JPH0221677A - Tunnel junction between superconductors - Google Patents

Tunnel junction between superconductors

Info

Publication number
JPH0221677A
JPH0221677A JP63170658A JP17065888A JPH0221677A JP H0221677 A JPH0221677 A JP H0221677A JP 63170658 A JP63170658 A JP 63170658A JP 17065888 A JP17065888 A JP 17065888A JP H0221677 A JPH0221677 A JP H0221677A
Authority
JP
Japan
Prior art keywords
superconductor
tunnel junction
oxide
tunnel
superconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63170658A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63170658A priority Critical patent/JPH0221677A/en
Priority to US07/376,012 priority patent/US5106819A/en
Publication of JPH0221677A publication Critical patent/JPH0221677A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/64

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make it possible to obtain a tunnel junction having a good crystallizability by a heteroepitaxial growth by a method wherein an oxide which is represented by a Bi2Sr2Lnn-1CunO2n+4 is used as a substrate which is held between superconductors and constitutes a tunnel barrier. CONSTITUTION:The cleavage plane of a magnesium oxide single crystal is not used as a substrate 1 for forming a film. An oxide superconductor which is represented by an Bi2Sr2Can-1CunO2n+4, such as a Bi2Sr2-CaCu2O8 9 is formed, and thereafter, a target is exchanged and an oxide which is represented by a Bi2Sr2Lnn-1CunO2n+4 (the Ln is yttrium and symboled Y.) or lanthanoid elements, such as a Bi2Sr2YCu2O8 10 is deposited thereon using masks 12 conformed to the sizes of element regions. A target is again exchanged, a Bi2Sr2 CaCu2O8 is deposited using second masks 13 and a tunnel junction is formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超伝導体を用いたトンネル接合に関する。超伝
導体のトンネル接合はジョセフソン接合として知られ、
高速度のデバイス素子として期待されている。本発明は
近年、発見された酸化物高温超伝導体を用いてジョセフ
ソン接合を形成せしめ、これを液体窒素温度以上の高温
で使用できるようなデバイスを作製することを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a tunnel junction using a superconductor. A tunnel junction in a superconductor is known as a Josephson junction.
It is expected to be used as a high-speed device element. An object of the present invention is to form a Josephson junction using a recently discovered oxide high-temperature superconductor, and to fabricate a device that can be used at temperatures higher than liquid nitrogen temperature.

〔従来の技術〕[Conventional technology]

従来の技術として、2枚の超伝導体の間に薄い(約10
0〜10000オングストローム)絶縁体や常伝導体、
半導体等を挟んだ接合はジョセフソン接合として知られ
ている。これらは超高速コンピュータ素子への応用が期
待され、研究されている。従来、この接合に用いられる
超伝導体としては臨界温度の低い金属系の物質が用いら
れ、冷媒として液体ヘリウムが用いられていた。一方、
近年、臨界温度が絶対温度90度を越える酸化物超伝導
体が発見された。これらの酸化物超伝導体は化学式 B
 i2s rzCan−ICU、、C)tn+a (n
=1.2.3、・・・)で表される。これらの物質を用
いてトンネル接合を持つ素子を作製することが試みられ
ている。
Conventional technology uses a thin film (approximately 10
0 to 10,000 angstroms) insulators and normal conductors,
A junction sandwiching a semiconductor or the like is known as a Josephson junction. These are expected to be applied to ultra-high-speed computer devices and are being studied. Conventionally, a metal-based substance with a low critical temperature has been used as a superconductor used for this bonding, and liquid helium has been used as a coolant. on the other hand,
In recent years, oxide superconductors with critical temperatures exceeding 90 degrees absolute have been discovered. These oxide superconductors have the chemical formula B
i2s rzCan-ICU,,C)tn+a (n
=1.2.3,...). Attempts have been made to fabricate devices with tunnel junctions using these materials.

