
、Y2O3、CeO2等の脂族酸化物、CaC2。
Sintering aids include Ila group oxides such as CaO and BaO, aliphatic oxides such as Y2O3 and CeO2, and CaC2.

B、C、At4C3、81C等の炭化物、Ca 、 B
a 、 Sr及び希土類元素の水素化物、窒化物、ホウ
化物、シアン化物、チオシアン化物、ケイフッ化物、硫
化物、リン化物、ケイ化物、フッ化物等、さらにはCu
 、 Ni 、 Mo 、 AL等の金属等があげられ
る。
B, C, carbides such as At4C3, 81C, Ca, B
a, hydrides, nitrides, borides, cyanides, thiocyanides, fluorosilicides, sulfides, phosphides, silicides, fluorides, etc. of Sr and rare earth elements, and further Cu
, Ni, Mo, AL, and other metals.

これらのうち、焼結性、熱伝導率、機械的強度、経済性
の点からY2O3が最も望ましい。
Among these, Y2O3 is most desirable from the viewpoint of sinterability, thermal conductivity, mechanical strength, and economical efficiency.

また、本発明では.AlN焼結体の熱伝導率をさらに向
上させるために炭素質物質をAlN粉末混合物に含ませ
ることもできる。炭素質物質には、塩化ビニル樹脂やポ
リビニルアルコール等の有機重合体の熱分解生成物、カ
ーボンブラック、グラファイト、高固定炭素系ピッチな
どがある(特開昭65−162577号公報、同61−
2197<S3号公報参照)。
In addition, in the present invention. A carbonaceous material can also be included in the AlN powder mixture to further improve the thermal conductivity of the AlN sintered body. Carbonaceous substances include thermal decomposition products of organic polymers such as vinyl chloride resin and polyvinyl alcohol, carbon black, graphite, and highly fixed carbon pitch (Japanese Patent Application Laid-open No. 162577/1983, 61-
2197 (see Publication No. S3).

本発明の高熱伝導性ktN焼結体を得る手順としては、
AAN粉末100重量部に対し、通常、焼結助剤0.1
〜10.0重量部、炭素質物質0〜10.0重量部の割
合で混合する。これらの原料粉末は平均粒度10μm以
下好ましくは5μm以下である。
The procedure for obtaining the high thermal conductivity ktN sintered body of the present invention is as follows:
Normally, 0.1 sintering aid is added to 100 parts by weight of AAN powder.
~10.0 parts by weight of the carbonaceous material and 0 to 10.0 parts by weight of the carbonaceous material. These raw material powders have an average particle size of 10 μm or less, preferably 5 μm or less.

その混合方式としては通常ボールミル中で乾式又は湿式
により混合する。得られたAlN粉末混合物は必要に応
じて/々インダーを添加し成形、脱脂、焼成を行なう。
The mixing method is usually dry or wet mixing in a ball mill. The obtained AlN powder mixture is subjected to molding, degreasing, and sintering, with an inder added thereto as needed.

焼成炉は、BN 、 C.AlN製の耐熱性容器をカー
ボンやタングステンの発熱体もしくは高周波加熱炉の炉
内に置き、該耐熱性容器に同様のBN。
The firing furnace is BN, C. A heat-resistant container made of AlN is placed in a heating element of carbon or tungsten or in a high-frequency heating furnace, and a similar BN is placed in the heat-resistant container.

C.AlN製の配管を行ない、そこに炉外よ、6 c 
o。
C. Install AlN piping and place it outside the furnace at 6c.
o.

Ar 、 N2等のガスを供給できるような構造とする
The structure shall be such that gases such as Ar and N2 can be supplied.

耐熱性容器を2重構造とし外側容器と内側容器の間及び
内側容器の両方に不活性ガスを供給することにより、外
部よりCOガス等が該容器中に侵入するのを抑えること
ができる。グリーン成形体は耐熱性容器の中に置かれる
が、その際の敷板としては雛形性の良いBNを配合した
ものが好ましい。
By making the heat-resistant container have a double structure and supplying inert gas between the outer container and the inner container and to both the inner container, it is possible to prevent CO gas and the like from entering the container from the outside. The green molded body is placed in a heat-resistant container, and the bottom plate at that time is preferably one containing BN, which has good patternability.

