JPS6058419A - Epoxy resin composition for carbon fiber reinforcement - Google Patents

Epoxy resin composition for carbon fiber reinforcement

Info

Publication number
JPS6058419A
JPS6058419A JP16563483A JP16563483A JPS6058419A JP S6058419 A JPS6058419 A JP S6058419A JP 16563483 A JP16563483 A JP 16563483A JP 16563483 A JP16563483 A JP 16563483A JP S6058419 A JPS6058419 A JP S6058419A
Authority
JP
Japan
Prior art keywords
resin composition
epoxy resin
resistance
acrylonitrile rubber
silica gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16563483A
Other languages
Japanese (ja)
Inventor
Kuniaki Tobukuro
戸袋 邦朗
Tadahide Sato
佐藤 忠秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP16563483A priority Critical patent/JPS6058419A/en
Publication of JPS6058419A publication Critical patent/JPS6058419A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled composition having improved impact resistance without lowering the heat-resistance, water-resistance and mechanical characteristics of the original resin composition, and suitable as a structural material of aircraft, by adding a butadiene acrylonitrile rubber and anhydrous silica gel to an opoxy resin. CONSTITUTION:The objective composition is produced by compounding 100pts. wt. of an epoxy resin composition containing tetraglycidyl diaminodiphenylmethane of formula and diaminodiphenylsulfone with (A) preferably 1.5-4pts.wt. of a butadiene acrylonitrile rubber [preferably a carboxyl-containing butadiene acrylonitrile rubber having bonded acrylonitrile content of 15-55% and a Mooney viscosity (ML1+4, 100 deg.C) of 35-80] and (B) preferably 2.5-7pts.wt. of anhydrous silica gel (preferably fine powder having an average primary particle diameter of <=20mmu and a BET surface area of >=100m<2>/g).

Description

【発明の詳細な説明】 本発明は、づぐれた耐衝撃性を有し、かつ耐熱性、耐水
性の良い炭素繊維複合材料(以下CjRPと略称りる)
を製造するためのエポキシ樹脂組成物に関1jる。さら
に詳しくは、構造材料として必要な高性能の機械的特性
を有し、かつ耐熱、耐水性の優れた高衝撃性能を有する
CFRPを製造Jるためのプリプレグ用樹脂どして好適
なエポキシ樹脂組成物に関する。
Detailed Description of the Invention The present invention provides a carbon fiber composite material (hereinafter abbreviated as CjRP) that has poor impact resistance, good heat resistance, and water resistance.
1j relates to an epoxy resin composition for producing. More specifically, an epoxy resin composition suitable as a prepreg resin for manufacturing CFRP which has high mechanical properties necessary as a structural material and has excellent heat resistance, water resistance, and high impact performance. relating to things.

CFRPはその優れた比強度、北弾性率を活かしてプレ
ミアムスポーツ用品として広く使用されているが、近年
航空、宇宙機器や自動車等の18迄材料としても使用さ
れはじめている。しかし、CFRPは金属材料と比べた
場合耐ilT!j撃牲が劣るノごめ、構造材料としての
採用部品を拡大リ−るためには衝撃性能の改善が不可欠
である。特に航空fffi i’J自動車等は製造工程
や運用■稈で、様々な衝撃を受【プるため、これらの主
要部品をCF RP化りるためにば、衝撃性能の改善が
必須の要r1−とされCいる。
CFRP is widely used as premium sporting goods due to its excellent specific strength and modulus of elasticity, but in recent years it has also begun to be used as a material for aviation, space equipment, automobiles, etc. However, CFRP has higher ILT resistance than metal materials. In order to expand the number of parts that can be used as structural materials, it is essential to improve impact performance. In particular, aviation fffi i'J automobiles are subject to various impacts during the manufacturing process and operation, so if these major parts are to be converted to CF RP, it is essential to improve their impact performance. -It is said that C is.