〔従来の問題点〕[Conventional problems]

これらの酸化物超伝導体はそのコヒーレント長が数10
オングストロームと短いため、特性のよいジョセフソン
接合を形成するためには、トンネル障壁の厚さは最大1
00オングストロームもの超薄膜でなければならない、
薄膜化技術の進歩によって適当な基板の上にこの酸化物
超伝導体薄膜をエピタキシャル成長させることは可能と
なったが、さらにそのうえに100オングストローム程
度のトンネル障壁層を形成しさらに酸化物超伝導体層を
結晶性よく形成することは不可能と思われていた。なぜ
ならば、従来の金属系の超伝導体のトンネル接合に用い
られていた酸化マグネシウム、酸化アルミニウム等はB
 l zSr zCa 、、−1Cu、02n+4とは
結晶構造が異なっていたからであり結晶性はよく、これ
らの接合用の被膜を形成することはできなかった。この
ため良好ジョセフソン接合を形成できなかった。
These oxide superconductors have a coherence length of several tens of
Because it is as short as angstroms, the thickness of the tunnel barrier must be at most 1 angstrom to form a Josephson junction with good characteristics.
It must be an ultra-thin film of 0.00 angstroms.
Advances in film thinning technology have made it possible to epitaxially grow this oxide superconductor thin film on a suitable substrate, but it has also become possible to form a tunnel barrier layer of about 100 angstroms on top of it and then grow an oxide superconductor layer on top of it. It was thought that it would be impossible to form it with good crystallinity. This is because magnesium oxide, aluminum oxide, etc. used for tunnel junctions in conventional metallic superconductors are
This is because the crystal structure was different from l zSr zCa , -1Cu, and 02n+4, and the crystallinity was good, so it was not possible to form a bonding film for these. For this reason, a good Josephson junction could not be formed.

〔発明の構成〕[Structure of the invention]

本発明は、トンネル障壁として酸化物超伝導体B iz
S rzca、、−1Cu、、Ozn+aと同じ結晶構
造、はぼ同じ格子定数を有するものをもちいれば、酸化
物超伝導体とトンネル障壁との間を結晶性を損なうこと
なくトンネル接合を形成することが可能と考え本発明に
至った。73 izS r zL n fi−+Cu 
、、Ozn−a (L nはイツトリウム(元素記号Y
)、またはランタノイド元素)で表される酸化物は酸化
物超伝導体B 1 gS r 2Ca n−ICuIl
The present invention uses an oxide superconductor B iz as a tunnel barrier.
If a material having the same crystal structure and lattice constant as S rzca, -1Cu, and Ozn+a is used, a tunnel junction can be formed between the oxide superconductor and the tunnel barrier without impairing the crystallinity. The present invention was conceived based on the idea that this is possible. 73 izS r zL n fi-+Cu
,, Ozn-a (L n is yttrium (element symbol Y
), or lanthanoid elements) is an oxide superconductor B 1 gS r 2Ca n-ICuIl
.

21゜、と同じ結晶構造を有し、格子定数もほぼ同じで
あるが、抵抗の温度変化は半導体的で超伝導を示さない
物質として知られている。本発明はこのB i zS 
r 2L n、−l Cur+01゜4をトンネル障壁
として用いることによって結晶性のよいトンネル接合を
ヘテロエピタキシャル成長によって得るものである。以
下、実施例にしたがってより詳細に本発明を説明する。
Although it has the same crystal structure as 21° and has almost the same lattice constant, its resistance changes with temperature like a semiconductor and is known as a material that does not exhibit superconductivity. The present invention is based on this B i zS
By using r 2L n, -l Cur+01°4 as a tunnel barrier, a tunnel junction with good crystallinity is obtained by heteroepitaxial growth. Hereinafter, the present invention will be explained in more detail according to Examples.

