JPH02216274A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPH02216274A
JPH02216274A JP27935888A JP27935888A JPH02216274A JP H02216274 A JPH02216274 A JP H02216274A JP 27935888 A JP27935888 A JP 27935888A JP 27935888 A JP27935888 A JP 27935888A JP H02216274 A JPH02216274 A JP H02216274A
Authority
JP
Japan
Prior art keywords
composite material
coupling agent
bismaleimide
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27935888A
Other languages
Japanese (ja)
Other versions
JP2707294B2 (en
Inventor
Shigeji Hayashi
林 繁次
Masahiro Sugimori
杉森 正裕
Takashi Tada
多田 尚
Shinobu Fujie
忍 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63279358A priority Critical patent/JP2707294B2/en
Publication of JPH02216274A publication Critical patent/JPH02216274A/en
Application granted granted Critical
Publication of JP2707294B2 publication Critical patent/JP2707294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To obtain a composite material, excellent in heat resistance and having sufficient toughness by treating carbon fiber with a solution containing a specific silane coupling agent and then compounding the resultant treated carbon fiber with a bismaleimide-based resin composition. CONSTITUTION:Carbon fiber is subjected to dipping treatment with a solution containing one silane coupling agent selected from aminosilane, epoxysilane and vinylsilane, then treated and compounded with a resin composition containing a polyfunctional bismaleimide (e.g. 1,2-bismaleimideoethane) and a reactive compound, e.g. alkenylphenol (e.g. O,O'-diallylbisphenol A), copolymerizable with the above-mentioned imide compound to afford a composite material. The aforementioned composite material is excellent in heat and impact resistance and useful as an aeronautical heat-resistant material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は靭性、耐熱性、耐水性等に優れた炭素繊維複合
材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a carbon fiber composite material having excellent toughness, heat resistance, water resistance, etc.

〔従来の技術〕[Conventional technology]

炭素繊維複合材料としては、現在のところエポキシ樹脂
をマトリックス樹脂とするものが主流であるが、エポキ
シ樹脂は耐熱性が十分ではな(、航空・宇宙用途を中心
に高まりつつある耐熱性素材の要求を満足できなくなっ
てきている。
Currently, the mainstream carbon fiber composite materials are those that use epoxy resin as the matrix resin, but epoxy resin does not have sufficient heat resistance (the demand for heat-resistant materials is increasing mainly for aerospace applications). I am no longer able to satisfy myself.

一方、耐熱性樹脂として知られているポリイミドは、耐
熱性には優れているものの、成形加工性の面で問題があ
り、未だほとんど実用化されていない。このような状況
から、耐熱性と成形性のバランスに優れたビスマレイミ
ド系樹脂素材が、炭素繊維複合材料用のマトリックス樹
脂として注目されてきている。ビスマレイミド系樹脂の
場合には靭性に劣るという欠点があり、靭性の向上が実
用化の最大のポイントであると言われている。
On the other hand, although polyimide, which is known as a heat-resistant resin, has excellent heat resistance, it has problems in terms of moldability and is still hardly put into practical use. Under these circumstances, bismaleimide resin materials with an excellent balance of heat resistance and moldability are attracting attention as matrix resins for carbon fiber composite materials. Bismaleimide resins have the disadvantage of poor toughness, and improving toughness is said to be the most important point for practical use.

ビスマレイミド系樹脂をマトリックス樹脂とする炭素繊
維複合材料の靭性を改良する方法としては、ゴム成分を
ブレンドする方法、他のモノマーと共重合させる方法等
の方法が提案されているが、耐熱性等の物性の低下が大
きいわりに靭性の向上が十分でなかったり、樹脂単体の
破壊靭性としては一応向上しても炭素繊維複合材料とし
ての靭性の向上は十分でないなど満足すべき方法は見出
されていない。
Methods to improve the toughness of carbon fiber composite materials using bismaleimide resin as a matrix resin have been proposed, such as blending a rubber component or copolymerizing with other monomers, but the heat resistance, etc. A satisfactory method has not been found, such as cases in which the improvement in toughness is not sufficient despite the large decrease in physical properties of carbon fibers, or the improvement in toughness as a carbon fiber composite material is not sufficient even if the fracture toughness of the resin alone is improved. do not have.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、炭素繊維/ビスマレイミド系樹脂複合材料の
優れた耐熱性を損なりことなく、十分な靭性を有する複
合材料を製造する有利な方法を提供するものである。
The present invention provides an advantageous method for producing a composite material having sufficient toughness without impairing the excellent heat resistance of the carbon fiber/bismaleimide resin composite material.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記の課題を解決すべく検討した結果、
炭素繊維と特定のシランカップリング剤溶液で処理した
のち、ビスマレイミド系樹脂組成物と複合化することに
より、得られる複合材料の靭性が著しく向上することを
見出し本発明を完成した。
As a result of studies to solve the above problems, the present inventors found that
The present invention was completed based on the discovery that the toughness of the resulting composite material can be significantly improved by treating carbon fiber with a specific silane coupling agent solution and then combining it with a bismaleimide resin composition.