ところで、現在航空機等の構造材料として使われている
CFRPは、機械的特性の他に耐熱性能が必要なため、
マトリックス樹脂どしては一般に高性能エポキシ樹脂が
使われている。しかし、かかるエポキシ樹脂、具体的に
はテトラグリシジルジアミノジフェニルメタン(以F 
T’ G l) D Mと略称する)は硬化剤としてジ
アミノジフェニルスルボン(以下DDSと略称する)を
用いることによって、耐熱性が高く、かつ機械的特性の
佼れ/JCF RP lfi i”−tられるが、樹脂
の伸びが小さく可撓性がないI、:め、衝撃性能が劣る
という欠点を有している。そのためT G D D M
 / D D Sにト1ycar CTBNなどの液状
ゴムを添加することが試みられている。しかし、かかる
手段では衝撃性能はある程度改善でさるものの、圧縮強
度や耐熱、耐水性の低下がとしく、航空機等の4F5造
林お1として必要な性rjヒをイb2足づることができ
ない、。そのためCF RI)の耐熱、耐水性A5機械
的特性を低下させることなく、1万撃性能を政所するこ
とが強(要望されている。
By the way, CFRP, which is currently used as a structural material for aircraft etc., requires heat resistance performance in addition to mechanical properties.
High performance epoxy resins are generally used as matrix resins. However, such epoxy resins, specifically tetraglycidyldiaminodiphenylmethane (hereinafter F
JCF RP lfi i"- However, it has the drawbacks of low elongation of the resin, lack of flexibility, and poor impact performance.Therefore, T G D D M
Attempts have been made to add liquid rubber such as Tolycar CTBN to DDS. However, although this method improves the impact performance to some extent, the compressive strength, heat resistance, and water resistance are significantly reduced, and it is not possible to provide the necessary characteristics for 4F5 afforestation for aircraft, etc. Therefore, there is a strong demand for a 10,000-stroke performance without reducing the heat resistance, water resistance, and mechanical properties of CFRI.

そこで、本発明者らは、T’ G D D M / D
 D Sを0右づるエポキシ樹脂組成物の衝撃性t1と
の改善について鋭j:’x (+Jl究した結果、本発
明に到達した。
Therefore, the present inventors determined that T' G D D M / D
As a result of extensive research into improving the impact strength t1 of an epoxy resin composition with D S set to 0, the present invention was arrived at.

′4な才〕lっ、丁G l) D MとDDSを含有す
るエポキシ91 triン;iIl を戊1f/Jに、
ブタジェン・アクリルニトリルゴムどIjjj水シリカ
シリカゲル加することによって、’r G l) D 
lvl / D D Sの耐熱、耐水性と機械的’F’
 (iをFl、うことなく、衝撃性能を改善することが
一1iJ能と<f−〉たのである。
'4〕l, Ding G l) D Epoxy 91 trin containing M and DDS; iIl to 1f/J,
By adding butadiene/acrylonitrile rubber, water, silica, silica gel, 'r G l) D
lvl/DDS heat resistance, water resistance and mechanical 'F'
(It was possible to improve the impact performance without changing i to Fl).

ここで、本発明に使用する1°GDDMは、一般式、で
表わされる4官能のエポキシ樹脂であり、市販品として
はQ tba −G et(lV?l ”IJ (英国
)のM Y 720.11友化学工業(株)製のE L
 M 434ヤ東部化成(株)製のY H−434など
がある。10DDMは炭素繊維との接着性が良好である
」−に、多官能エポキシ樹脂であるため、硬化剤とじ(
[)DSを用いると硬化物の架橋密度が高くなるため耐
熱性の良い、かつ高弾性率の硬化物が151ら1+る。
Here, 1° GDDM used in the present invention is a tetrafunctional epoxy resin represented by the general formula, and a commercially available product is Q tba -Get (lV?l'' MY 720. from IJ (UK)). 11 E L manufactured by Yukagaku Kogyo Co., Ltd.
Examples include M434 and YH-434 manufactured by Tobu Kasei Co., Ltd. 10DDM has good adhesion to carbon fibers, and since it is a multifunctional epoxy resin, it can be hardened with a hardening agent (
[) When DS is used, the crosslinking density of the cured product increases, resulting in a cured product with good heat resistance and high elastic modulus.

