JPH01172428A - Phenol resin molding material - Google Patents

Phenol resin molding material

Info

Publication number
JPH01172428A
JPH01172428A JP33015887A JP33015887A JPH01172428A JP H01172428 A JPH01172428 A JP H01172428A JP 33015887 A JP33015887 A JP 33015887A JP 33015887 A JP33015887 A JP 33015887A JP H01172428 A JPH01172428 A JP H01172428A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
coupling agent
molding material
phenolic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33015887A
Other languages
Japanese (ja)
Other versions
JPH0753803B2 (en
Inventor
Yuji Kudo
雄二 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP33015887A priority Critical patent/JPH0753803B2/en
Publication of JPH01172428A publication Critical patent/JPH01172428A/en
Publication of JPH0753803B2 publication Critical patent/JPH0753803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to obtain a molded article having excellent abrasive characteristics and mechanical strengths, by compounding a specified polyacrylonitrile carbon fiber, a novolak phenol resin and a curing agent. CONSTITUTION:A polyacrylonitrile carbon fiber (A) treated by air oxidation and with a titanate coupling agent is obtd. by washing a polyacrylonitrile carbon fiber having a fiber diameter of 4-9mum and a fiber length of 1-10mm with a solvent to remove an epoxy resin with which the fiber is coated as a sizing agent, treating the fiber at 400-480 deg.C for 6-12hr in such a way that the wt. loss of the carbon fiber caused by oxidation is 5wt.% or less and then treating the fiber with 0.1-5wt.% titanate coupling agent [e.g., tetra(2,2- diallyloxymethyl-1-butyl) bis(di-tridecyl) phosphite titanate] based on the carbon fiber. 5-65wt.% component A is compounded with 25-50wt.% novolak phenol resin (B), 7-15wt.% curing agent (C) and, if necessary, a filler, a curing auxiliary etc. (D).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフェノール樹脂成形材料に関する。更に詳しく
は、摺動特性及び機械的強度に優れた成形品を与えるフ
ェノール樹脂成形材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a phenolic resin molding material. More specifically, the present invention relates to a phenolic resin molding material that provides molded products with excellent sliding properties and mechanical strength.

〔従来の技術〕[Conventional technology]

近年、金属材料からプラスチック材料への代替による軽
量化、コストダウン等を図る為にフェノール樹脂が見直
されている。
In recent years, phenolic resins have been reviewed in order to reduce weight and cost by replacing metal materials with plastic materials.

一般にフェノール樹脂成形材料には、補強材・充填材と
して木粉・バルブ等の有機物、アスベスト・ガラス繊維
・タルク等の無機物が使用されている。しかし、金属部
品の代替材料としては、機械的強度、耐熱性に加え、摺
動特性に優れた材料が必要とされており、上述した補強
材・充填材ではこれらの要求特性を同時に満足させるこ
とができなくなってきている。
In general, phenolic resin molding materials use organic materials such as wood flour and valves, and inorganic materials such as asbestos, glass fiber, and talc as reinforcing materials and fillers. However, as a substitute for metal parts, materials with excellent mechanical strength, heat resistance, and sliding properties are required, and the reinforcing materials and fillers mentioned above are unable to satisfy these required properties at the same time. It is becoming impossible to do so.

そこで、補強材として機械的強度・摺動特性に優れた炭
素繊維が使用されている。従来の炭素繊維強化フェノー
ル樹脂の機械的強度は、同一含有率における補強効果が
ガラス繊維の場合に比し小さいという欠点がある。炭素
繊維の補強効果が小さい理由には、主に炭素繊維表面が
化学的に不活性でフェノール樹脂との化学結合が期待で
きず。
Therefore, carbon fiber, which has excellent mechanical strength and sliding properties, is used as a reinforcing material. The mechanical strength of conventional carbon fiber-reinforced phenolic resins has a drawback in that the reinforcing effect at the same content is smaller than that of glass fibers. The main reason for the low reinforcing effect of carbon fiber is that the surface of carbon fiber is chemically inert, and chemical bonding with phenolic resin cannot be expected.

接着力が小さいということがあげられる。One example is that the adhesive strength is low.

従って、炭素繊維の接着性改善の為に、硝酸酸化、電解
酸化、空気酸化等の表面処理を施し、表面に化学的活性
基を生成させることが行われている。又、シラン系のカ
ップリング剤が併用される場合もある。しかし、上述し
たような表面処理をしても、炭素繊維強化材料の機械的
強度はほとんど改善されず、ガラス繊維に比べ補強効果
は依然として小さい(後記参考例1,2参照)。
Therefore, in order to improve the adhesion of carbon fibers, surface treatments such as nitric acid oxidation, electrolytic oxidation, and air oxidation are carried out to generate chemically active groups on the surface. Furthermore, a silane-based coupling agent may be used in combination. However, even with the surface treatment as described above, the mechanical strength of the carbon fiber reinforced material is hardly improved, and the reinforcing effect is still small compared to glass fiber (see Reference Examples 1 and 2 below).