本発明は、炭素繊維をアミノシラン、エポキシシラン及
びビニルシランから選ばれる少なくとも1種のシランカ
ップリング剤の溶液で処理したのち、多官能性ビスマレ
イミドを主成分とする樹脂組成物と複合化することを特
徴とする、複合材料の製造方法である。
The present invention involves treating carbon fibers with a solution of at least one silane coupling agent selected from aminosilane, epoxysilane, and vinylsilane, and then compounding the carbon fibers with a resin composition containing polyfunctional bismaleimide as a main component. This is a method for manufacturing composite materials.

炭素繊維をアミノシランカップリング剤の希薄溶液(カ
ップリング剤濃度2.0重量%以下)で処理した場合は
、多官能ビスマレイミド及びこの化合物と共重合可能な
反応性化合物例えばアルケニルフェノールを主成分とす
る樹脂組成物と複合化することが好ましい。
When carbon fibers are treated with a dilute solution of an aminosilane coupling agent (coupling agent concentration 2.0% by weight or less), the main component is polyfunctional bismaleimide and a reactive compound copolymerizable with this compound, such as alkenylphenol. It is preferable to form a composite with a resin composition.

本発明に用いられる「炭素繊維」の用語は炭素繊維及び
グラファイト繊維の両方を意味し、炭素繊維は、通常「
プレカーサー」と称されるポリアクリロニトリル、ピッ
チ等の繊維状物を炭化するか又はグラファイト化温度に
加熱することにより製造される。
The term "carbon fiber" used in the present invention refers to both carbon fiber and graphite fiber, and carbon fiber is usually referred to as "carbon fiber".
It is produced by carbonizing a fibrous material called a "precursor" such as polyacrylonitrile or pitch or heating it to a graphitization temperature.

本発明の特色は、樹脂組成物との複合化に先立ち、炭素
繊維をアミノシラン、エポキシシラ/及びとニルシラン
から選ばれる少なくとも1穐のシランカップリング剤溶
液で処理してから用いることにある。このよのに炭素繊
維を特定のシランカップリング剤で処理してから用いる
ことにより、炭素繊維複合材料として満足すべき靭性が
得られるのであり、未処理の炭素繊維をそのまま用いた
のでは、たとえ靭性の高い樹脂組成物と組合せた場合で
も複合材料としての靭性は十分には発揮されない。
A feature of the present invention is that, prior to compounding with a resin composition, carbon fibers are treated with a solution of at least one silane coupling agent selected from aminosilane, epoxysilane/and nylsilane, and then used. However, by treating carbon fiber with a specific silane coupling agent before use, it is possible to obtain satisfactory toughness as a carbon fiber composite material. Even when combined with a resin composition having high toughness, the toughness as a composite material is not sufficiently exhibited.