焼成条件は、グリーン成形体の形状や寸法により異なる
が、通常、50〜600°Q/hrで昇温し途中120
0〜17oo’c付近で保持することもあるが、最高温
度は1800〜2000°Cである。
Firing conditions vary depending on the shape and dimensions of the green compact, but usually the temperature is raised at 50 to 600°Q/hr and
The maximum temperature is 1800 to 2000°C, although it may be held at around 0 to 17 oo'c.

本発明で重要なことは、この焼成工程で、温度1500
°C以上における焼成雰囲気のCOガス濃度が900 
ppm以下となるように不活性ガスを供給することであ
る。不活性ガスとしては、N2 rAI”等があるがN
2が望ましい。1500°C以上の温度における焼成雰
囲気のCOガス濃度が900ppmをこえると、本発明
が目的とする高熱伝導率化例えば180 W / mK
以上を安定して達成することができない。本発明では、
温度1500°C未満における焼成雰囲気のCOガス濃
度については特に制限する必要はなく、通常は数百pp
m〜数千ppm程度である。
What is important in the present invention is that this firing step is performed at a temperature of 1500
The CO gas concentration in the firing atmosphere at temperatures above 900 °C
The purpose is to supply the inert gas so that the concentration is less than ppm. Examples of inert gases include N2 rAI'', but N
2 is desirable. If the CO gas concentration in the firing atmosphere exceeds 900 ppm at a temperature of 1500°C or higher, the high thermal conductivity that is the objective of the present invention, for example, 180 W/mK.
It is not possible to consistently achieve the above. In the present invention,
There is no particular restriction on the CO gas concentration in the firing atmosphere at temperatures below 1500°C, and it is usually several hundred pp.
m to several thousand ppm.

COガスは、カーボン製炉材・容器及び原料に混入され
る炭素質物質のC源と.AlN粉末中のあるいは炉外か
ら侵入するO源との反応によって発生するが、これを本
発明のように900 ppm以下にコントロールする手
段としては、不活性ガスの手段を必要不可決として行い
、他の手段は任意的に行うのが望ましい。不活性ガスの
供給法は連続的・間欠的のいずれであってもよい。なお
、COガス濃度を900 ppm以下のある特定値の水
準に保ちながら焼結を行いたいときにはCOガスを積極
的に炉外から供給することもできる。
CO gas is a C source of carbonaceous materials mixed into carbon furnace materials, containers, and raw materials. This is generated by the reaction with the O source in the AlN powder or from outside the furnace, but as a means of controlling this to 900 ppm or less as in the present invention, inert gas is necessary and other methods are used. It is desirable that these measures be carried out voluntarily. The method of supplying the inert gas may be either continuous or intermittent. Note that when it is desired to perform sintering while maintaining the CO gas concentration at a certain specific value level of 900 ppm or less, CO gas can also be actively supplied from outside the furnace.

温度1500°O以上における焼成雰囲気のCOガス濃
度がAlN焼結体に与える影響については明瞭ではない
が、効果としては.AlN焼結体中の酸素を還元して除
去することである。AlN焼結体に含有されている酸素
量が多ければ多いほどAlN焼結体の熱伝導率は低下し
、一方、酸素含有量が少なければ熱伝導率は向上する。
Although the effect of the CO gas concentration in the firing atmosphere on the AlN sintered body at temperatures above 1500°O is not clear, the effect is... The purpose is to reduce and remove oxygen in the AlN sintered body. The higher the amount of oxygen contained in the AlN sintered body, the lower the thermal conductivity of the AlN sintered body, while the lower the oxygen content, the higher the thermal conductivity.

本発明者はこの点に着目し、最も効率的にAlN焼結体
中の酸素を取り除く条件を決定し本発明を完成させたも
のである。
The present inventor focused on this point, determined the conditions for most efficiently removing oxygen from the AlN sintered body, and completed the present invention.

〔実施例〕〔Example〕

以下、実施例と比較例をあげて−さらに具体的に本発明
を説明する。
Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples.

実施例1〜7、比較例1〜2 酸素含有量1.5重量%のAlN粉末98重量部とY2
O32重量部をエタノール中で?−ルミル混合し乾燥し
た後金型プレスで予備成形後、2700に9/cWL2
の圧力でcxp (冷間コ−A/ fプレス)シ、φ1
6fi−5mtの円板を得た。この円板をBN製敷板に
のせ、それを外側が内容積9.6tの黒鉛製容器、内側
が内容積0.41(DBN製容器で構成されてなる耐熱
性2重容器に入れ、表−1に示す条件で焼成した。
Examples 1 to 7, Comparative Examples 1 to 2 98 parts by weight of AlN powder with an oxygen content of 1.5% by weight and Y2
2 parts by weight of O3 in ethanol? - After mixing and drying Lumil, preforming with mold press, 9/cWL2 to 2700
cxp (cold co-A/f press) at a pressure of φ1
A 6fi-5mt disc was obtained. This disc was placed on a BN bottom plate, and placed in a heat-resistant double container consisting of a graphite container with an internal volume of 9.6 tons on the outside and a DBN container with an internal volume of 0.41 tons on the inside. It was fired under the conditions shown in 1.