従って、現在の炭素繊維強化フェノール樹脂成形材料は
、炭素繊維が本来持っている優れた機械的特性が生かさ
れておらず、高強度と優れた摺動特性を併せ持った成形
材料が作れないという問題点がある。
Therefore, current carbon fiber-reinforced phenolic resin molding materials do not take advantage of the excellent mechanical properties that carbon fibers inherently have, and the problem is that it is not possible to create molding materials that have both high strength and excellent sliding properties. There is a point.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

炭素繊維強化フェノール樹脂成形材料において、炭素繊
維の機械的強度に対する補強効果が小さいという問題点
を解決する為に、本発明者は次のことに着目した。
In order to solve the problem that the reinforcing effect on the mechanical strength of carbon fibers is small in carbon fiber-reinforced phenolic resin molding materials, the present inventors focused on the following points.

(1)炭素繊維の接着性を改善し、炭素繊維−フェノー
ル樹脂間の接着力を強くする。
(1) Improve the adhesiveness of carbon fibers and strengthen the adhesive force between carbon fibers and phenolic resin.

(2)炭素繊維−フェノール樹脂界面に応力を吸収する
柔軟性を持たせる。
(2) Provide flexibility to absorb stress at the carbon fiber-phenol resin interface.

上記2点を同時に満足させ、摺動特性と共に機械的強度
°に優れたフェノール樹脂成形材料を得るべく鋭意研究
を重ねた結果、炭素繊維を空気酸化処理し、この繊維に
チタネート系カップリング剤を塗布した後、ノボラック
型フェノール樹脂と混合した材料が、優れた機械的強度
と摺動特性とを併せ持つことを見出し、本発明を完成す
るに至った。
As a result of extensive research in order to obtain a phenolic resin molding material that simultaneously satisfies the above two points and has excellent sliding properties and mechanical strength, the carbon fibers were air oxidized and titanate-based coupling agents were added to the fibers. After coating, the inventors discovered that a material mixed with a novolac type phenolic resin has both excellent mechanical strength and sliding properties, leading to the completion of the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

従って、本発明フェノール樹脂成形材料に係り。 Therefore, the present invention relates to a phenolic resin molding material.

このフェノール樹脂成形材料は、空気酸化処理およびチ
タネート系カップリング剤処理されたポリアクリロニト
リル系炭素繊維、ノボラック型フェノール樹脂及び硬化
剤よりなる。
This phenolic resin molding material consists of polyacrylonitrile carbon fibers treated with air oxidation and a titanate coupling agent, a novolac type phenolic resin, and a curing agent.

本発明で空気酸化処理して用いられる炭素繊維は、ポリ
アクリロニトリル(PAN)系炭素繊維であれば良いが
、繊維径約4〜9μ腫、繊維要約1〜10i+nのもの
が好んで用いられる。この炭素繊維から、例えば溶剤を
用いる洗浄法により、サイジング剤として塗布されてい
るエポキシ樹脂を除去する。
The carbon fibers used after air oxidation treatment in the present invention may be polyacrylonitrile (PAN) carbon fibers, but those with a fiber diameter of about 4 to 9 μm and a fiber summary of 1 to 10i+n are preferably used. The epoxy resin coated as a sizing agent is removed from the carbon fibers by, for example, a cleaning method using a solvent.

洗浄済みの炭素繊維は、加熱下で空気酸化し、表面を化
学的に活性化する。空気酸化の条件は、酸化に伴う繊維
の重量減少率が約5重量2以下であるような、温度−時
間の組合せから適宜選択される0例えば、約400〜4
80℃で約6〜12時間空気酸化すると所望の効果が得
られる。一方1重量減少率が約5重量%をこえると、繊
維の強度低下が起るので好ましくない。
The cleaned carbon fibers undergo air oxidation under heat to chemically activate the surface. The air oxidation conditions are appropriately selected from temperature-time combinations such that the weight loss rate of the fibers due to oxidation is about 5% by weight or less.
Air oxidation at 80° C. for about 6 to 12 hours provides the desired effect. On the other hand, if the weight loss rate exceeds about 5% by weight, the strength of the fibers will decrease, which is not preferable.

空気酸化処理炭素繊維の使用量は、フェノール樹脂成形
材料中、約5〜65重量算であることが好ましい、約5
重量・%以下では補強効果が不十分であり、約65重量
%をこえて使用しても改善効果に変化がない。
The amount of air oxidized carbon fiber used is preferably about 5 to 65% by weight in the phenolic resin molding material, about 5% by weight.
If the amount is less than 65% by weight, the reinforcing effect is insufficient, and even if it is used in excess of about 65% by weight, there is no change in the improving effect.