本発明に用いられるシランカップリング剤としては、下
記の化合物があげられる。ビニルシラン例えばビニルト
リクロルシラン、ビニルトリメトキシシラン、ビニルト
リエトキシシラン、ビニルトリス(2−メトキシエトキ
シ)シラン、ビニルトリアセトキシシラン等、アミノシ
ラン例えばr−7ミノプロビルトリメトキシシラン、r
−アミノプロピルトリエトキシシラン、r−アミノプロ
ピルトリエトキシシラン、γ−アミノフロヒルーメチル
ージェトキシシラン、r−ウレイドグロビルトリエトキ
シシラン、r−(2−アミノエチル)アミノプロピルト
リメトキシシラン、エポキシシラン例えばγ−グリシド
キシプロビルトリメトキシシラン、γ−グリシドキシグ
ロビルトリエトキシシラン、β−(3,4−エポキシシ
クロヘキシル)エチルトリメトキシシラン、r−メタク
リルオキシグロビルトリメトキシシラン等。官能基がア
ミン基である化合物が特に好ましい。またこれらの7ラ
ンカツプリング剤の部分給金物を用いることができる。
Examples of the silane coupling agent used in the present invention include the following compounds. Vinylsilanes such as vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane, vinyltriacetoxysilane, etc., aminosilanes such as r-7minopropyltrimethoxysilane, r
-aminopropyltriethoxysilane, r-aminopropyltriethoxysilane, γ-aminofloyl-methyl-jethoxysilane, r-ureidoglobiltriethoxysilane, r-(2-aminoethyl)aminopropyltrimethoxysilane, epoxy Silanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxyglobiltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, r-methacryloxyglobiltrimethoxysilane, and the like. Particularly preferred are compounds whose functional group is an amine group. Partial feeds of these 7-run coupling agents can also be used.

炭素繊維をシランカップリング剤で処理する方法として
は、通常用いられているいずれの処理方法でもよいが、
シランカップリング剤の低濃度溶液中を通過させて処理
する方法が特に好ましい。この場合、溶液中のシランカ
ップリング剤の濃度が高いと炭素繊維の集束が強くなり
すぎて均一な複合材が得られな(なり、複合材としての
靭性が低下してしまうので、低濃度溶液を用いることが
重要である。溶液濃度は2.0重量%以下特に0.00
1〜2.0重量%が好ましい。
As a method for treating carbon fibers with a silane coupling agent, any commonly used treatment method may be used, but
Particularly preferred is a method in which the material is passed through a low concentration solution of a silane coupling agent. In this case, if the concentration of the silane coupling agent in the solution is high, the carbon fibers will aggregate too strongly and a uniform composite material will not be obtained (and the toughness of the composite material will decrease, so It is important to use a solution with a concentration of 2.0% by weight or less, especially 0.00%.
1 to 2.0% by weight is preferred.

本発明に用いられるシランカップリング剤の低濃度溶液
の溶媒としては、シランカップリング剤を溶解し、かつ
シランカップリング剤に対して実質的に不活性な溶媒で
あれば、いかなる溶媒でもよいが、処理後の乾燥工程を
考えた場合、高沸点の有機溶媒は好ましくない。
The solvent for the low concentration solution of the silane coupling agent used in the present invention may be any solvent as long as it dissolves the silane coupling agent and is substantially inert to the silane coupling agent. When considering the drying process after treatment, organic solvents with high boiling points are not preferred.

シランカップリング剤としてアミノシラン系のカップリ
ング剤を用いる場合の溶媒としてはエチルアルコール等
の低級アルコール、低級アルコールと水の混合溶媒、酢
酸等の酸成分を含有する水/アルコール混合溶媒等が特
に好ましい。
When using an aminosilane coupling agent as the silane coupling agent, particularly preferred solvents include lower alcohols such as ethyl alcohol, mixed solvents of lower alcohols and water, and water/alcohol mixed solvents containing acid components such as acetic acid. .

これらシランカップリング剤溶液で処理された炭素繊維
は風乾及び/又は加熱処理により溶剤等の揮発成分を除
去したのち、多官能性ビスマレイミドを主成分とする樹
脂組成物と複合化される。
The carbon fibers treated with these silane coupling agent solutions are air-dried and/or heated to remove volatile components such as solvents, and then composited with a resin composition containing polyfunctional bismaleimide as a main component.

本発明に用いられる多官能性ビスマレイミドを主成分と
する樹脂組成物とは、分子内に2個以上のマレイミド基
を有する化合物が30重量%好ましくは40重量%以上
を占める樹脂組成物であり、耐熱性、靭性等の物性を低
下させない範囲内で単官能マレイミド化合物あるいは他
の共重合可能な反応性化合物を含んでいてもよい。
The resin composition containing polyfunctional bismaleimide as a main component used in the present invention is a resin composition in which the compound having two or more maleimide groups in the molecule accounts for 30% by weight or more, preferably 40% by weight or more. , a monofunctional maleimide compound or other copolymerizable reactive compounds may be included within a range that does not reduce physical properties such as heat resistance and toughness.

多官能性ビスマレイミドとしては下記の化合物が用いら
れる。
The following compounds are used as the polyfunctional bismaleimide.