なお、実施例3〜5及び比較例1〜2は、上記配合に、
さらに塩化ビニル樹脂の熱分解生成物を1重量部配合し
たものである。また、実施例6〜7はY2O3のかわり
にCaCzとしたものである。
In addition, in Examples 3 to 5 and Comparative Examples 1 to 2, in the above formulation,
Furthermore, 1 part by weight of a thermal decomposition product of vinyl chloride resin is blended. Further, in Examples 6 and 7, CaCz was used instead of Y2O3.

焼成炉は、耐熱性2重容器を黒鉛粒で覆ってなる高周波
加熱炉であって、上記BN製の内側容器、並びに上記B
Ngの内側容器と上記黒鉛製の外側容器との間に、それ
ぞれBN製のガス導入管(以下、それぞれ導入管1、導
入管2という)を接続してなるものである。焼成中、導
入管2には61/minのN2ガスを常時供給し、導入
管1には表−1に示す流量のN2ガスを供給した。
The firing furnace is a high-frequency heating furnace consisting of a heat-resistant double container covered with graphite particles, and includes the inner container made of BN and the B
Gas introduction tubes made of BN (hereinafter referred to as introduction tube 1 and introduction tube 2, respectively) are connected between the Ng inner container and the graphite outer container. During firing, N2 gas was constantly supplied to the introduction tube 2 at a rate of 61/min, and N2 gas was supplied to the introduction tube 1 at a flow rate shown in Table-1.

得られたAlN焼結体の酸素含有量とレーデ−フラッシ
ュ法で測定した熱伝導率を表−1に示す。
Table 1 shows the oxygen content and thermal conductivity of the obtained AlN sintered body measured by the Lede flash method.

実施例1〜7は、温度1500℃以上における焼成雰囲
気のCo濃度は900 ppm以下に抑えられ、その結
果、熱伝導率は180〜220W/m4となった。一方
、比較例1〜2のCo濃度は900ppmをこえ、熱伝
導率は125W/m4程度しか得られなかった。
In Examples 1 to 7, the Co concentration in the firing atmosphere at a temperature of 1500°C or higher was suppressed to 900 ppm or less, and as a result, the thermal conductivity was 180 to 220 W/m4. On the other hand, in Comparative Examples 1 and 2, the Co concentration exceeded 900 ppm, and the thermal conductivity was only about 125 W/m4.

実施例8 比較例6〜5 実施例1の配合において、酸素含有量6.0重量%のA
lN粉末を用い、表−2に示す条件で焼結した。比較例
3は、雰囲気のCo濃度を故意に高めるために、実施例
8に外部からCOガスを供給したものである。
Example 8 Comparative Examples 6-5 In the formulation of Example 1, A with an oxygen content of 6.0% by weight
Sintering was performed using IN powder under the conditions shown in Table 2. In Comparative Example 3, CO gas was supplied from the outside to Example 8 in order to intentionally increase the Co concentration in the atmosphere.

その結果を表−2に示す。The results are shown in Table-2.

酸素含有量の高い、通常、高熱伝導率の得られないAl
N粉末を用いても本発明の実施例8では190W/m−
にと高い値が得られることが判った。
Al that has a high oxygen content and usually does not have high thermal conductivity
Even if N powder is used, in Example 8 of the present invention, the power consumption is 190 W/m-
It was found that very high values could be obtained.

一方、比較例では最高でも112W/m−にであり、実
施例に比べて低い値であった。
On the other hand, in the comparative example, the maximum power was 112 W/m-, which was a lower value than that of the example.

〔発明の効果〕〔Effect of the invention〕

本発明の高熱伝導性AlN焼結体の製法によれば安定し
て高熱伝導率のAlN焼結体を得ることができ工業的価
値は極めて大きいものである。
According to the method for producing a highly thermally conductive AlN sintered body of the present invention, an AlN sintered body having a high thermal conductivity can be stably obtained, and the industrial value is extremely large.

特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 1.焼結助剤を含むAlN粉末混合物を所望形状に成形
した後、温度1500℃以上における焼成雰囲気のCO
ガス濃度が900ppm以下となるように不活性ガスを
供給して焼結することを特徴とすの高熱伝導性AlN焼
結体の製法。
1. After molding the AlN powder mixture containing the sintering aid into the desired shape, CO2 in the firing atmosphere at a temperature of 1500°C or higher
A method for producing a highly thermally conductive AlN sintered body, characterized in that sintering is performed by supplying an inert gas so that the gas concentration is 900 ppm or less.
2.AlN粉末混合物はさらに炭素質物質を含んでなる
ものであることを特徴とする請求項1記載の高熱伝導性
AlN焼結体の製法。
2. 2. The method for producing a highly thermally conductive AlN sintered body according to claim 1, wherein the AlN powder mixture further contains a carbonaceous material.
JP1038260A 1989-02-20 1989-02-20 Method for producing high thermal conductivity AlN sintered body Expired - Lifetime JP2721535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038260A JP2721535B2 (en) 1989-02-20 1989-02-20 Method for producing high thermal conductivity AlN sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038260A JP2721535B2 (en) 1989-02-20 1989-02-20 Method for producing high thermal conductivity AlN sintered body

Publications (2)

Publication Number Publication Date
JPH02217363A true JPH02217363A (en) 1990-08-30
JP2721535B2 JP2721535B2 (en) 1998-03-04

Family

ID=12520350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038260A Expired - Lifetime JP2721535B2 (en) 1989-02-20 1989-02-20 Method for producing high thermal conductivity AlN sintered body

Country Status (1)

Country Link
JP (1) JP2721535B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450172A (en) * 1990-06-18 1992-02-19 Kawasaki Steel Corp Preparation of highly conductive aln sintered
JPH09157034A (en) * 1995-12-06 1997-06-17 Denki Kagaku Kogyo Kk Aluminum nitride sintered body, its production and circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265865A (en) * 1987-04-24 1988-11-02 Onoda Cement Co Ltd Production of aluminum nitride sintered body
JPS63303863A (en) * 1987-01-13 1988-12-12 Toshiba Corp Aluminum nitride sintered body having high thermal conductivity and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303863A (en) * 1987-01-13 1988-12-12 Toshiba Corp Aluminum nitride sintered body having high thermal conductivity and its production
JPS63265865A (en) * 1987-04-24 1988-11-02 Onoda Cement Co Ltd Production of aluminum nitride sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450172A (en) * 1990-06-18 1992-02-19 Kawasaki Steel Corp Preparation of highly conductive aln sintered
JPH09157034A (en) * 1995-12-06 1997-06-17 Denki Kagaku Kogyo Kk Aluminum nitride sintered body, its production and circuit board

Also Published As

Publication number Publication date
JP2721535B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US4642207A (en) Process for producing ultrafine particles of ceramics
JP7145488B2 (en) Method for producing aluminum silicon carbide
US4661740A (en) Polycrystalline sintered bodies based on lanthanum hexaboride, and a process for their manufacture
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JPH02217363A (en) Production of ain sintered compact having high heat conductivity
JPH0362643B2 (en)
JPH0323206A (en) Aluminum nitride powder and its production
US4889665A (en) Process for producing ultrafine particles of ceramics
TWI297672B (en) Method for synthesizing aluminum nitride and composite thereof
JP2000016872A (en) Porous silicon carbide sintered body and its production
JPS61266356A (en) Plasma arc sintering for silicon carbide
JPH0812434A (en) Production of sintered b4c material and sintered b4c compact
WO2020046229A2 (en) Production of boron carbide, metal carbide and/or metal boride at high temperature and in continuous production line
JP2005519843A (en) Method for producing zirconium diboride powder
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
CN1275526A (en) Process for preparation of self-spread high-temp. synthesizing ferro-silicon nitride powder
JPH02271919A (en) Production of fine powder of titanium carbide
JP2007182340A (en) Aluminum nitride powder, its production method, and its use
JPS5622618A (en) Continuous manufacture of sic
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JP2538340B2 (en) Method for manufacturing ceramics sintered body
JPH04321560A (en) Production of isotropic graphite material having high strength
JPH0692733A (en) Production of silicon carbide heating element
JPS60131862A (en) High strength silicon carbide base sintered body
JPH04124006A (en) Fine spherical sintered compact of aln and its production

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12