本発明に使用できるチタネート系カップリング剤として
は、例えばテトラ(2,2−ジアリルオキシメチル−1
−ブチル)ビス(ジ−トリデシル)ホスファイトチタネ
ート、イソプロピルトリス(ジオクチルピロホスフェー
ト)チタネート、テトライソプロピルビス(ジオクチル
ホスファイト)チタネート等があげられる。チタネート
系カップリング剤は。
Examples of titanate coupling agents that can be used in the present invention include tetra(2,2-diallyloxymethyl-1
-butyl)bis(di-tridecyl)phosphite titanate, isopropyltris(dioctylpyrophosphate)titanate, tetraisopropylbis(dioctylphosphite)titanate, and the like. titanate coupling agents.

シラン系カップリング剤に比し広範な無機物及び有機物
に適用できるという特徴を有する。チタネート系カップ
リング剤の中でも、炭素繊維及びフェノール樹脂との相
溶性、取扱い易さ、分子量が大きく柔軟性を有すること
などから、テトラ(2,2−ジアリルオキシメチル−1
−ブチル)ビス(ジ−トリデシル)ホスファイトチタネ
ートが特に好ましい。
It has the characteristic that it can be applied to a wide range of inorganic and organic substances compared to silane coupling agents. Among titanate coupling agents, tetra(2,2-diallyloxymethyl-1
-butyl)bis(di-tridecyl)phosphite titanate is particularly preferred.

本発明のチタネート系カップリング剤の使用量は、炭素
繊維に対し約0.1〜5重量%であることが好ましい。
The amount of the titanate coupling agent of the present invention used is preferably about 0.1 to 5% by weight based on the carbon fiber.

約0.1重量%以下では効果が不十分であり、約5重量
算をこえて使用しても改善効果に変化はない、特に好ま
しくは約0.5〜2重量%である。
If it is less than about 0.1% by weight, the effect is insufficient, and even if it is used in an amount exceeding about 5% by weight, there is no change in the improvement effect.A particularly preferable content is about 0.5 to 2% by weight.

チタネート系カップリング剤による空気酸化処理炭素繊
維の処理は、乾式処理、湿式処理のいずれでも良いが、
例えば前述の空気酸化処理済みの炭素繊維に対して上記
の割合となるようにチタネ−ト系カップリング剤を秤量
すると共に、炭素繊維に対し約10〜20重量メとなる
ように溶剤(メチルエチルケトン、アセトン等)を秤量
し、チタネート系カップリング剤を上記の溶剤に溶解し
、これを炭素繊維に均一に噴霧、攪拌することにより行
われることが好ましい、上記溶剤の使用割合が約10%
以下では溶解に不十分であり、約20%をこえるのは不
経済である。
The treatment of air oxidation treated carbon fiber with a titanate coupling agent may be either dry treatment or wet treatment.
For example, a titanate-based coupling agent is weighed in the above proportion to the air oxidized carbon fiber, and a solvent (methyl ethyl ketone, methyl ethyl ketone, Acetone, etc.) is weighed, the titanate coupling agent is dissolved in the above solvent, and this is preferably sprayed uniformly onto the carbon fibers and stirred.The proportion of the above solvent used is approximately 10%.
If it is less than 20%, it is insufficient for dissolution, and if it exceeds about 20%, it is uneconomical.

フェノール樹脂としては、フェノール類及びアルデヒド
類を酸触媒下で縮合したノボラック型フェノール樹脂を
用いることが好ましく、成形材料の約25〜50重量瓢
を占めるように配合される。約25重量%以下では加熱
ロールでの材料の混線が困難となり、約50重量%をこ
えると高強度の成形材料が得られにくい。
As the phenol resin, it is preferable to use a novolac type phenol resin obtained by condensing phenols and aldehydes under an acid catalyst, and the resin is blended so as to account for about 25 to 50 parts by weight of the molding material. If it is less than about 25% by weight, it becomes difficult to mix the materials on the heating roll, and if it exceeds about 50% by weight, it is difficult to obtain a high-strength molding material.

本発明のフェノール樹脂成形材料は、上記の炭素繊維、
ノボラック型フェノール樹脂、各種の充填材や添加剤、
ヘキサメ宇しンテトラミン等の硬化剤(約7〜15%)
、及び必要があれば水酸化カルシウム等の硬化助剤(最
高的5%)を配合して混合することにより調製される。
The phenolic resin molding material of the present invention comprises the above-mentioned carbon fibers,
Novolac type phenolic resin, various fillers and additives,
Hardening agent such as hexametetramine (approximately 7-15%)
and, if necessary, a hardening aid such as calcium hydroxide (maximum 5%).

このフェノール樹脂成形材料を、例えば射出成形する場
合の条件の1例は、以下の通りである。
An example of conditions for injection molding this phenolic resin molding material is as follows.