そのためTGDDM/DDSをマトリックス樹脂とする
CFRPは機械的特性と耐熱性が優れCいるが、反面樹
脂の可撓性が劣るため衝撃性r1ピGJ劣っている。そ
のため一般に航空機用l、:使われCいるCFRPはエ
ポキシ樹脂としてT G I) D Mに適量゛のノボ
−シック型エポキシ樹脂やビスフェノール△型エボー1
−シ樹脂などが添加されるのが普通で、本発明において
もTGDDM以外に他のエポキシ樹脂を含有していても
さしつかえない。しかし、このような手段ではCFRP
の一部の機械的特性を改遷できるが、衝撃性能の改善は
できない。そのため、従来はl−l ycarc T 
B Nなどの液状ゴムを添加する方法が試みられてきた
が、かかる方法では衝撃性能はある程度改善されるが、
圧縮強度や耐熱性1b耐水性の低下が著しく、満足な結
果が得られなかった。そこで*発明者らは、TGDDM
/DDSに液状ゴムを添加した場合の耐熱性や圧縮強度
の低下が、樹脂硬化物のガラス転移温度や弾性率のイ1
(手にもとづ(との知見から鋭意研究した結果A発明に
到)ヱした。ザなわら、CFRPが衝撃を受りた際に衝
撃エネルギーを吸収するためには、組成変形可能なゴム
成分が必要であるが、一方CF Rl”の圧縮強度の点
からは71−リックス樹脂の弾性率を低下させることは
許されない。がかる【」的のためにはマトリックス中に
ゴム成分を分散さゼることによって、マトリックス全体
の弾性率の低下を抑えるとともに、71−リツクスに無
機のフィラーを添加して樹脂硬化物の弾性率を上げる手
段を併用することが有効なことを見出した。
Therefore, CFRP using TGDDM/DDS as a matrix resin has excellent mechanical properties and heat resistance, but on the other hand, the flexibility of the resin is poor, so the impact resistance is inferior. Therefore, the CFRP used for aircraft is generally used as an epoxy resin.
Generally, epoxy resins such as epoxy resins are added, and in the present invention, there is no problem even if other epoxy resins are contained in addition to TGDDM. However, with this method, CFRP
It is possible to improve some of the mechanical properties of the material, but impact performance cannot be improved. Therefore, conventionally l-lycarc T
Attempts have been made to add liquid rubber such as BN, but although this method improves impact performance to some extent,
Compressive strength and heat resistance 1b water resistance were significantly reduced, and satisfactory results could not be obtained. Therefore, *the inventors
/The decrease in heat resistance and compressive strength when liquid rubber is added to DDS will affect the glass transition temperature and elastic modulus of the cured resin.
(As a result of intensive research based on this knowledge, we arrived at Invention A) However, from the viewpoint of compressive strength of CF Rl'', it is not allowed to lower the elastic modulus of 71-Rix resin. It has been found that it is effective to suppress the decrease in the elastic modulus of the entire matrix by doing so, and to also use a method of increasing the elastic modulus of the cured resin product by adding an inorganic filler to 71-Rix.