「実施例」 酸化物超伝導体およびトンネル障壁はRFマグネトロン
スパッタリング法によって膜状に形成した。第1図に本
実施例にて、使用したスパッタリング装置の概要を示す
。スパッタリングターゲソ1− (71、F81として
は、B izS rzca cu、、07(7)および
B i zS r 2Y Cu zC7(81の焼結体
を用いたターゲットの組成が超伝導体のそれと少し異な
るのは、スパッタリングによって膜の組成がずれるのを
補償するためである。ターゲットをこのような組成にす
ることによって、化学世論的組成(Bi 2S r2C
a CuzoaおよびBizSr 2Y Cu 20g
)の膜が得られる。ターゲットはチャンバー内に2つ(
13j23 r2Ca Cu。
"Example" An oxide superconductor and a tunnel barrier were formed into a film by RF magnetron sputtering. FIG. 1 shows an outline of the sputtering apparatus used in this example. Sputtering target system 1- (71, F81 includes BizSrzcacu, 07(7) and BizSr2YCuzC7 (The composition of the target using the sintered body of 81 is slightly different from that of the superconductor. This is to compensate for the composition shift of the film due to sputtering. By making the target such a composition, the chemical composition (Bi 2S r2C
a Cuzoa and BizSr 2Y Cu 20g
) film is obtained. There are two targets in the chamber (
13j23 r2Ca Cu.

O7およびB r zS r 2Y Cuxoqの焼結
体)用意し、雰囲気を変えることなく連続的に膜形成が
できるようになっている。膜を形成する基板(1)とし
ては酸化マグネシウム車結晶の(100)へきかい面を
用いた。膜形成は、基板温度500 ’C1酸素:アル
ゴンーl:1の混合気体(全圧100ミリト〜ル)、堆
積速度約3nm/秒でおこなった。トンネル接合の作製
方法を第2図に示す。まず、B i 2S r 2Ca
 Cu20a(9)を約2000オングストローム形成
した(第2図(a))あと、ターゲットを交換し、素子
の領域の大きさにあわせたマスクα乃をしてB iz 
S r、YCuzO,Qolをその上に約100オング
ストローム堆積する。
A sintered body of O7 and B r zS r 2Y Cuxoq) is prepared so that film formation can be performed continuously without changing the atmosphere. A (100) diagonal surface of a magnesium oxide wheel crystal was used as the substrate (1) on which the film was formed. Film formation was carried out at a substrate temperature of 500'C1 oxygen:argon-1:1 gas mixture (total pressure 100 mTorr) and a deposition rate of about 3 nm/sec. FIG. 2 shows a method for manufacturing a tunnel junction. First, B i 2S r 2Ca
After forming about 2000 angstroms of Cu20a (9) (Fig. 2(a)), the target was replaced, a mask α according to the size of the device area was applied, and B iz
Deposit about 100 angstroms of Sr,YCuzO,Qol thereon.

(第2図(b)) 再びターゲットを交換してB izS r2Ca Cu
2O3第2のマスクαJを用いて、約2000オングス
トローム堆積する。(第2図(C))以上でトンネル接
合を形成することができた。酸化物超伝導体およびトン
ネル障壁はX線回折法および電子線回折法、RHEED
パターンから結晶性をあわせて形成されていることが確
かめられた。
(Fig. 2(b)) Replace the target again and set B izS r2Ca Cu
Deposit approximately 2000 angstroms using a 2O3 second mask αJ. (FIG. 2(C)) Through the above steps, a tunnel junction could be formed. Oxide superconductors and tunnel barriers are analyzed by X-ray diffraction and electron diffraction, RHEED
It was confirmed from the pattern that it was formed with crystallinity.

また、このトンネル接合は液体窒素温度で動作すること
が直流および交流ジョセフソン効果によって確認された
Furthermore, it was confirmed by the DC and AC Josephson effects that this tunnel junction operates at liquid nitrogen temperatures.

この時の電流電圧特性を第3図に示す。測定温度は80
にであった。また本実施例において、YBa z Cu
:+ 01−x (91αυをスパッタ法により形成し
た後に酸素雰囲気大において、高温アニールを行い超伝
導特性を向上させることは有効であった。
The current-voltage characteristics at this time are shown in FIG. The measured temperature is 80
It was. Further, in this example, YBa z Cu
:+01-x (After forming 91αυ by sputtering, it was effective to perform high-temperature annealing in a large oxygen atmosphere to improve the superconducting properties.