金型温度=175℃  スクリュー回転数: 100r
p■射出圧カニ 800Kg/cd  射出時間: 3
08ec型締圧: 45Ton    硬化時間: 4
5sec〔発明の効果〕 空気酸化処理後チタネート系カップリング剤で処理され
た炭素繊維を含むフェノール樹脂成形材料により、機械
的強度及び摺動特性に優れた成形品を得ることが可能と
なる。
Mold temperature = 175℃ Screw rotation speed: 100r
p Injection pressure crab 800Kg/cd Injection time: 3
08ec mold clamping pressure: 45Ton Curing time: 4
5 sec [Effect of the Invention] By using a phenolic resin molding material containing carbon fibers treated with a titanate coupling agent after air oxidation treatment, it is possible to obtain a molded article with excellent mechanical strength and sliding properties.

〔実施例] 次に、実施例と比較例とを対比しつつ1本発明を更に詳
細に説明する。
[Example] Next, the present invention will be described in more detail while comparing Examples and Comparative Examples.

(以下余白) 参考例1:炭素繊維とガラス繊維の特性比較引張強さ 
[Kgf/am”]     370      28
0引張弾性率[Kgf/−一”]   24,000 
    7,000密  度   [g/ajl   
  1.77       2.49繊維自体の強度は
、炭素繊維が勝っていることが分かる。
(Left below) Reference example 1: Comparison of properties of carbon fiber and glass fiber tensile strength
[Kgf/am”] 370 28
0 tensile modulus [Kgf/-1”] 24,000
7,000 density [g/ajl
1.77 2.49 It can be seen that the strength of the fiber itself is superior to that of carbon fiber.

参考例2:炭素繊維強化ノボラック型フェノール樹脂と
ガラス繊維強化ノボラック型フェノール樹脂の特性比較 一−二1」L−一 災粗II狽互iη11囮繊維含有率
[重量%]     50      50曲げ強さ[
にgf/■■”]     17.0      1?
、7強化材料の強度においては、炭素繊維強化材料がガ
ラス繊維強化材料に比し劣っていることが分かる。
Reference Example 2: Comparison of properties of carbon fiber reinforced novolac type phenolic resin and glass fiber reinforced novolac type phenol resin
ni gf/■■”] 17.0 1?
, 7 It can be seen that the carbon fiber reinforced material is inferior to the glass fiber reinforced material in terms of the strength of the reinforced material.

実施例1 〔炭素繊維とフェノール樹脂の接着強度試験〕(1)ポ
リアクリロニトリル(PAN)系炭素質炭素繊維(東邦
レーヨン製品ベスファイトHTA ;繊維径7μ園、フ
ィラメント数6,000本)の連続糸を円筒の円周方向
に均一に巻き取り、440℃で6時間空気酸化した。こ
の炭素繊維に対して20重量%のアセトンを秤量し、ま
た炭素繊維に対し0.5重量2になるように一般式 %式% ネート(味の素製品KR55)を秤量し、このチタネー
ト系カップリング剤を上記のアセトンに溶解した。
Example 1 [Adhesive strength test between carbon fiber and phenol resin] (1) Continuous yarn of polyacrylonitrile (PAN)-based carbonaceous carbon fiber (Toho Rayon product Besphite HTA; fiber diameter 7μ, number of filaments 6,000) was uniformly wound in the circumferential direction of a cylinder and air oxidized at 440°C for 6 hours. Weigh out 20% by weight of acetone with respect to this carbon fiber, and weigh out general formula % formula % (Ajinomoto product KR55) so that the amount is 0.5% by weight with respect to the carbon fiber, and add this titanate coupling agent. was dissolved in the above acetone.

このカップリング剤溶液を炭素繊維に均一に塗布して、
チタネート系カップリング剤処理済み炭素繊維を作った
Apply this coupling agent solution uniformly to the carbon fiber,
We made carbon fiber treated with a titanate coupling agent.

(2)へキサメチレンテトラミンを15重量%含むノボ
ラック型フェノール樹脂(住友ベークライト製0/T−
9P)を、上記炭素繊維との合計量に対し40体積%(
33重量%)となるように秤量し、少量のメタノールに
完全に溶解させた。
(2) Novolac type phenolic resin containing 15% by weight of hexamethylenetetramine (0/T- manufactured by Sumitomo Bakelite)
9P) to 40% by volume (
33% by weight) and completely dissolved in a small amount of methanol.

このノボラック型フェノール樹脂メタノール溶液をチタ
ネート系カップリング剤処理済み炭素繊維に均一に塗布
後、25℃で8時間自然乾燥し、円筒の円周方向に対し
垂直に一個所カットしてシート状に延伸し、 5c■X
 Sew角にカットした後65℃で8時間加熱乾燥し、
繊維が一方向に配列したプリプレグシートを作成した。
After uniformly applying this novolac type phenolic resin methanol solution to carbon fibers treated with a titanate coupling agent, air drying at 25°C for 8 hours, cutting perpendicularly to the circumferential direction of the cylinder and stretching it into a sheet. 5c■X
After cutting into Sew squares, heat drying at 65℃ for 8 hours,
A prepreg sheet with fibers arranged in one direction was created.