かかる本発明の目的のためには、ゴム成分としては室温
で固形のブタジェン・アクリルニトリルゴムが有効であ
り、無機フィラーとしては無水シリカゲルが有効である
。さらに具体的には、ブタジェン・アクリルニトリルゴ
ムとしては結合アクリルニトリル量が15〜55%の範
囲にあり、かつムーニー粘度(MLI+4.100℃)
が35〜80の範囲にあるカルボキシル基を含有するブ
タジェン・アクリルニトリルゴムが好ましく、市販品ど
しては日本ゼオン(株)製N1po11031 、N1
p0+1072、N1polDN211などのN1p0
に1〜リルゴムがある。かかるゴム成分はエボ4シ樹脂
組成物100車m部に対して0.5〜5.0千m部、よ
り好ましくは1.5〜4.0mm部の範囲で添加するの
が好ましい。添加mが0.5mfIi711未満では衝
撃性能が改善されないし、5.Ofl1m部を越えると
圧縮強度や耐熱性の低下が著しくなり好ましくない。次
に、本発明に使用する無水シリカゲルは粒子が微細なも
のほどよく、1次粒子の平均径が20111μ以下で、
BET法による表面積が100rn’/!I以上の微細
なものがよい。かかる無水シリカゲルの市販品としては
日本アエロジル((2、)製のアエロジル200、アエ
ロジル300、アエロジル380など各種のグレードが
ある。
For the purpose of the present invention, butadiene-acrylonitrile rubber, which is solid at room temperature, is effective as the rubber component, and anhydrous silica gel is effective as the inorganic filler. More specifically, the butadiene-acrylonitrile rubber has a bound acrylonitrile content in the range of 15 to 55%, and has a Mooney viscosity (MLI + 4.100°C).
Butadiene-acrylonitrile rubber containing a carboxyl group in the range of 35 to 80 is preferred, and commercially available products include N1po11031 and N1 manufactured by Nippon Zeon Co., Ltd.
N1p0 such as p0+1072, N1polDN211
There is 1 ~ lil rubber in. The rubber component is preferably added in an amount of 0.5 to 5,000 m parts, more preferably 1.5 to 4.0 mm parts, per 100 m parts of the EVO4 resin composition. If the addition m is less than 0.5 mfIi711, the impact performance will not be improved; If it exceeds 1 m of Ofl, the compressive strength and heat resistance will drop significantly, which is not preferable. Next, the anhydrous silica gel used in the present invention has finer particles, and the average diameter of the primary particles is 20111μ or less,
The surface area by BET method is 100rn'/! Fine particles of I or more are preferable. Commercial products of such anhydrous silica gel include various grades such as Aerosil 200, Aerosil 300, and Aerosil 380 manufactured by Nippon Aerosil ((2)).

本発明ににる無水シリカゲルの添加mは樹脂組成物10
0小ω部に対して2.0〜io、o重量部、より好まし
くは2.5〜7.0重量部の範囲である。/工1」ジル
の添加ωが2.0重量部未満では圧縮強1.徒か改善さ
れない、。一方添加毎が10゜0%を越えると樹脂の粘
度が高くなりすぎるため成型時に樹脂が十分炭素繊維中
に含浸されず、圧縮強度の低下をきたす。
The addition m of anhydrous silica gel according to the present invention is resin composition 10.
The amount is in the range of 2.0 to io, o parts by weight, more preferably 2.5 to 7.0 parts by weight per 0 small ω parts. /Work 1" When the addition ω of gill is less than 2.0 parts by weight, the compressive strength is 1. There is no improvement. On the other hand, if each addition exceeds 10.0%, the viscosity of the resin becomes too high and the resin is not sufficiently impregnated into the carbon fibers during molding, resulting in a decrease in compressive strength.

なお、本発明にJζる樹脂組成物をプリプレグ用樹脂組
成物どして用いる場合、必要に応じて粘度を調整Jる目
的でDDSを添加する前に、予め樹脂混合物を少量の芳
香族ジアミンで予備重合しても差支えない。また、本発
明の実施に当っては、補強材として炭素繊維以外にガラ
ス繊維や有機繊届などの他のaIi維を混合して用いて
も差支え4「い。
In addition, when using the resin composition of the present invention as a prepreg resin composition, etc., the resin mixture may be preliminarily treated with a small amount of aromatic diamine before adding DDS for the purpose of adjusting the viscosity as necessary. There is no problem even if prepolymerization is performed. Furthermore, in carrying out the present invention, other aI fibers such as glass fibers and organic fibers may be mixed and used in addition to carbon fibers as a reinforcing material.