また超伝導体(9)、トンネル接合構成物質00)およ
び超伝導体0υを積層して形成した後に全体をアニルし
超伝導体(9)0υの超伝導特性を向上させさらにトン
ネル接合構成物質と超伝導体の結晶性の整合を行うこと
ができ、トンネル接合特性の向上に結びつき効果的な処
理であった。
In addition, superconductor (9), tunnel junction constituent material 00) and superconductor 0υ are stacked and formed, and then the whole is annealed to improve the superconducting properties of superconductor (9) 0υ, and further to form a tunnel junction constituent material. This process was effective in matching the crystallinity of the superconductor and improving tunnel junction characteristics.

本実施例において超伝導体又はトンネル接合用物質の形
成にはスパッタリング法を用いたが、その他の形成法で
あってもトンネル接合部分の結晶性を損なわずに形成で
きるものであれば適用可能である。
In this example, a sputtering method was used to form the superconductor or tunnel junction material, but other formation methods may also be used as long as they can be formed without impairing the crystallinity of the tunnel junction. be.

「効果」 本発明によって酸化物高温超伝導体だけでジョセフソン
・トンネル接合を形成することが可能となり、これによ
って、液体窒素を冷媒とする、低コストの超伝導デバイ
スの作製が可能となった。
"Effects" The present invention makes it possible to form a Josephson tunnel junction using only oxide high-temperature superconductors, which makes it possible to create low-cost superconducting devices using liquid nitrogen as a coolant. .

本発明によるトンネル接合はジョセフソンコンピュータ
ーの素子や超伝導トランジスター、量子干渉磁気検出装
置(SQUID)等に用いることができ、本発明は工業
的に存効な発明である。
The tunnel junction according to the present invention can be used in Josephson computer elements, superconducting transistors, quantum interference magnetic detectors (SQUID), etc., and the present invention is an industrially effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 RFマグネトロンスパンタリング装置の概略図 第2図 トンネル接合の作製手順を示す。 第3図は電流・電圧特性を示す。 1 基板     4  RF電源 2 電極     5 真空容器(チャンバー)3 排
気系    6 ガス系 7.8 ターゲット (B izs rzCa Cu3
0、およびB i zS r zY Cu :+09の
焼結体)9  BizSr2CaCuzOs膜 10  B i23 rzYcuzoe膜11  B 
izS rzCa Cu206膜12  第1のマスク 13  第2のマスク
Figure 1: Schematic diagram of the RF magnetron sputtering device Figure 2: Shows the procedure for producing a tunnel junction. Figure 3 shows the current/voltage characteristics. 1 Substrate 4 RF power source 2 Electrode 5 Vacuum container (chamber) 3 Exhaust system 6 Gas system 7.8 Target (B izs rzCa Cu3
0, and B i zS r zY Cu :+09 sintered body) 9 BizSr2CaCuzOs film 10 B i23 rzYcuzoe film 11 B
izS rzCa Cu206 film 12 First mask 13 Second mask

Claims (1)

【特許請求の範囲】 1、化学式Bi_2Sr_2Ca_n_−_1Cu_n
O_2_n_+_4(n=1、2、3、・・・)で表さ
れる酸化物超伝導体を用い、前記超伝導体によって構成
される一対の電極の間に絶縁体もしくは常伝導体、半導
体を挟むトンネル接合であって、超伝導体に挟まれトン
ネル障壁を構成する物質として、化学式Bi_2Sr_
2Ln_n_−_1Cu_nO_2_+_4(Lnはイ
ットリウム(元素記号Y)、またはランタノイド元素)
で表される酸化物を用いることを特徴とする超伝導体の
トンネル接合。 2、特許請求の範囲第1項において、超伝導体及びトン
ネル障壁を構成する物質は、前記超伝導体と同様の結晶
方位を示すことを特徴とする超伝導体のトンネル接合。
[Claims] 1. Chemical formula Bi_2Sr_2Ca_n_-_1Cu_n
Using an oxide superconductor represented by O_2_n_+_4 (n = 1, 2, 3, ...), an insulator, a normal conductor, or a semiconductor is sandwiched between a pair of electrodes constituted by the superconductor. In the tunnel junction, the material sandwiched between superconductors and forming the tunnel barrier has the chemical formula Bi_2Sr_
2Ln_n_-_1Cu_nO_2_+_4 (Ln is yttrium (element symbol Y) or lanthanoid element)
A tunnel junction of a superconductor characterized by using an oxide represented by 2. A tunnel junction of a superconductor according to claim 1, wherein the superconductor and the substance constituting the tunnel barrier exhibit the same crystal orientation as the superconductor.
JP63170658A 1988-07-08 1988-07-08 Tunnel junction between superconductors Pending JPH0221677A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63170658A JPH0221677A (en) 1988-07-08 1988-07-08 Tunnel junction between superconductors
US07/376,012 US5106819A (en) 1988-07-08 1989-07-06 Oxide superconducting tunnel junctions and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170658A JPH0221677A (en) 1988-07-08 1988-07-08 Tunnel junction between superconductors

Publications (1)

Publication Number Publication Date
JPH0221677A true JPH0221677A (en) 1990-01-24

Family

ID=15908966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170658A Pending JPH0221677A (en) 1988-07-08 1988-07-08 Tunnel junction between superconductors

Country Status (1)

Country Link
JP (1) JPH0221677A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296386A (en) * 1988-10-03 1990-04-09 Matsushita Electric Ind Co Ltd Superconducting element
JPH03218686A (en) * 1988-05-11 1991-09-26 Canon Inc Josephson element
US5468973A (en) * 1990-03-09 1995-11-21 Sumitomo Electric Industries, Ltd. Stacked Josephson junction device composed of oxide superconductor material
CN102393721A (en) * 2011-11-14 2012-03-28 江苏科技大学 Large-scale multiple oil-tank liquid level automation measurement integration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218686A (en) * 1988-05-11 1991-09-26 Canon Inc Josephson element
JPH0296386A (en) * 1988-10-03 1990-04-09 Matsushita Electric Ind Co Ltd Superconducting element
JP2796099B2 (en) * 1988-10-03 1998-09-10 松下電器産業株式会社 Superconducting element
US5468973A (en) * 1990-03-09 1995-11-21 Sumitomo Electric Industries, Ltd. Stacked Josephson junction device composed of oxide superconductor material
CN102393721A (en) * 2011-11-14 2012-03-28 江苏科技大学 Large-scale multiple oil-tank liquid level automation measurement integration system

Similar Documents

Publication Publication Date Title
JPH08501416A (en) Improved barrier layer for oxide superconductor devices and circuits
EP0390704B1 (en) Tunnel junction type Josephson device and method for fabricating the same
US5627139A (en) High-temperature superconducting josephson devices having a barrier layer of a doped, cubic crystalline, conductive oxide material
JPH02177381A (en) Tunnel junction element of superconductor
JPH0730161A (en) Laminated film of insulator thin film and oxide superconducting thin film and its manufacture
JPH0221677A (en) Tunnel junction between superconductors
JPH0221676A (en) Tunnel junction between superconductors
EP0491496B1 (en) Article comprising a superconductor/insulator layer structure, and method of making the article
US5106819A (en) Oxide superconducting tunnel junctions and manufacturing method for the same
JPS63306676A (en) Josephson element
Sanders et al. Evidence for tunneling and magnetic scattering at in situ YBCO/noble-metal interfaces
JPH0278282A (en) Josephson element
US5362709A (en) Superconducting device
JP3186035B2 (en) Laminated thin film for field effect element and field effect transistor using the laminated thin film
JPH03166776A (en) Tunnel junction element and manufacture thereof
Barber et al. Niobium nitride/aluminium nitride superconductor/insulator multilayers and tunnel junctions
Aoki et al. Characteristics of high J/sub c/Y-Ba-Cu-O tape on metal substrate prepared by chemical vapor deposition
JP2950958B2 (en) Superconducting element manufacturing method
JP2852753B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2835203B2 (en) Superconducting element manufacturing method
JPH1126822A (en) High temperature superconduction josephson element and its manufacture
JP2844206B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2868286B2 (en) Superconducting element and circuit element having the same
JPH04302183A (en) Method of forming tunnel type josephson junction
JP2698858B2 (en) Method for forming oxide superconductor