(3)このプリプレグシートを重ね合わせ%5CIIX
5c■の断面積を持つ圧縮成形型に入れ、スペーサーを
用いて厚さ3.2+uwになるように調整し、175℃
で20分間かけて加熱圧縮成形した。
(3) Layer this prepreg sheet %5CIIX
Place it in a compression mold with a cross-sectional area of 5cm, adjust the thickness to 3.2+uw using a spacer, and heat at 175°C.
It was then heated and compression molded for 20 minutes.

(4)この成形品を175℃で8時間加熱処理し、室温
に放冷後、マイクロカッターで加工し、長さ16.0I
IIIX幅6.4mmX高さ3.2mmの試験片を作成
した。なお繊維の配列方向に長さをとり、配列方向と直
角に幅及び高さをとった。
(4) This molded product was heat-treated at 175°C for 8 hours, cooled to room temperature, and then processed with a micro cutter to a length of 16.0I.
IIIX A test piece with a width of 6.4 mm and a height of 3.2 mm was prepared. The length was taken in the direction in which the fibers were arranged, and the width and height were taken perpendicular to the direction in which the fibers were arranged.

(5)この試験片にライて、ASTM D2344 r
StandardTest Method for A
PPARENT INTERLAMINAR5HEAR
5TRENGTHOF  PARALLEL  FIB
ERCOMPO5ITES  BYSHORT−BEA
M METHODJに基づき、ショートビーム法で接着
性の評価を行った。
(5) Lay on this test piece, ASTM D2344 r
StandardTest Method for A
PPARENT INTERLAMINAR5HEAR
5TRENGTHOF PARALLEL FIB
ERCOMPO5ITES BYSHORT-BEA
Adhesion was evaluated using the short beam method based on M METHODJ.

試験速度は1.3m■/win、支点間距離は試験片の
厚さの3倍9.61とし、試験片を加圧くさびによって
試験片の中央部に荷重がかかるように支持台上に置き、
試験を行った。試験結果を、後述の比較例1〜2の結果
と共に、下記第1表に示した。
The test speed was 1.3 m/win, the distance between the supports was 9.61 times the thickness of the test piece, and the test piece was placed on a support stand so that the load was applied to the center of the test piece using a pressure wedge. ,
The test was conducted. The test results are shown in Table 1 below, along with the results of Comparative Examples 1 and 2, which will be described later.

第1表 ここで、ILSSは次式により算出された。Table 1 Here, ILSS was calculated using the following formula.

Pmax :層関せん断破壊したときの最大荷重[Kg
flb=試験片の幅[I1票] h:試験片の厚さ[膳l] なお、実施例1においては曲げ破壊が起った為、この時
の最大荷重から見かけの几SSを算出した。
Pmax: Maximum load at the time of layer shear failure [Kg
flb = Width of test piece [I1] h: Thickness of test piece [Metal] Note that since bending failure occurred in Example 1, the apparent cage SS was calculated from the maximum load at this time.

接着性の評価に用いられたシa −トビーム法とは、一
方向繊維強化材料から得られた上記試験片を用いた短い
「はり(ショートビーム)」の両端を単純支持し、中央
に集中荷重Pを加える試験方法である。このとき、「は
り」の断面には曲げ応力とせん断路力とが生ずる。二つ
の応力の成分分布は、試験片の厚さと支点間距離の比(
R/b)によって変化するので、Q/bは一定とする必
要がある。
The sheet beam method used to evaluate adhesion is to simply support both ends of a short beam using the above test piece obtained from a unidirectional fiber-reinforced material, and apply a concentrated load to the center. This is a test method that adds P. At this time, bending stress and shear road force are generated in the cross section of the "beam". The distribution of the two stress components is determined by the ratio of the thickness of the specimen to the distance between the supports (
R/b), so Q/b needs to be constant.

繊維と樹脂の接着状態により、試験片の破壊形態は異な
る。つまり、繊維と樹脂の接着力に起因するせん断路力
で破壊が起るときは、層関せん薪が生じ、曲げ最大応力
はこれより大きい、このときの最大ぜん断路力を、前記
式に代入してILSSを算出する。これに対し、実施例
1のようにせん断路力が曲げ応力より大きい場合(繊維
と樹脂の接着力が強い場合)は、曲げ破壊が起る。
The fracture mode of the test piece differs depending on the adhesion state of the fiber and resin. In other words, when a fracture occurs due to shear road force caused by the adhesive force between fibers and resin, a layered shear is generated and the maximum bending stress is greater than this.Substitute the maximum shear road force at this time into the above equation. Then, ILSS is calculated. On the other hand, when the shear path force is larger than the bending stress as in Example 1 (when the adhesive force between the fiber and the resin is strong), bending failure occurs.