また、補強材の形態も一方面プリプレグでも、クロスプ
リプレグでも差支えない。さらに使用りる炭素繊維もポ
リアクリルニトリル系、ピッチ系、レーヨン系等いずれ
の炭素繊維であってもかまわない。
Further, the form of the reinforcing material may be one-sided prepreg or cross prepreg. Furthermore, the carbon fibers used may be polyacrylonitrile-based, pitch-based, rayon-based, or other carbon fibers.

CFRPの特性評価は以下の方法で行なった。Characteristic evaluation of CFRP was performed by the following method.

(+) !7撃後の残存圧縮強度 東しく株)パトレカ″クロス#6343使いのプリプレ
グを36枚積層して、オートクレーブ中で硬化さUた後
、幅IQcm、長さ150111の大きさに切断し、端
面をよく研磨して試験片としIこ。この試験片の中央部
に錘を落として500in−lb/inの衝撃エネルギ
ーを与えた後、試験片の圧縮強度を測定した。
(+)! Residual compressive strength after 7 shots 36 sheets of prepreg using Patreca cloth #6343 (Toshishiki Co., Ltd.) were laminated, cured in an autoclave, and then cut into pieces with a width of IQ cm and a length of 150111, and the end faces were A test piece was prepared by thoroughly polishing it.A weight was dropped onto the center of the test piece to apply an impact energy of 500 in-lb/in, and the compressive strength of the test piece was measured.

(2)圧縮強度 東しく株)゛トレカ”T300を用いて一方向性ブリプ
レグを作成し、得られたプリプレグを成形品の厚さが2
110112度になるように必要な枚数を積層して′A
−1〜クレープ中で成型した後、ASTMD695に準
拠して測定した。
(2) Compressive strength A unidirectional prepreg was created using Toshishiku Co., Ltd.'s "Trading Card" T300, and the thickness of the molded product was 2.
Stack the required number of sheets so that the angle is 110112 degrees and
-1~ After molding in crepe, measurements were made in accordance with ASTM D695.

〈3) 耐熱、耐水性 試験片を72℃の温水中に14日間浸漬さ凹て吸水処理
した後、93℃で圧縮強度を測定して、吸水処理を施し
ていない試験片の室温で測定した圧縮強度と比較した。
(3) Heat resistance and water resistance A test piece was immersed in hot water at 72°C for 14 days and subjected to water absorption treatment, and then the compressive strength was measured at 93°C, and the compressive strength was measured at room temperature for a test piece that had not been subjected to water absorption treatment. compared with compressive strength.

以下実施例にJ:って本発明の内容をさらに詳細に説明
りる。
The contents of the present invention will be explained in more detail in the following Examples.

実施例1 仕友化学工呆(株)製ELM434を75重里部、l1
1j1ヒシエル〕ニボキシ(株)製Ep154、El)
82ε3をぞれぞれ15重置部と10重量部をよ<)I
C合した後、4.4′−ジアミノジフェニルスルノトン
を40 (fq m部添加して調整した樹脂組成物を、
組成物<A)とする。次に組成物(A)100!1′!
量部にス・1しアエロジル380を5重量部とN1po
11072を3ffiln部添加して、樹脂組成物(1
3)を調整し、ざらに組成物(A〉100重量部に対し
てN 1poll O72を3小山部添加して、樹脂組
成物(C)を調整した。
Example 1 ELM434 manufactured by Shiyu Kagaku Kogyo Co., Ltd.
1j1 Hishiel] Niboxi Co., Ltd. Ep154, El)
15 overlapping parts and 10 parts by weight of each of 82ε3<)I
After C-coating, the resin composition prepared by adding 40 (fq m parts) of 4,4'-diaminodiphenylsulnotone was
Composition <A). Next, composition (A) 100!1'!
1 part by weight, 5 parts by weight of Aerosil 380, and 1 part by weight of N1po.
11072 was added to form a resin composition (1
3), and 3 small parts of N 1poll O72 were added to 100 parts by weight of the coarse composition (A) to prepare a resin composition (C).

実施例2 実施例1で得られた組成物(A)、(B)、および(C
)をそれぞれメチルエチルケトンに溶解し、東しく株)
製゛′トレカ″クロス#6343に含浸サセた後120
℃で乾燥することによってクロスプリプレグを作成した
。得られたプリプレグを36枚積層して、オートクレー
ブ中で7 kq / DTFに加圧し、180℃で2時
間硬化さけて成形品を作成した。得られた成形品中の炭
素繊維の体積含有率は57〜58%で、どの樹脂組成物
もほとんど同じ値であった。
Example 2 Compositions (A), (B), and (C) obtained in Example 1
) was dissolved in methyl ethyl ketone, and Toshiku Co., Ltd.) was dissolved in methyl ethyl ketone.
120 after impregnated with manufactured trading card cloth #6343
Cross prepregs were made by drying at °C. Thirty-six sheets of the obtained prepreg were laminated, pressurized to 7 kq/DTF in an autoclave, and cured at 180° C. for 2 hours to create a molded product. The volume content of carbon fibers in the obtained molded products was 57 to 58%, which was almost the same value for all resin compositions.

そこで得られた成形品から幅1Qcm、長さ15cmの
試験片を切り出し、端面をより(llN磨したあと、試
験片の中火部に錘を落とづことにょっC15゜0in−
1b/inの衝撃エネルギーを与えてから試験片の圧縮
強度を測定し、衝撃後の残存圧縮強度にJ:って衝撃性
能を比較した。また比較のため衝撃を付与しない試験片
の圧縮強度も測定した。1ηられた結41は表1に示す
。表1から明らかなように、本発明の効果が顕著に認め
られる。
A test piece with a width of 1Qcm and a length of 15cm was cut out from the molded product obtained, and after polishing the end surface, a weight was dropped into the medium heat part of the test piece.
After applying an impact energy of 1 b/in, the compressive strength of the test piece was measured, and the impact performance was compared using the residual compressive strength after impact as J:. For comparison, the compressive strength of a test piece without impact was also measured. Table 1 shows the result 41 obtained by 1η. As is clear from Table 1, the effects of the present invention are clearly observed.

実施例3 実施例1で1ジノられた組成物(A)、(B)および(
C)を用いて、東しく株)製“トレカ″T−300を一
方向に引揃えた後、上記樹脂組成物を加熱溶融すること
によって含浸さけて一方向プリブレグを作成した。得ら
れたプリプレグを14枚積層1ノで、実施例2と同様の
方法で成形品を作成した。(!7られだ成形品中の炭素
繊維の体積含有率は、いずれの組成物も62〜63%の
範囲にあり、はぼ同じ顧であった。そこで成形品から幅
1.25mm、長さ80nvに切断した後タブを接着し
ASTM−D695に準じた方法で圧縮強度を測定した
。なお、圧縮強度は試験片を72℃の温水中に14E1
間浸漬さU/、:後93°Cで測定し、未処理の試験片
の圧縮強度を空温で4!す定した値と比較することによ
って耐熱、耐水性を評価した。得られた結果を表1に承
り。表1から明らかなように、本発明の効果が顕毬に認
められる。
Example 3 Compositions (A), (B) and (
Using C), "Trading Card" T-300 manufactured by Toshishiki Co., Ltd. was aligned in one direction, and then the resin composition was heated and melted to avoid impregnation to create a unidirectional pre-reg. A molded article was produced in the same manner as in Example 2 by laminating 14 sheets of the obtained prepreg in one layer. (!7) The volume content of carbon fiber in the molded product was in the range of 62 to 63% for all compositions, and was almost the same. After cutting to 80 nv, the tabs were glued together and the compressive strength was measured in accordance with ASTM-D695.
The compressive strength of the untreated specimen was measured at 93°C after being immersed for 4 hours at air temperature. The heat resistance and water resistance were evaluated by comparing with the established values. The results obtained are shown in Table 1. As is clear from Table 1, the effects of the present invention are clearly recognized.

第1表Table 1

Claims (1)

【特許請求の範囲】[Claims] (1) デ1〜ラグリシジルジアミノジフェニルメタン
とジアミノジフェニルスルボンとを含有するエポキシ樹
脂組成物ど、少なくとも、 A、ブタジェン・アクリルニトリルゴムと、B、無水シ
リカゲル どを含有することを特徴とする炭素繊維強化用エポキシ
樹脂組成物。
(1) De 1 - An epoxy resin composition containing laglycidyl diaminodiphenylmethane and diaminodiphenyl sulfone, etc., containing at least A, butadiene-acrylonitrile rubber, and B, anhydrous silica gel, etc. Epoxy resin composition for fiber reinforcement.
JP16563483A 1983-09-08 1983-09-08 Epoxy resin composition for carbon fiber reinforcement Pending JPS6058419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16563483A JPS6058419A (en) 1983-09-08 1983-09-08 Epoxy resin composition for carbon fiber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16563483A JPS6058419A (en) 1983-09-08 1983-09-08 Epoxy resin composition for carbon fiber reinforcement

Publications (1)

Publication Number Publication Date
JPS6058419A true JPS6058419A (en) 1985-04-04

Family

ID=15816086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16563483A Pending JPS6058419A (en) 1983-09-08 1983-09-08 Epoxy resin composition for carbon fiber reinforcement

Country Status (1)

Country Link
JP (1) JPS6058419A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023414A (en) * 1988-06-14 1990-01-09 Mitsubishi Petrochem Co Ltd One-package epoxy resin composition
JPH0220546A (en) * 1988-07-08 1990-01-24 Mitsubishi Kasei Corp Resin composition for fiber-reinforced plastics
US6045898A (en) * 1996-02-02 2000-04-04 Toray Industried, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
JP2008308134A (en) * 2007-06-18 2008-12-25 Denso Corp Drainage pipe and vehicular air conditioner
JP2015028140A (en) * 2013-06-26 2015-02-12 本田技研工業株式会社 Matrix material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023414A (en) * 1988-06-14 1990-01-09 Mitsubishi Petrochem Co Ltd One-package epoxy resin composition
JPH0220546A (en) * 1988-07-08 1990-01-24 Mitsubishi Kasei Corp Resin composition for fiber-reinforced plastics
US6045898A (en) * 1996-02-02 2000-04-04 Toray Industried, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
JP2008308134A (en) * 2007-06-18 2008-12-25 Denso Corp Drainage pipe and vehicular air conditioner
JP2015028140A (en) * 2013-06-26 2015-02-12 本田技研工業株式会社 Matrix material

Similar Documents

Publication Publication Date Title
US6399199B1 (en) Prepeg and carbon fiber reinforced composite materials
JP7172995B2 (en) Prepregs and fiber reinforced composites
JP4428978B2 (en) Epoxy resin composition
JPS6058419A (en) Epoxy resin composition for carbon fiber reinforcement
JPH02113031A (en) Epoxy resin mixture for fibrous composite material
JPH0770406A (en) Low temperature curing epoxy resin for prepreg and prepreg using the same
JPS59207920A (en) Heat-resistant epoxy resin composition
JPS59174616A (en) Epoxy resin composition and prepreg
JPS6028421A (en) Epoxy resin composition
JPH0586425B2 (en)
JPH01135858A (en) Epoxy resin composition for fiber reinforcement
JP2000239417A (en) Cloth prepreg and fiber-reinforced composite material
JPH09268221A (en) Resin composition for prepreg
JP2000355649A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JPS59217722A (en) Epoxy resin composition for carbon fiber prepreg
JPS6039286B2 (en) prepreg
JPH0827360A (en) Epoxy resin composition and fiber-reinforced composite material
JP2000254917A (en) Prepreg and carbon fiber-reinforced composite material
JPH06136242A (en) Epoxy resin composition and prepreg
JP3571775B2 (en) Prepreg
JPH1143534A (en) Production of resin composition for fiber-reinforced composite material
JPH0449568B2 (en)
JPH09110963A (en) Epoxy resin composition
JPS61250022A (en) Matrix resin composition
JPS6047290B2 (en) Prepreg manufacturing method