=    1.2− ビスマレイミドエタン、1,6−ビスマレイミドヘキサ
ン、1,12−ビスマレイミドドデカン、1.6−ビス
マレイミド−(2,2,4−トリメチル)ヘキサン、1
,6−ビスマレイミド−(2,4,4−トリメチル)ヘ
キサン、1,3−又は1,4−ビスマレイミドベンゼン
、4.4’−又ハ5.3’ −1:’スマレイミドジフ
ェニルメタン、2.4− 2.6−又は3,4−ビスマ
レイミドトルエン、3.3’−ビスマレイミドジフェニ
ルスルホン、4.4’−ビスマレイミドジフェニルエー
テル、4.4’−ビスマレイミドジシクロヘキシルメタ
ン、4.4’−ビスマレイミドジフェニルシクロヘキサ
ン、4.4’−1:’スマレイミトシフェニルスルファ
イド、N、N’ −m−又はp−キシリレンビスマレイ
ミド、N、■−m−フエニレンビスーシトラコンイミト
、N、N’ −4,4’−ジフェニレンビス−シトラコ
ンイミド等ならびにこれらの混合物。4,4′−ビスマ
レイミドジフェニルメタン、この化合物と1,6−ビス
マレイミドT(2,2,4−)リメチル)ヘキサン及び
2,4−ビスマレイミドトルエンの共融混合物が特に好
ましい。
= 1.2-bismaleimidoethane, 1,6-bismaleimidehexane, 1,12-bismaleimidododecane, 1.6-bismaleimido-(2,2,4-trimethyl)hexane, 1
, 6-bismaleimido-(2,4,4-trimethyl)hexane, 1,3- or 1,4-bismaleimidobenzene, 4.4'-or ha5.3'-1:'sumaleimidodiphenylmethane, 2 .4- 2.6- or 3,4-bismaleimidotoluene, 3.3'-bismaleimidodiphenyl sulfone, 4.4'-bismaleimidodiphenyl ether, 4.4'-bismaleimidodicyclohexylmethane, 4.4'- Bismaleimide diphenylcyclohexane, 4.4'-1:' Sumaleimitocyphenylsulfide, N, N' -m- or p-xylylene bismaleimide, N, -m-phenylene bis-citraconimide, N, N'-4,4'-diphenylenebis-citraconimide and mixtures thereof. Particular preference is given to 4,4'-bismaleimidodiphenylmethane, a eutectic mixture of this compound with 1,6-bismaleimidoT(2,2,4-)limethyl)hexane and 2,4-bismaleimidotoluene.

多官能性ビスマレイミド化合物と共重合可能な反応性化
合物としては、例えばO9σ−ジアリルビスフェノール
A、0.σ−ジアリルビスフェノールF、)リアリルイ
ソシアネート、ジビニルベンゼン、N−ビニルピロリド
ン及ヒエチレングリコールジメタクリレート等が挙げら
れる。
Examples of reactive compounds copolymerizable with the polyfunctional bismaleimide compound include O9σ-diallylbisphenol A, O. Examples include σ-diallyl bisphenol F,) realyl isocyanate, divinylbenzene, N-vinylpyrrolidone, and hyethylene glycol dimethacrylate.

これらの共重合可能な反応性化合物は単独あるいは混合
して樹脂組成物中70重量%以下好ましくは50重量%
以下の範囲で用いられる。これらの共重合可能な化合物
のうち、0.○′−ジアリルビスフェノールA、0.σ
−ジアリルビスフェノールF等のアルケニルフェノール
は樹脂組成物の靭性向上、加工性向上にも効果があり、
樹脂組成物中10〜50重量%の範囲で用いることが好
ましい。
These copolymerizable reactive compounds may be used alone or in combination in an amount of 70% by weight or less, preferably 50% by weight, in the resin composition.
Used in the following ranges. Among these copolymerizable compounds, 0. ○′-diallylbisphenol A, 0. σ
-Alkenylphenols such as diallylbisphenol F are effective in improving the toughness and processability of resin compositions,
It is preferably used in an amount of 10 to 50% by weight in the resin composition.

本発明に用いられる多官能性ビスマレイミドを主成分と
する樹脂組成物は、熱により容易に硬化させることがで
きるが、硬化物に所望の特性を付与したり、あるいは硬
化特性を調整する目的で触媒を添加してもよい。重合触
媒としては、オルガノホスフィン類、オルガノホスホニ
ウム塩あるいはそれらの錯体、イミダゾール類、第6級
アミン、第4級アンモニウム塩、三弗化ホウ素アミン塩
等のイオン触媒、及び有機過酸化物、アゾビスイソブチ
ロニトリル等のラジカル重合触媒を用いることができる
。触媒の添加量は、目的に応じて決定すればよいが、樹
脂組成物の安定性の面から全樹脂成分に対し0.05〜
5重量%が好ましい。
The resin composition containing polyfunctional bismaleimide as a main component used in the present invention can be easily cured by heat, but it is difficult to cure the resin composition for the purpose of imparting desired properties to the cured product or adjusting the curing properties. A catalyst may also be added. As polymerization catalysts, ionic catalysts such as organophosphines, organophosphonium salts or complexes thereof, imidazoles, 6th amines, quaternary ammonium salts, boron trifluoride amine salts, organic peroxides, azobis Radical polymerization catalysts such as isobutyronitrile can be used. The amount of catalyst to be added may be determined depending on the purpose, but from the viewpoint of stability of the resin composition, it should be 0.05 to 0.05 to
5% by weight is preferred.

本発明におけるビスマレイミドを主成分とする樹脂組成
物中には耐熱性、靭性等の物性を低下させない範囲で、
カルボキシル幕末端ブタジ末端ブタジェン/アクリロニ
トリル共重合体等の反応性ニジストマー エポキシ樹脂
、不飽和ポリエステル樹脂、フェノール樹脂、シリ=r
−ノ樹脂、トリアジン樹脂等の熱硬化性樹脂、ポリエー
テルスルホン、ポリエーテルイミド、ポリエーテルケト
ン、熱可塑性ポリイミド、ポリエステル、ポリアミド、
ポリアミドイミド等の熱可塑性樹脂を添加してもよい。
In the resin composition containing bismaleimide as a main component in the present invention, as long as the physical properties such as heat resistance and toughness are not deteriorated,
Carboxyl-terminated butadiene-terminated butadiene/acrylonitrile copolymers and other reactive nitrogen epoxy resins, unsaturated polyester resins, phenolic resins, silyl-r
- thermosetting resins such as resins, triazine resins, polyethersulfones, polyetherimides, polyetherketones, thermoplastic polyimides, polyesters, polyamides,
Thermoplastic resins such as polyamideimide may also be added.

これらの樹脂成分の添加量は60重量%以下にすること
が好ましい。
The amount of these resin components added is preferably 60% by weight or less.

本発明を実施するに際しては、まず炭素繊維を前記のシ
ランカップリング剤の溶液で処理する。処理法としては
浸漬法が好ましい。次いで炭素繊維を樹脂組成物と複合
化すると、目的の複合材料が得られる。
In carrying out the present invention, carbon fibers are first treated with a solution of the silane coupling agent described above. As a treatment method, a dipping method is preferred. Next, the carbon fiber is composited with a resin composition to obtain the desired composite material.

シランカップリング剤で処理された炭素繊維と多官能性
ビスマレイミドを主成分とする樹脂組成物とからなる複
合材料は、公知の方法で製造することができる。例えば
まずホットメルト法あるいは溶剤法で樹脂組成物をフィ
ルム状に成形し、次いで加熱含浸法により炭素繊維と樹
脂組成物の予備含浸物(いわゆるプリプレグ)を製造し
、これを真空バック/オートクレーブ法で硬化する方法
を用いることができる。
A composite material made of carbon fibers treated with a silane coupling agent and a resin composition containing polyfunctional bismaleimide as a main component can be produced by a known method. For example, first, a resin composition is formed into a film using a hot melt method or a solvent method, then a pre-impregnated product of carbon fiber and the resin composition (so-called prepreg) is produced using a heat impregnation method, and then this is processed using a vacuum bag/autoclave method. A method of curing can be used.

〔発明の効果〕〔Effect of the invention〕

本発明方法により得られた複合材料は、優れた耐熱性、
耐衝撃性及び機械的性質を有し、成形材料特に航空・宇
宙用耐熱材料として有用である。
The composite material obtained by the method of the present invention has excellent heat resistance,
It has impact resistance and mechanical properties, and is useful as a molding material, especially as a heat-resistant material for aerospace applications.

実施例1 γ−アミノプロピルトリエトキシシランを水−エタノー
ル(水/エタノール=1/9重量比)混合溶媒と混合し
、0.01重量%溶液を調製した。この溶液に炭素繊維
(三菱レイヨン社製パイロフィルT−3)を浸漬、通過
させた。風乾後、120℃で2分間熱風乾燥して巻き取
った。
Example 1 γ-aminopropyltriethoxysilane was mixed with a water-ethanol (water/ethanol = 1/9 weight ratio) mixed solvent to prepare a 0.01% by weight solution. Carbon fibers (Pyrofil T-3 manufactured by Mitsubishi Rayon Co., Ltd.) were immersed in this solution and passed through it. After air drying, it was dried with hot air at 120° C. for 2 minutes and rolled up.

さらに100℃で5時間、15mxHgの減圧下で乾燥
し、残存溶剤を除去した。処理後の炭素繊維は未処理の
ものと同様の外観を示した。−方、 4.4’−ビスマ
レイミドジフェニルメタン54 重量部と0.σ−ジア
リルビスフェノールA46重量部を130°Cで均一に
なるまで攪拌混合し、プレポリマーを得た。このプレポ
リマーを離型紙上に80℃で薄膜上に引き延ばし、ドラ
ム上で前記の処理した炭素繊維を巻きつけ、樹脂を含浸
させた。次いで切り開くことにより一方向グリプレグ(
糸目付14597m”、樹脂含有率33重量%)を得た
。このプリプレグを〔0°)Ill及び〔+45°10
°/−45°/90°〕4sに積層し、182℃で6時
間硬化し、さらに243℃で6時間緩硬化を行い複合材
を得た。
It was further dried at 100° C. for 5 hours under a reduced pressure of 15 m×Hg to remove residual solvent. The treated carbon fibers had a similar appearance to the untreated ones. - 54 parts by weight of 4.4'-bismaleimidiphenylmethane and 0. 46 parts by weight of σ-diallylbisphenol A were stirred and mixed at 130°C until uniform, to obtain a prepolymer. This prepolymer was stretched into a thin film on release paper at 80° C., and the treated carbon fibers were wound on a drum and impregnated with resin. One-way Gripreg (
Thread weight: 14,597 m'', resin content: 33% by weight) was obtained.This prepreg was prepared by [0°)
°/-45°/90°] for 4 seconds, cured at 182°C for 6 hours, and then slowly cured at 243°C for 6 hours to obtain a composite material.

得られた複合材の耐熱性及び耐衝撃性を下記の方法で評
価した。その結果を第1表に示す。
The heat resistance and impact resistance of the obtained composite material were evaluated by the following methods. The results are shown in Table 1.

「耐熱性」は、0016層の積層材コンポジットをAS
TMD −2344にしたがって、177℃、262℃
で層間剪断強度(工LSS )を測定することにより判
定した。
"Heat resistance" refers to the 0016 layer laminated material composite.
177℃, 262℃ according to TMD-2344
The determination was made by measuring the interlaminar shear strength (LSS).

「耐衝撃性」は、NASA RP 1092に準拠して
寸法4 X 6 X 0.25インチの板を3×5イン
チの穴のあいた台上に固定し、その中心に1/2インチ
Rのノーズをつけた4、 9 kgの分銅を落下させ、
板厚1インチ当り15001binの衝撃を加えたのち
、その板を圧縮試験することにより求めた。
"Impact resistance" is based on NASA RP 1092, in which a board with dimensions of 4 x 6 x 0.25 inches is fixed on a stand with a 3 x 5 inch hole, and a 1/2 inch radius nose is placed in the center of the board. A 4.9 kg weight with a weight attached to it is dropped,
It was determined by applying an impact of 15,001 bins per inch of plate thickness and then subjecting the plate to a compression test.

比較例1 アミノシランカップリング剤で処理していない炭素繊維
を用い、実施例1と同様にして複合材を得た。その評価
結果を第1表に示す。
Comparative Example 1 A composite material was obtained in the same manner as in Example 1 using carbon fibers that were not treated with an aminosilane coupling agent. The evaluation results are shown in Table 1.

参考例 γ−アミノグロビルトリエトキシシランを水−エタノー
ル(水/エタノール=1/9重−JL比)混合溶剤と混
合し、5.0重量%溶液を調製した。
Reference Example γ-Aminoglobiltriethoxysilane was mixed with a water-ethanol (water/ethanol = 1/9 weight-JL ratio) mixed solvent to prepare a 5.0% by weight solution.

実施例1と同様にして炭素繊維を処理した。処理した炭
素繊維は繊維同志が接着し集束した。
Carbon fibers were treated in the same manner as in Example 1. The treated carbon fibers were bonded together and bundled.

処理した炭素繊維を用い、実施例1と同様にしてプリプ
レグを作成した。繊維の広がりが悪く、樹脂の含浸状態
も悪かった。得られた複合材の衝撃後圧縮強度は12.
7kg/M112と実施例1と比較し著しく低いもので
あった。
A prepreg was created in the same manner as in Example 1 using the treated carbon fibers. The fibers did not spread well and the resin impregnation state was also poor. The post-impact compressive strength of the resulting composite material was 12.
The weight was 7 kg/M112, which was significantly lower than that of Example 1.

実施例2 r−ウレイドプロビルトリエトキシシランを水−エタノ
ール(1/9重量比)混合溶剤に溶解し、0.05重量
%溶液を調製して用い、その他は実施例1と同様にして
炭素繊維を処理し、さらに複合材を得た。その評価結果
を第1表に示す。
Example 2 r-Ureidoprobyltriethoxysilane was dissolved in a mixed solvent of water and ethanol (1/9 weight ratio) to prepare a 0.05% by weight solution, and carbon was prepared in the same manner as in Example 1. The fibers were further processed to obtain a composite material. The evaluation results are shown in Table 1.

第  1 表 実施例6 3−グリシドキシプロビル−トリメトキシシランを水−
エタノール(179重量比)に酢酸を少量添加した溶剤
を混合し、1.0重量%溶液を調製して用い、その他は
実施例1と同様にして炭素繊維を処理し、さらに複合材
を得た。耐熱性及び耐衝撃性の評価結果を第2表に示す
Table 1 Example 6 3-Glycidoxyprobyl-trimethoxysilane in water
A 1.0% by weight solution was prepared by mixing a solvent with a small amount of acetic acid added to ethanol (179 weight ratio), and otherwise the carbon fiber was treated in the same manner as in Example 1 to obtain a composite material. . The evaluation results of heat resistance and impact resistance are shown in Table 2.

実施例4 ビニルトリエトキシシランを、アセトン100gに対し
水2.0g及び酢酸2滴含有する混合溶剤に溶解し、0
.2重量%溶液を調製して用い、その他は実施例1と同
様にして炭素繊維を処理し、さらに複合材を得た。その
評価結果を第2表に示す。
Example 4 Vinyltriethoxysilane was dissolved in a mixed solvent containing 2.0 g of water and 2 drops of acetic acid per 100 g of acetone.
.. A 2% by weight solution was prepared and used, and carbon fibers were otherwise treated in the same manner as in Example 1 to obtain a composite material. The evaluation results are shown in Table 2.

実施例5 樹脂組成物としてビスマレイミド共融混合物(4,4’
−ビスマレイミドシフ゛エニルメタン49重量%、2.
4−ビスマレイミドトルエン63重量%及び1.6−ビ
スマレイミド−(2,2,4−トリメチル)ヘキサン1
8重量%)72重量部と0.0′−ジアリルビスフェノ
ールA28重量部の混合物を用い、その他は実施例1と
同様にして複合材を得た。その評価結果を第2表に示す
Example 5 Bismaleimide eutectic mixture (4,4'
- 49% by weight of bismaleimidocyphenylmethane, 2.
63% by weight of 4-bismaleimidotoluene and 1 part of 1,6-bismaleimido-(2,2,4-trimethyl)hexane
A composite material was obtained in the same manner as in Example 1, except that a mixture of 72 parts by weight (8% by weight) and 28 parts by weight of 0.0'-diallylbisphenol A was used. The evaluation results are shown in Table 2.

これらの結果から、本発明方法により得られた複合材料
は、優れた耐熱性及び耐衝撃性を有することが知られる
From these results, it is known that the composite material obtained by the method of the present invention has excellent heat resistance and impact resistance.

第  2 表Part 2 table

Claims (1)

【特許請求の範囲】 1、炭素繊維をアミノシラン、エポキシシラン及びビニ
ルシランから選ばれる少なくとも1種のシランカップリ
ング剤の溶液で処理したのち、多官能性ビスマレイミド
を主成分とする樹脂組成物と複合化することを特徴とす
る、複合材料の製造方法。 2、炭素繊維をアミノシランカップリング剤の希薄溶液
(カップリング剤濃度2.0重量%以下)で処理したの
ち、多官能性ビスマレイミド及びアルケニルフェノール
を主成分とする樹脂組成物と複合化することを特徴とす
る、複合材料の製造方法。
[Claims] 1. Carbon fibers are treated with a solution of at least one silane coupling agent selected from aminosilane, epoxysilane, and vinylsilane, and then composited with a resin composition containing polyfunctional bismaleimide as a main component. A method for manufacturing a composite material, characterized by: 2. After treating carbon fibers with a dilute solution of an aminosilane coupling agent (coupling agent concentration 2.0% by weight or less), composite the carbon fibers with a resin composition containing polyfunctional bismaleimide and alkenylphenol as main components. A method for manufacturing a composite material, characterized by:
JP63279358A 1988-11-07 1988-11-07 Manufacturing method of composite material Expired - Lifetime JP2707294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279358A JP2707294B2 (en) 1988-11-07 1988-11-07 Manufacturing method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63279358A JP2707294B2 (en) 1988-11-07 1988-11-07 Manufacturing method of composite material

Publications (2)

Publication Number Publication Date
JPH02216274A true JPH02216274A (en) 1990-08-29
JP2707294B2 JP2707294B2 (en) 1998-01-28

Family

ID=17610057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279358A Expired - Lifetime JP2707294B2 (en) 1988-11-07 1988-11-07 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP2707294B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503839A (en) * 2018-10-31 2019-03-22 陕西硕博电子材料有限公司 A kind of Bismaleimides resin pre-polymer and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869747A (en) * 1981-10-21 1983-04-26 Fuji Fiber Glass Kk Composition for treating glass fiber for polyolefin
JPS6032831A (en) * 1983-08-03 1985-02-20 Toho Rayon Co Ltd Carbon fiber for thermoplastic resin prepreg

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869747A (en) * 1981-10-21 1983-04-26 Fuji Fiber Glass Kk Composition for treating glass fiber for polyolefin
JPS6032831A (en) * 1983-08-03 1985-02-20 Toho Rayon Co Ltd Carbon fiber for thermoplastic resin prepreg

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503839A (en) * 2018-10-31 2019-03-22 陕西硕博电子材料有限公司 A kind of Bismaleimides resin pre-polymer and preparation method thereof
CN109503839B (en) * 2018-10-31 2021-03-23 陕西硕博电子材料有限公司 Bismaleimide resin prepolymer and preparation method thereof

Also Published As

Publication number Publication date
JP2707294B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
TWI816760B (en) Prepreg and fiber reinforced composite materials
JPS58183723A (en) Epoxy resin composition and prepreg
JP2012149237A (en) Thermosetting resin composition, prepreg and fiber-reinforced composite material
JP4257181B2 (en) Fullerene-containing prepreg
JP2002363253A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPH02175967A (en) Surface-modified inorganic fiber, its production and reinforcement of resin using the same
Hou et al. Processing and properties of IM7/LARCTM-RP46 polyimide composites
JPH02216274A (en) Production of composite material
JPH06166765A (en) Prepreg
JPH02113031A (en) Epoxy resin mixture for fibrous composite material
JPH05170952A (en) Prepreg for carbon fiber-reinforced multifunctional maleimide-based resin composite material
JP3193095B2 (en) Manufacturing method of composite material
JPH0572407B2 (en)
JP2003253094A (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP4346936B2 (en) Vapor grown carbon fiber-containing prepreg and method for producing the same
JPS606722A (en) Epoxy resin composition for carbon fiber prepreg
JPH0347295B2 (en)
JP2001049013A (en) Prepreg and carbon fiber reinforced composite material
JPH01172428A (en) Phenol resin molding material
JP4144136B2 (en) Prepreg and carbon fiber reinforced composite materials
JPH0611802B2 (en) Prepreg manufacturing method
JPS6058419A (en) Epoxy resin composition for carbon fiber reinforcement
JPH04275358A (en) Epoxy resin mixture for fibrous composite material, and prepreg
JP3593367B2 (en) Carbon fiber reinforced thermosetting resin prepreg
JP3065684B2 (en) Prepreg

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12