比較例1 (1)実施例1で使用した炭素繊維の連続糸を円筒の円
周方向に均一に巻き取り、440℃で6時間空気酸化し
た。
Comparative Example 1 (1) The continuous yarn of carbon fiber used in Example 1 was wound uniformly in the circumferential direction of a cylinder, and air oxidized at 440° C. for 6 hours.

(2)次に、実施例1と同仕様のへキサメチレンテトラ
ミンを15重量%含むノボラック型フェノール樹脂を空
気酸化済み炭素繊維との合計量に対し40体積2となる
ように秤量し、メタノールに完全に溶解させた。
(2) Next, a novolac type phenol resin containing 15% by weight of hexamethylenetetramine having the same specifications as in Example 1 was weighed so that the total volume with the air-oxidized carbon fiber was 40% by volume, and added to methanol. Completely dissolved.

このフェノール樹脂メタノール溶液を空気酸化処理後の
炭素繊維に均一に塗布後、25℃で8時間自然乾燥し、
円筒の円周方向に対し垂直に一個所カットしてシート状
に延伸し、5cm X 5cm角にカットした後65℃
で8時間加熱乾燥し、繊維が一方向に配列したプリプレ
グシートを作成した。
After uniformly applying this phenolic resin methanol solution to the carbon fiber after air oxidation treatment, it was naturally dried at 25°C for 8 hours.
Cut one spot perpendicular to the circumferential direction of the cylinder, stretch it into a sheet, cut it into 5cm x 5cm squares, and then heat at 65°C.
This was heated and dried for 8 hours to create a prepreg sheet with fibers arranged in one direction.

(3)以下、実施例1の(3)項以下と同じ方法で行な
い、試験結果を前記第1表に示した。
(3) The following tests were carried out in the same manner as in section (3) of Example 1, and the test results are shown in Table 1 above.

比較例2 (1)比較例1の(1)項と同様にして空気酸化処理済
み炭素繊維を作った。この炭素繊維に対して20重量%
のエタノールを秤量し、炭素繊維に対し0.5重量%に
なるように下記式 %式%) で表わされるγ−アミノプロピルトリエトキシシランを
秤量し、このシラン系カップリング剤をエタノールに溶
解した。このカップリング剤溶液を炭素繊維に均一に塗
布してシラン系カッ・プリング剤処理済み炭素繊維を作
った。
Comparative Example 2 (1) Air oxidized carbon fibers were produced in the same manner as in section (1) of Comparative Example 1. 20% by weight based on this carbon fiber
of ethanol was weighed, and γ-aminopropyltriethoxysilane represented by the following formula (% formula %) was weighed so that it was 0.5% by weight based on the carbon fiber, and this silane coupling agent was dissolved in ethanol. . This coupling agent solution was uniformly applied to carbon fibers to produce carbon fibers treated with a silane coupling agent.

(2)次に、ヘキサメチレンテトラミンを15重量%含
むノボラック型フェノール樹脂を、上記のシラン系カッ
プリング剤処理済み炭素繊維との合計量に対し40体積
算となるように秤量し、少量のメタノールに完全に溶解
させた。このフェノール樹脂メタノール溶液をシラン系
カップリング剤処理済みの炭素繊維に均一に塗布後、2
5℃で8時間自然乾燥し、円筒の円周方向に対し垂直に
一個所カットしてシート状に延伸し、5cm X 5c
m角にカットした後65℃で8時間加熱乾燥し、繊維が
一方向に配列したプリプレグシートを作成した。
(2) Next, a novolac type phenolic resin containing 15% by weight of hexamethylenetetramine was weighed so that the total volume of the above-mentioned silane coupling agent-treated carbon fiber was 40, and a small amount of methanol was added. completely dissolved in. After uniformly applying this phenol resin methanol solution to the carbon fiber treated with a silane coupling agent,
Air-dried at 5°C for 8 hours, cut perpendicularly to the circumferential direction of the cylinder and stretched into a sheet, 5cm x 5cm.
After cutting into m square pieces, the sheets were heated and dried at 65° C. for 8 hours to create a prepreg sheet in which fibers were arranged in one direction.

(3)以下、実施例1の(3)項以下と同じ方法で行な
い、試験結果を前記第1表に示した。
(3) The following tests were carried out in the same manner as in section (3) of Example 1, and the test results are shown in Table 1 above.

実施例2 〔成形品の機械的強度試験〕 (1)ポリアクリロニトリル(PAN)系炭素質炭素繊
維(東邦レーヨン製品ベスファイトHTA−C3−5)
を440℃で6時間空気酸化処理した。
Example 2 [Mechanical strength test of molded product] (1) Polyacrylonitrile (PAN)-based carbonaceous carbon fiber (Toho Rayon product Besphite HTA-C3-5)
was subjected to air oxidation treatment at 440°C for 6 hours.

(2)この空気酸化処理炭素繊維に対して20重量%の
アセトンを秤量し、空気酸化処理炭素繊維に対して1.
0重量%の割合になるように実施例1に用いたテトラ(
2,2−ジアリルオキシメチル−1−ブチル)ビス(ジ
−トリデシル)ホスファイトチタネートを ゛秤量し、
このチタネート系カップリング剤を上記のアセトンに溶
解した。このカップリング剤溶液を上記炭素繊維に均一
に噴霧、攪拌して、チタネート系カップリング剤処理済
み炭素繊維を作った。
(2) Weigh 20% by weight of acetone to the air oxidized carbon fiber, and weigh 1.
Tetra (
Weighing 2,2-diallyloxymethyl-1-butyl)bis(di-tridecyl)phosphite titanate,
This titanate coupling agent was dissolved in the above acetone. This coupling agent solution was uniformly sprayed onto the carbon fibers and stirred to produce carbon fibers treated with a titanate coupling agent.

(3)処理済み炭素繊維を、下記の原料配合剤と配合し
た。
(3) The treated carbon fibers were blended with the following raw material compounding agents.

フェノール樹脂        44.3重量%へキサ
メチレンテトラミン    6.7〃炭素繊維    
       44.3  IIアスベスト    (
注1)      4.4  #カーボンブラック (
注2)      0.5  #(ill)比重2.4
5.水分含有率2.0〜3.0%、表面積60■2/g
、直径0.025μm(i12)平均粒子径24μm、
比表面積125m”/g、揮発分1.1% (4)この配合物を混合し、加熱ロールを用い常法に従
って処理し、成形材料を得た。
Phenol resin 44.3% by weight Hexamethylenetetramine 6.7 Carbon fiber
44.3 II Asbestos (
Note 1) 4.4 #Carbon black (
Note 2) 0.5 #(ill) specific gravity 2.4
5. Moisture content 2.0-3.0%, surface area 60 2/g
, diameter 0.025 μm (i12) average particle size 24 μm,
Specific surface area: 125 m''/g, volatile content: 1.1% (4) This mixture was mixed and treated using a heated roll according to a conventional method to obtain a molding material.

(5)上記の成形材料を常法により成形し、得られた成
形品について、JIS K−6911により機械的強度
を評価した。又、摺動特性は銘木式摩擦摩耗試験機によ
り次の試験条件下で測定した。
(5) The above molding material was molded by a conventional method, and the mechanical strength of the obtained molded product was evaluated according to JIS K-6911. In addition, the sliding properties were measured using a precious wood type friction and wear tester under the following test conditions.

環 境:室温、無潤滑 荷 重:8にgf/ cd 周 速: 0.2m/see 相手材: 545C 得られた結果を、後記の比較例3と共に下記第2表に記
す。
Environment: room temperature, no lubrication Load: 8 gf/cd Peripheral speed: 0.2 m/see Compatible material: 545C The obtained results are listed in Table 2 below, along with Comparative Example 3 below.

(以下余白) 第2表 (1)実施例2の(1)項により、空気酸化処理済み炭
素繊維を得た。
(The following is a blank space) According to Table 2 (1) Section (1) of Example 2, air oxidized carbon fibers were obtained.

(2)上記処理済み炭素繊維に対して5重量%のメタノ
ールを秤量し、処理済み炭素繊維に対して2.0重量%
の割合になるようにγ−7ミノプロビルトリエトキシシ
ランを秤量し、このアミノシラン系カップリング剤を上
記メタノールに溶解した。
(2) Weigh 5% by weight of methanol based on the above treated carbon fiber, and 2.0% by weight based on the treated carbon fiber.
γ-7minoprobyltriethoxysilane was weighed out so that the ratio would be as follows, and this aminosilane coupling agent was dissolved in the above methanol.

このカップリング剤溶液を、炭素繊維に均一に噴震、攪
拌して、シラン系カップリング剤処理済み炭素繊維を作
った。
This coupling agent solution was uniformly sprayed and stirred onto the carbon fibers to produce carbon fibers treated with a silane coupling agent.

(3)以下、実施例2の(3)項以下と同じ方法で行な
い、試験結果を前記第2表に示した。
(3) The following tests were carried out in the same manner as in section (3) of Example 2, and the test results are shown in Table 2 above.

実施例2の機械的強度は、比較例3に比し明らかに改善
している。又、摺動特性も、炭素繊維とフェノール樹脂
の接着力が向上したため摺動時の炭素繊維の離脱が減少
し、改善されたものと考えられる。
The mechanical strength of Example 2 is clearly improved compared to Comparative Example 3. It is also believed that the sliding properties were improved because the adhesion between the carbon fibers and the phenol resin was improved, so the detachment of the carbon fibers during sliding was reduced.

Claims (1)

【特許請求の範囲】 1、空気酸化処理およびチタネート系カップリング剤処
理されたポリアクリロニトリル系炭素繊維、ノボラック
型フェノール樹脂及び硬化剤よりなるフェノール樹脂成
形材料。 2、フェノール樹脂成形材料中、空気酸化処理およびチ
タネート系カップリング剤処理されたポリアクリロニト
リル系炭素繊維が約5〜65重量%用いられた特許請求
の範囲第1項記載のフェノール樹脂成形材料。 3、空気酸化処理ポリアクリロニトリル系炭素繊維が約
400〜480℃の温度で空気酸化されたポリアクリロ
ニトリル系炭素繊維である特許請求の範囲第1項記載の
フェノール樹脂成形材料。
[Claims] 1. A phenolic resin molding material comprising polyacrylonitrile carbon fiber treated with air oxidation and a titanate coupling agent, a novolac type phenolic resin, and a curing agent. 2. The phenolic resin molding material according to claim 1, wherein about 5 to 65% by weight of polyacrylonitrile carbon fibers treated with air oxidation and titanate coupling agent are used in the phenol resin molding material. 3. The phenolic resin molding material according to claim 1, wherein the air-oxidized polyacrylonitrile-based carbon fiber is a polyacrylonitrile-based carbon fiber that has been air-oxidized at a temperature of about 400 to 480°C.
JP33015887A 1987-12-28 1987-12-28 Phenolic resin molding material Expired - Fee Related JPH0753803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33015887A JPH0753803B2 (en) 1987-12-28 1987-12-28 Phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33015887A JPH0753803B2 (en) 1987-12-28 1987-12-28 Phenolic resin molding material

Publications (2)

Publication Number Publication Date
JPH01172428A true JPH01172428A (en) 1989-07-07
JPH0753803B2 JPH0753803B2 (en) 1995-06-07

Family

ID=18229465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33015887A Expired - Fee Related JPH0753803B2 (en) 1987-12-28 1987-12-28 Phenolic resin molding material

Country Status (1)

Country Link
JP (1) JPH0753803B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207035A (en) * 1993-01-11 1994-07-26 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber reinforced polyfunctional maleimide resin composite material
JP2010285578A (en) * 2009-06-15 2010-12-24 Akebono Brake Ind Co Ltd Friction material
WO2012093484A1 (en) * 2011-01-06 2012-07-12 株式会社日立製作所 Mechanical fuse installation system and mechanical fuse
JP2012207099A (en) * 2011-03-29 2012-10-25 Sumitomo Bakelite Co Ltd Phenolic resin molding material
US10883875B2 (en) 2015-03-05 2021-01-05 Honeywell International Inc. Use of selected glass types and glass thicknesses in the optical path to remove cross sensitivity to water absorption peaks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207035A (en) * 1993-01-11 1994-07-26 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber reinforced polyfunctional maleimide resin composite material
JP2010285578A (en) * 2009-06-15 2010-12-24 Akebono Brake Ind Co Ltd Friction material
WO2012093484A1 (en) * 2011-01-06 2012-07-12 株式会社日立製作所 Mechanical fuse installation system and mechanical fuse
JP2012207099A (en) * 2011-03-29 2012-10-25 Sumitomo Bakelite Co Ltd Phenolic resin molding material
US10883875B2 (en) 2015-03-05 2021-01-05 Honeywell International Inc. Use of selected glass types and glass thicknesses in the optical path to remove cross sensitivity to water absorption peaks

Also Published As

Publication number Publication date
JPH0753803B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
US3518221A (en) Reinforcing fillers in a matrix of two thermosetting resins
WO1999002586A1 (en) Prepreg fabric and honeycomb sandwich panel
JP2007016121A (en) Prepreg for composite material and composite material
JP5883875B2 (en) Method for producing carbon fiber composite material
JP2010202727A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
JPH01172428A (en) Phenol resin molding material
JPH045056B2 (en)
JPH10279777A (en) Flaky phenolic resin molding material containing carbon fiber and its production
JPS6043471B2 (en) Process for producing phenol formaldehyde resol tire cord immersion liquid without contamination and its products
JP2736443B2 (en) Epoxy resin composition for composite materials
JP2004169260A (en) Carbon fiber strand
JPS6385167A (en) Surface modified carbon fiber and its production
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
JP4346936B2 (en) Vapor grown carbon fiber-containing prepreg and method for producing the same
JPH0381342A (en) Manufacture of prepreg
JP3969506B2 (en) Method for producing glass fiber-containing phenolic resin molding material, and glass fiber-containing phenolic resin molding product
JP3571776B2 (en) Prepreg
JP2000355883A (en) Sizing agent for reinforcing fiber
JPH01110537A (en) Prepreg containing spherical fine particle of resin
JP3916264B2 (en) Prepreg
JPH1036631A (en) Granular carbon-fiber-containing phenol resin molding material and molded product thereof
JPH01110536A (en) Prepreg containing fine particle of resin
JP3535892B2 (en) Method for producing intermediate material for C / C composite
JPH0236612B2 (en) KOKASEIFUHOWAHORIESUTERUJUSHISOSEIBUTSUNOSEIZOHOHO
JPH02216274A (en) Production of composite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees