JPS6047290B2 - Prepreg manufacturing method - Google Patents

Prepreg manufacturing method

Info

Publication number
JPS6047290B2
JPS6047290B2 JP57004020A JP402082A JPS6047290B2 JP S6047290 B2 JPS6047290 B2 JP S6047290B2 JP 57004020 A JP57004020 A JP 57004020A JP 402082 A JP402082 A JP 402082A JP S6047290 B2 JPS6047290 B2 JP S6047290B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
prepreg
resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57004020A
Other languages
Japanese (ja)
Other versions
JPS5823830A (en
Inventor
孝之 田中
毅 南澤
芳泰 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Beslon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Beslon Co Ltd filed Critical Toho Beslon Co Ltd
Priority to JP57004020A priority Critical patent/JPS6047290B2/en
Publication of JPS5823830A publication Critical patent/JPS5823830A/en
Publication of JPS6047290B2 publication Critical patent/JPS6047290B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 本発明は、特定組成のエポキシ樹脂組成物を用いてホ
ットメルト法により高品質の炭素繊維プリプレグを製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high quality carbon fiber prepreg by a hot melt method using an epoxy resin composition having a specific composition.

炭素繊維は軽量でしかも高強度、高弾性を有するとい
う特徴ともつため複合材料の補強材として注目をあび、
これを用いる炭素繊維強化複合材料がスポーツ、レジャ
ー用品、航空機等に広く使用されつつある。
Carbon fiber has attracted attention as a reinforcing material for composite materials because it is lightweight, has high strength, and high elasticity.
Carbon fiber reinforced composite materials using this material are becoming widely used in sports, leisure goods, aircraft, etc.

従来、炭素繊維で補強された熱硬化性複合体で成形物
を製造する一方法として、一方向に配列された炭素繊維
にエポキシ樹脂等の熱硬化性樹脂を含浸させた、いわゆ
るプリプレグを作り、これを所定の角度に積層して加熱
加圧して硬化させ成形品とする方法が知られている。
Conventionally, one method of manufacturing molded products using a thermosetting composite reinforced with carbon fibers is to make a so-called prepreg in which carbon fibers arranged in one direction are impregnated with a thermosetting resin such as an epoxy resin. A method is known in which these materials are laminated at a predetermined angle and cured by heating and pressing to form a molded product.

プリプレグの製造方法としては、樹脂組成物を溶剤に
溶かして炭素繊維を含浸させて製造する、いわゆる溶剤
法と溶剤を用いず樹脂組成物を加熱溶融した状態で炭素
繊維に含浸させるいわゆるホットメルト法が公知である
が、溶剤を用いる方法は溶剤の蒸発拡散による作業環境
の悪化ならびにその防護対策設備による設備費の上昇、
溶剤の引火性による防災上の欠点、溶剤回収装置による
設備費の上昇および溶剤蒸発後プリプレグ中の残存する
微量の溶剤が成形物のボードの原因となり、物性の低下
をきたす等製造工程、経済性、プリプレグ品質の面から
いくつかの根本的な欠点を有している。
There are two methods for producing prepreg: the so-called solvent method, in which a resin composition is dissolved in a solvent and impregnated with carbon fibers, and the so-called hot-melt method, in which the resin composition is heated and melted without using a solvent and impregnated into carbon fibers. However, the method using a solvent deteriorates the working environment due to the evaporation and diffusion of the solvent, and increases the equipment cost due to the equipment to protect it.
Disadvantages in terms of disaster prevention due to the flammability of the solvent, increased equipment costs due to solvent recovery equipment, and trace amounts of solvent remaining in the prepreg after the solvent evaporates can cause molded boards to deteriorate, resulting in poor manufacturing process and economic efficiency. , has some fundamental drawbacks in terms of prepreg quality.

しかるにホットメルト法は溶剤法のこれらの欠点を解決
できる利点をもつている。 このプリプレグに要求され
る諸特性としては、成形品の物性が優れていることはも
ちろんてある1が、同時に室温でできる限り可使時間が
長く、かつ硬化温度が低く硬化速度が早いことが挙げら
れる。
However, the hot melt method has the advantage of overcoming these drawbacks of the solvent method. The various properties required of this prepreg include, of course, excellent physical properties of the molded product1, but also a long pot life as long as possible at room temperature, a low curing temperature, and a fast curing speed. It will be done.

すなわち、室温における可使時間が長いことは貯蔵安定
性に優れ取扱いを容易にする点て大きなメリットである
。 また硬化温度が低いことはプリプレグと他の材料、
例えは金属とを同時接着硬化させる(コーキエアー)場
合、炭素繊維複合材料と金属との熱膨張による残留応力
を少なくする等応用によつては必須条件てあり、さらに
硬化速度はそのまま生産性につながるものである。
That is, a long pot life at room temperature is a great advantage in terms of excellent storage stability and ease of handling. In addition, the low curing temperature means that prepreg and other materials,
For example, when simultaneously bonding and curing metals (Coke Air), reducing residual stress due to thermal expansion between carbon fiber composite materials and metals is an essential requirement depending on the application, and curing speed directly affects productivity. It is something.

本発明者らは、これらの条件を満足する炭素繊維プリプ
レグを得るべく樹脂組成物とこれを用いたプリプレグの
製造法につき検討した結果、本発明に到達した。
In order to obtain a carbon fiber prepreg that satisfies these conditions, the present inventors studied a resin composition and a prepreg manufacturing method using the same, and as a result, they arrived at the present invention.

すなわち、本発明はホットメルト式による炭素繊維プリ
プレグの製造法であつて下記のとおりのものてある。
That is, the present invention is a method for producing carbon fiber prepreg using a hot melt method, which is as follows.

フェノール・ノボラック型エポキシ樹脂を少なくとも印
重量%含有するフェノール・ノボラック型およびビスフ
ェノールA型エポキシ樹脂混合物て80゜Cにおける粘
度が30〜300ポイズである樹脂混合物100重量部
に対し粒度100p以下のジシアンジアミドと3−(3
.4ジクロルフエニル)−1.1ージメチル尿素とをお
のおの0.5〜6重量部含有してなるエポキシ樹脂組成
物を用いて炭素繊維プリプレグを製造する方法であつて
、該エポキシ樹脂組成物を離型紙にコーティング几、そ
の上に炭素繊維を配列せしめ、更にその上に離型紙を導
入し、次いで加熱された加熱板上を通して樹脂の粘度を
下げた後加熱ブレスローラーで線圧0.1〜100k9
/Cmでブレスして樹脂の含浸と同時に炭素繊維を押し
拡けることを特徴とするものてある。
Dicyandiamide with a particle size of 100 p or less per 100 parts by weight of a phenol-novolak type and bisphenol A-type epoxy resin mixture containing at least % by printed weight of a phenol-novolac type epoxy resin and having a viscosity of 30 to 300 poise at 80°C. 3-(3
.. A method for producing a carbon fiber prepreg using an epoxy resin composition containing 0.5 to 6 parts by weight of 4-dichlorophenyl)-1,1-dimethylurea, the method comprising: applying the epoxy resin composition to a release paper; Carbon fibers are arranged on the coating box, a release paper is introduced on top of it, and then the viscosity of the resin is lowered by passing it over a heated heating plate, and then a linear pressure of 0.1 to 100 k9 is applied using a heated press roller.
/Cm is used to spread the carbon fibers at the same time as impregnating them with resin.

本発明で得られるプリプレグは割れ目がなく内部の空洞
がなく、可使時間も長く貯蔵性がよい。また、このプリ
プレグは低温低圧の緩和な条件により成形することが可
能であつて、得られる成形物のコ.ンポジツト特性は良
好である。まず、本発明で使用されるエポキシ樹脂組成
物について説明する。
The prepreg obtained by the present invention has no cracks and no internal cavities, has a long pot life, and has good storage stability. In addition, this prepreg can be molded under mild conditions of low temperature and low pressure, and the resulting molded product is The deposit characteristics are good. First, the epoxy resin composition used in the present invention will be explained.

樹脂組成物は、〔A〕 フェノール・ノボラック型エポ
キシ樹脂〔B〕 ビスフェノールA型エポキシ樹脂〔C
〕 ジジアンジアミド 〔D〕3−(3.4ジクロルフエニル)−1.1−ジメ
チル尿素を含み、そして〔A〕十〔B〕の樹脂混合物は
80℃における粘度が30〜300ポイズでありフェノ
ール・ノボラック型エポキシ樹脂4を少なくとも80重
量%含有し、かつ〔A〕+〔B〕の樹脂混合物100重
量部に対し〔C〕と〔D〕をおのおの0.5〜6重量部
含有してなるものである。
The resin composition includes [A] phenol/novolac type epoxy resin [B] bisphenol A type epoxy resin [C]
] The resin mixture of didiandiamide [D] 3-(3.4 dichlorophenyl)-1,1-dimethylurea and [A] and [B] has a viscosity of 30 to 300 poise at 80°C and contains phenol. Contains at least 80% by weight of novolac type epoxy resin 4, and contains 0.5 to 6 parts by weight of [C] and [D] each based on 100 parts by weight of the resin mixture of [A] + [B]. It is.

このような樹脂組成物は、炭素繊維を強化材としたコン
ポジット用プリプレグとしたときに可使時間が長く、適
度の粘着性を有し、取扱上好適てあるとともに、硬化温
度か低くかつ硬化速度か早く、更にコンポジットとした
ときに高い層間剪断強度(ILSS)が得られる。
Such a resin composition has a long pot life, moderate tackiness, and is suitable for handling when used as a prepreg for a composite reinforced with carbon fiber, and has a low curing temperature and a fast curing speed. When formed into a composite quickly, high interlaminar shear strength (ILSS) can be obtained.

本発明におけるフェノール・ノボラック型エポキシ樹脂
は公知のものを用いることができ、具体的には例えば、
エピコート152、エピコート154)(シェル化学社
製)、アラルダイトEPNll38、EPNll39(
チバガイギー社製)、タウエポキシDEN43l、DE
N438、DEN439(ダウケミカル社製)、EPP
N2Ol(日本化薬社製)、エピクロンN74O(大日
本インキ化学工業社製)等が挙けら7れる。
As the phenol-novolac type epoxy resin in the present invention, known ones can be used, and specifically, for example,
Epikote 152, Epicoat 154) (manufactured by Shell Chemical Co., Ltd.), Araldite EPNll38, EPNll39 (
Ciba Geigy), Tauepoxy DEN43l, DE
N438, DEN439 (manufactured by Dow Chemical Company), EPP
Examples include N2Ol (manufactured by Nippon Kayaku Co., Ltd.), Epiclon N74O (manufactured by Dainippon Ink Chemical Industries, Ltd.), and the like.

また、ビスフェノールA型エポキシ樹脂は公知のものを
用いることができ、具体的には例えば、エピコート82
8、エピコート834、エピコート827、エピコート
1001、エピコート1002、工ピコノート1004
、エピコート1007、エピコート1009(シェル化
学社製)、アラルダイトCY2O5、CY23O、CY
232、CY22l、GY257、GY252、GY2
55、GY25O、GY26O、GY28O、アラルダ
イト60711アラルダイト7071、アラルダイト7
072(チバガイギー社製)、ダウエポキシDER33
l、DER332、DER662、DER663U,.
DER662U(ダウケミカル社製)エピクロン840
1850、855、8601105013050、40
50170501(大日本インキ化学工業社製)、エポ
トートYD−115、YD−115CA,.YD−11
7、YD−121、YD−127、YD−128、YD
−128CA..YD−12?、YD−134、YD−
001Z..YD一011、YD−012、YD−01
4、YD−014ES..YD一017、YD−019
、YD−020..YD−002(東部化成社製)等が
挙げられる。
In addition, known bisphenol A epoxy resins can be used, and specifically, for example, Epicoat 82
8, Epicote 834, Epicote 827, Epicote 1001, Epicote 1002, Piconote 1004
, Epikote 1007, Epikote 1009 (manufactured by Shell Chemical Co., Ltd.), Araldite CY2O5, CY23O, CY
232, CY22l, GY257, GY252, GY2
55, GY25O, GY26O, GY28O, Araldite 60711 Araldite 7071, Araldite 7
072 (manufactured by Ciba Geigy), Dowepoxy DER33
l, DER332, DER662, DER663U, .
DER662U (manufactured by Dow Chemical Company) Epicron 840
1850, 855, 8601105013050, 40
50170501 (manufactured by Dainippon Ink and Chemicals), Epotote YD-115, YD-115CA, . YD-11
7, YD-121, YD-127, YD-128, YD
-128CA. .. YD-12? , YD-134, YD-
001Z. .. YD-011, YD-012, YD-01
4, YD-014ES. .. YD-017, YD-019
, YD-020. .. Examples include YD-002 (manufactured by Tobu Kasei Co., Ltd.).

前記のフェノール●ノボラック型エポキシ樹脂およびビ
スフェノールA型エポキシ樹脂はそれぞれ1種又は2種
以上を用いることがてきる。
The above-mentioned phenol-novolak type epoxy resin and bisphenol A-type epoxy resin can each be used singly or in combination of two or more.

本発明のエポキシ樹脂組成物において、フェノール◆ノ
ボラック型エポキシ樹脂〔A〕とビスフェノールA型エ
ポキシ樹脂〔B〕の樹脂混合物に対し〔A〕のフェノー
ル・ノボラック型エポキシ樹脂を少なくとも50重量%
含有させる必要がある。下表に示すように50重量%未
満の場合には高いILSS値が得られない。注硬化剤:
ジシアンジアミド 3PHR硬化促進剤:3−
(3.4ジクロルフエニル) 一1.1−ジメチル
尿素 5P1(R一方向炭素繊維プリプレグ、1
30゜C19紛、7k9/C這〔PHR:樹脂10呼量
部に対する添加率〕第1表から明らかなようにフェノー
ル・ノボラック型樹脂の含有量は大きくなるとILSS
が向上するが、該樹脂のみでは耐衝撃性が劣るので、ビ
スフェノールA型樹脂を含ませる必要がある。
In the epoxy resin composition of the present invention, at least 50% by weight of the phenol/novolac type epoxy resin [A] is contained in the resin mixture of the phenol◆novolac type epoxy resin [A] and the bisphenol A type epoxy resin [B].
It is necessary to contain it. As shown in the table below, if it is less than 50% by weight, a high ILSS value cannot be obtained. Note hardening agent:
Dicyandiamide 3PHR curing accelerator: 3-
(3.4 dichlorophenyl) -1,1-dimethylurea 5P1 (R unidirectional carbon fiber prepreg, 1
30° C19 powder, 7k9/C [PHR: Addition rate to 10 parts of resin] As is clear from Table 1, the higher the content of phenol novolac type resin, the higher the ILSS.
However, since the impact resistance is poor when using this resin alone, it is necessary to include a bisphenol A type resin.

フェノール・ノボラック型樹脂の含有量の上限は通常9
5重量%位までである。ビスフェノールA型エポキシ樹
脂は種々のグレード(固形、半固形、種々の粘度の液状
)がそろつており、プリプレグのタンク(糧Ck)を調
整するのに好都合である。本発明においてエポキシ樹脂
混合物の粘度は30〜300ポイズ(80゜C)である
。プリプレグを用いて成形する場合、60〜90℃のい
わゆるプレキユアー段階で脱泡が行われるが、ここでの
溶融粘度が300ポイズ(80℃)を越えると、脱泡が
困難であり、成形物中にボイドが残りコンポジット性能
は低下する。
The upper limit of the content of phenol/novolac type resin is usually 9
Up to about 5% by weight. Bisphenol A type epoxy resins are available in various grades (solid, semi-solid, liquid with various viscosities) and are convenient for adjusting prepreg tanks (food Ck). In the present invention, the viscosity of the epoxy resin mixture is 30 to 300 poise (80°C). When molding using prepreg, defoaming is performed in the so-called precure stage at 60 to 90°C, but if the melt viscosity exceeds 300 poise (80°C), defoaming is difficult and voids remain and composite performance deteriorates.

又このような高粘度の樹脂を含浸したプリプレグは、硬
く、タンクが弱く、柔軟性に欠け、取扱性が悪い。更に
このような樹脂を用いホットメルト法でプリプレグとす
ると、樹脂の流動性が低くこのため繊維への含浸が困難
で、含浸時の温度、押圧力を高めめなければならない。
Further, prepreg impregnated with such a high viscosity resin is hard, has a weak tank, lacks flexibility, and is difficult to handle. Furthermore, when such a resin is used to make a prepreg using a hot melt method, the fluidity of the resin is low, making it difficult to impregnate fibers, and the temperature and pressing force during impregnation must be increased.

一方、エポキシ樹脂混合物の粘度が30ポイズ(80′
C)未満では製造したプリプレグのタンクが強すぎ、取
扱性が悪いとともに成形時樹脂の流失が多くコンポジッ
ト性能が低下する。
On the other hand, the viscosity of the epoxy resin mixture is 30 poise (80'
If it is less than C), the prepared prepreg tank will be too strong, the handleability will be poor, and the resin will often be washed away during molding, resulting in a decrease in composite performance.

樹脂の粘度が30〜300ポイズ(80℃)の範囲にあ
ると後に述べるジシアンジアミドの微粉化の効果と相ま
つてコンポジット性能の向上に寄与する。
When the viscosity of the resin is in the range of 30 to 300 poise (80° C.), this together with the effect of pulverization of dicyandiamide, which will be described later, contributes to improving composite performance.

特に好ましい樹脂粘度は150〜30ポイズ(80℃)
である。
Particularly preferred resin viscosity is 150 to 30 poise (80°C)
It is.

硬化剤としてジシアンジアミド(以下DICYと記す)
、硬化促進剤として3−(3.4ジクロルフエニル)−
1.1−ジメチル尿素(以下DMUと記す)を用いるこ
とにより室温(20′C)で2力月の可使時間を有し、
かつ120〜135゜Cという比較的低い温度て60〜
9紛て完全硬化する。
Dicyandiamide (hereinafter referred to as DICY) as a curing agent
, 3-(3.4dichlorophenyl)- as a curing accelerator
1. By using 1-dimethylurea (hereinafter referred to as DMU), it has a pot life of 2 months at room temperature (20'C),
And at a relatively low temperature of 120-135°C
9 times to completely harden.

従来、プリプレグは一般に可使時間が長い(1ケ月以上
)ものは硬化温度が高く(150〜200℃)、逆に低
温(100〜150℃)硬化性のものは、可使時間が短
かつた(1週間以内)が、本発明の組成物を用いたプリ
プレグは、硬化温度が低く且つ可使時間が長いという特
性を有している。
Previously, prepregs that had a long pot life (1 month or more) had a high curing temperature (150 to 200 degrees Celsius), whereas prepregs that cured at low temperatures (100 to 150 degrees Celsius) had a short pot life. (within one week), but the prepreg using the composition of the present invention has the characteristics of a low curing temperature and a long pot life.

本発明において使用されるDICYすなわちジシアンジ
アミドは粒度が100μ以下でなければならない。本発
明のホットメルト法では樹脂組成物の加熱展延がDIC
Yの融点(210゜C)以下の温度で行われるため、D
ICYは固形のままプリプレグ中に分散するが、DIC
Yの粒度が大きいと硬化反応が不均一となり、成形物中
にボイドが生じやすくコンポジット特性に影響を与える
ことが判つた。
The DICY or dicyandiamide used in this invention must have a particle size of less than 100 microns. In the hot melt method of the present invention, heating and spreading of the resin composition is performed using DIC.
D
ICY is dispersed in the prepreg as a solid, but DIC
It has been found that when the particle size of Y is large, the curing reaction becomes non-uniform and voids are likely to occur in the molded product, which affects the properties of the composite.

DICY粒度が100μを越えるものが多量に存在する
とプリプレグ品質、さらにはコンポジット物性が低下す
る。プリプレグ中に100μを越えるDICYの結晶が
多量に存在する場合、プリプレグノ中に多数の空洞がで
き、またその低圧成形物中にも多数のホイドが存在し、
I?Sが低下する。これらの原因はプリプレグの製造工
程中炭素繊維への樹脂の含浸の際、DICYの大きな結
晶により含浸と脱泡がスムーズにいかないこと、さらに
プリ7プレグを積層し硬化する過程てDICYの大きな
結晶により硬化反応の不均一度が増し積層の際、層間に
入つた空気の脱泡が阻害される結果と考えられる。しか
るに100μ以下、特に望ましくは10μ以下にDIC
Yの結晶を粉砕して細かくした場合、つプリプレグ中の
空洞ならびに低圧成形物中のボイドもほとんどなくなり
コンポジット物性が向上した。プリプレグ中のDICY
の結晶の大きさとプリプレグ中および低圧成形物中のボ
イド、ILSSについて次に示す。硬化促進剤としては
モノクロルフエニルー1.1ージメチル尿素、イミダゾ
ール化合物(例えば2−エチルー4−メチルイミダゾー
ル、2−メチルイミダゾール)、ベンジルジメチルアミ
ン等が知られているが、低温硬化性および可使時間の点
で本発明の3−(3.4ジクロルフエニル)−1.1−
ジメチル尿素が最もすぐれている。本発明においてDI
CYおよびDMUはエポキシ樹脂混合物100重量部に
対しおのおのの0.5〜6重量部含有させる。各0.5
重量部未満の場合は硬化速度が遅く成形に時間がかかり
、各6重量部を越える場合はコンポジット性能が低下す
る。このことを示すと下表の通りてある。*Vf:繊維
容積% エポキシ樹脂 アラルタイトEPNll38(チバガイギー社製)
7鍾量部エピコート10
02(シェル化学社製)20重量部エピコート838(
シェル化学社製) 1呼量部硬化条件130℃、7kg
/All9紛 またDICYとDMUの重量比もコンポジット性能に影
響を与える。
If a large amount of particles with a DICY particle size exceeding 100 μm is present, the quality of the prepreg and further the physical properties of the composite will deteriorate. If a large amount of DICY crystals exceeding 100μ are present in the prepreg, many cavities will be formed in the prepreg, and many hoids will also be present in the low-pressure molded product.
I? S decreases. The cause of these problems is that during the prepreg manufacturing process, when carbon fibers are impregnated with resin, impregnation and defoaming do not go smoothly due to large crystals of DICY, and in addition, large crystals of DICY occur during the process of laminating and curing Pre7 Preg. This is thought to be the result of increasing the non-uniformity of the curing reaction and inhibiting defoaming of air that has entered between the layers during lamination. However, the DIC is less than 100μ, particularly preferably less than 10μ.
When the Y crystals were crushed into fine particles, the cavities in the prepreg and the voids in the low-pressure molded product were almost eliminated, and the physical properties of the composite were improved. DICY in prepreg
The crystal size, voids in the prepreg and low-pressure molded product, and ILSS are shown below. As curing accelerators, monochlorophenyl-1.1-dimethylurea, imidazole compounds (e.g., 2-ethyl-4-methylimidazole, 2-methylimidazole), benzyldimethylamine, etc. are known, but they are low-temperature curable and usable. 3-(3.4dichlorophenyl)-1.1- of the present invention in terms of time
Dimethylurea is the best. In the present invention, DI
CY and DMU are each contained in an amount of 0.5 to 6 parts by weight per 100 parts by weight of the epoxy resin mixture. 0.5 each
If the amount is less than 6 parts by weight, the curing speed will be slow and molding will take time, and if it exceeds 6 parts by weight, the composite performance will deteriorate. This is shown in the table below. *Vf: Fiber volume % Epoxy resin Arartite EPNll38 (manufactured by Ciba Geigy)
7 Shojubu Epicoat 10
02 (manufactured by Shell Chemical Co., Ltd.) 20 parts by weight Epicoat 838 (
(manufactured by Shell Chemical Co.) 1 part curing condition: 130℃, 7kg
/All9 powder The weight ratio of DICY and DMU also affects composite performance.

コンポジエツト性能に関しては、DMUの方を多量用い
ると一層良好な結果が・得られることを本発明者らは確
認している。すなわちDICY/DMU=3/5では低
圧成形法(1k9/CIL)でも得られた成形物中には
ほとんどボイドが存在せずコンポジット性能も優れてい
る。FRP成形物中のボイドの有無は、その成形物の性
能への信頼度にとつて極めて重要な要因であり、品質検
査の最重点項目の一つであるため、超音波あるいはソフ
トX線等を使つてその検出が行なわれている。DICY
(5DMUの配合量と配合比ならびにDICYの結晶を
細かくすることにより、さらにプレキユアー段階での樹
脂組成物の溶融粘度を規定することにより、プリプレグ
品質ならびにコンポジット性能を高め成形物への信頼度
を高めることができ、本発明の意義は極めて大きいもの
である。本発明のホットメルト法による一方向炭素繊維
プリプレグの製造法について具体的に説明する。
In terms of composite performance, the inventors have confirmed that better results can be obtained with larger amounts of DMU. That is, when DICY/DMU=3/5, there are almost no voids in the molded product obtained even by the low pressure molding method (1k9/CIL), and the composite performance is excellent. The presence or absence of voids in FRP molded products is an extremely important factor in the reliability of the performance of the molded product, and is one of the most important items in quality inspection. Its detection is carried out using DICY
(By making the blending amount and blending ratio of 5DMU and the crystals of DICY finer, and by further regulating the melt viscosity of the resin composition at the pre-cure stage, we can improve the prepreg quality and composite performance and increase the reliability of the molded product. Therefore, the significance of the present invention is extremely large.The method for producing unidirectional carbon fiber prepreg by the hot melt method of the present invention will be specifically explained.

フェノール●ノボラック型エポキシ樹脂を(4)重量7
%以上含有し、かつ80℃における溶融粘度が30〜3
00ポイズになるよう配合調整された樹脂混合物に、ま
ず、予め100p以下、特に好ましくは10μ以下に微
粉化されたAICYを添加し加熱下にロールミル又は二
ーダーにて混練し、次いで所定量のノDMUを添加して
充分混練する。この際DICYとDMUを同時に添加し
て混練すると熱履歴により可使時間が短かくなるため好
ましくない。混練された樹脂組成物はフィルムコーター
にて離型紙(シリコンでコーティングした紙)上にコー
テイ.グする。この樹脂コーティングした離型紙上に炭
素繊維を一定の間隔て平行に導入し、その上に離型紙を
導入し、80〜150℃好ましくは100〜130Cに
加熱された加熱板上を5〜12@)通す。この時80′
C以下では樹脂が充分軟化せず次の工程て炭素繊維への
樹脂の含浸が不充分となるばかりでなく、炭素繊維を充
分押し広げることがてきず隣接した繊維と繊維の密着、
接合が不充分で製造したプリプレグに割れ目が存在しや
すい。また150℃以上では樹脂の粘度が低すぎて流れ
やすくなり、トラブルの原因となるばかりでなく硬化反
応が急速に進むおそれがある。加熱板上を通つて樹脂の
粘度を下げた後40〜150゜C1好ましくは50〜9
0℃に加熱されたブレスローラーで0.1〜100k9
/Cml好ましくは2〜6k9/Cmの線圧てブレスし
繊維に含浸させ同時に繊維を押し広げてシート状プリプ
レグを製造するものである。シート状プリプレグの品質
のうち、割れ目が存在しないということは最も難しい点
である。特に炭素繊維の目付が80g/d以下の非常に
薄いプリブレ・グシートの製造の際は割れ目が発生しや
すい。
Phenol Novolac type epoxy resin (4) Weight 7
% or more, and has a melt viscosity of 30 to 3 at 80°C.
First, AICY, which has been pulverized to 100p or less, particularly preferably 10μ or less, is added to a resin mixture whose composition has been adjusted to give 00 poise, and the mixture is kneaded with a roll mill or kneader while heating. Add DMU and mix thoroughly. At this time, it is not preferable to add DICY and DMU at the same time and knead because the pot life will be shortened due to thermal history. The kneaded resin composition is coated on release paper (paper coated with silicone) using a film coater. Google. Carbon fibers are introduced in parallel at regular intervals onto this resin-coated release paper, the release paper is introduced on top of this, and the carbon fibers are placed on a heating plate heated to 80 to 150°C, preferably 100 to 130C, for 5 to 12 hours. ) to pass. 80' at this time
If the temperature is below C, the resin will not be sufficiently softened and the carbon fibers will not be sufficiently impregnated with the resin in the next step, and the carbon fibers will not be sufficiently spread, resulting in adhesion between adjacent fibers.
Cracks tend to exist in the manufactured prepreg due to insufficient bonding. Moreover, at 150°C or higher, the viscosity of the resin is too low and it flows easily, which may not only cause trouble but also cause the curing reaction to proceed rapidly. After lowering the viscosity of the resin by passing it over a heating plate, the temperature is 40 to 150° C1, preferably 50 to 9
0.1-100k9 with a breath roller heated to 0℃
/Cml Preferably, a sheet-like prepreg is produced by pressing with a linear pressure of 2 to 6k9/Cm to impregnate the fibers, and simultaneously spreading the fibers. The most difficult aspect of sheet prepreg quality is the absence of cracks. In particular, cracks are likely to occur when manufacturing extremely thin Prible sheets with a carbon fiber basis weight of 80 g/d or less.

本発明者らはこれら薄いプリプレグシートを割れ目がな
く安定して製造できる方法を鋭意検討した結果、開繊性
の良好な炭素繊維を用いることにより炭素繊維への樹脂
の含浸ならびに炭素繊維の押し広げがスムーズに行なわ
れ、隣接した炭素繊維ヤーンの密着・接合・重なり合い
が充分て割れ目のないプリプレグシートがより緩和な製
造条件で安定して製造可能となつた。次に本発明を実施
例によつて詳細に説明する。
The inventors of the present invention have intensively investigated a method for stably manufacturing these thin prepreg sheets without cracks, and found that by using carbon fibers with good spreadability, the carbon fibers can be impregnated with resin and the carbon fibers can be spread out. This process was carried out smoothly, and it became possible to stably produce prepreg sheets with no cracks due to sufficient adhesion, bonding, and overlapping of adjacent carbon fiber yarns under milder production conditions. Next, the present invention will be explained in detail by way of examples.

実施例1アラルダイトEPNll38(フェノール●ノ
ボラック型エポキシ樹脂、チバガイギー社製)7唾量部
、エピコート1002(ビスフェノールA型エポキシ樹
脂、シェル化学社製)20重量部、エピコート828(
ビスフェノールA型エポキシ樹脂シェル化学社製)10
重量部よりなるエポキシ樹脂混合物を90′Cで二ーダ
ーにて混練した。得られた樹脂混合物の粘度は100ポ
イズ(80℃)であつた。このものに100μ以下に微
粉化した硬化剤ジシアンジアミド3重量部を添加してロ
ールミル上で混練した。次に硬化促進剤3−(3.4ジ
クロルフエニル)−1.1−ジメチル尿素5重量部を添
加して混練してエポキシ樹脂組成物を得た。この組成物
をフィルムコーターにて離型紙上にコーティングし、こ
の上に等間隔で、かつ平行に炭素繊維(東邦ベスロン社
製、ベスフアイトHTA−7一6000)を配列しその
上に離型紙をおき、120′Cに加熱された加熱板上に
ローラーで軽く押えながら3叱間通し樹脂の粘度を下げ
た後90′Cに加熱されたブレスローラーにより4kg
/Cmの線圧でブレスしシート状プリプレグを製造した
。このプリプレグシートは電顕観察の結果、内部に空洞
は全く認められず、可使時間は2力月(20゜C)であ
つた。
Example 1 Araldite EPNll38 (phenol novolac type epoxy resin, manufactured by Ciba Geigy) 7 parts by weight, Epicote 1002 (bisphenol A type epoxy resin, manufactured by Shell Chemical Co., Ltd.) 20 parts by weight, Epicote 828 (
Bisphenol A type epoxy resin manufactured by Shell Chemical Co., Ltd.) 10
The epoxy resin mixture consisting of parts by weight was kneaded in a kneader at 90'C. The resulting resin mixture had a viscosity of 100 poise (80°C). To this was added 3 parts by weight of the curing agent dicyandiamide, which was pulverized to 100 μm or less, and kneaded on a roll mill. Next, 5 parts by weight of a curing accelerator 3-(3.4-dichlorophenyl)-1.1-dimethylurea was added and kneaded to obtain an epoxy resin composition. This composition was coated on a release paper using a film coater, and carbon fibers (Beshuite HTA-7-6000, manufactured by Toho Veslon Co., Ltd.) were arranged on this at equal intervals and in parallel, and the release paper was placed on top of it. After lowering the viscosity of the resin by pressing it lightly with a roller on a heating plate heated to 120'C for 3 minutes, 4 kg was placed on a heated plate heated to 90'C.
A sheet prepreg was produced by pressing with a linear pressure of /Cm. As a result of electron microscopic observation of this prepreg sheet, no cavities were observed inside, and the pot life was 2 months (20°C).

このものを用いて130゜C17k9/c屑、9吟の硬
化条件て成形した成形物の物性は次のとおりであつた。
曲け強度 168kg/TrIlL 曲け弾性率 13.5T/D ILSS9.9kg/i(室温) ILSS7.6k9/Tf7lt(80 Vf6O% また、このプリプレグシートを708C1真空約1k9
/Cdl3O分、次いで1300C1加圧1kg/Cl
tl9O分の低圧の硬化条件で成形した成形物中には電
顕観察の結果ポイドはほとんど認められす、物性も次の
ように前記高圧成形の楊合とほぼ同等であつた。
This product was molded under curing conditions of 130° C17k9/c scraps and 9 gin, and the physical properties of the molded product were as follows.
Bending strength: 168kg/TrIlL Bending modulus: 13.5T/D ILSS9.9kg/i (room temperature) ILSS7.6k9/Tf7lt (80 Vf6O%) In addition, this prepreg sheet was heated to 708C1 under vacuum of approximately 1k9
/Cdl3O min, then 1300C1 pressurized 1kg/Cl
As a result of electron microscopic observation, almost no voids were observed in the molded product molded under the low pressure curing condition of tl9O, and the physical properties were almost the same as those of the high-pressure molded molding as described below.

曲げ強度 165k9/TiTlL曲げ弾性率
12.8T/I LSS9.8k9/d(室温) ILSS7.4k9/Tn!t(80゜C)Vf6O%
実施例2DEN438(フェノール・ノボラック型エポ
キシ樹脂、ダウケミカル社製)25重量部、DEN43
9(フェノール●ノボラック型エポキシ樹脂、ダウケミ
カル社製)7鍾量部、DER33l(ビスフェノールA
型エポキシ樹脂、ダウケミカル社製)5重量部からなる
樹脂混合物(80′Cにおける粘度110ポイズ)に粒
径2〜50μのジシアンジアミド3重量部、3−(3.
4ジクロルフエニル)−1.1−ジメチル尿素5重量部
を添加して樹脂組成物を得た。
Bending strength 165k9/TiTlL bending modulus
12.8T/I LSS9.8k9/d (room temperature) ILSS7.4k9/Tn! t(80°C)Vf6O%
Example 2 25 parts by weight of DEN438 (phenol/novolac type epoxy resin, manufactured by Dow Chemical Company), DEN43
9 (Phenol Novolak type epoxy resin, manufactured by Dow Chemical Company) 7 weighing parts, DER33L (Bisphenol A
To a resin mixture (viscosity 110 poise at 80'C) consisting of 5 parts by weight of epoxy resin (manufactured by Dow Chemical Company), 3 parts by weight of dicyandiamide having a particle size of 2 to 50 µm, and 3 parts by weight of 3-(3.
5 parts by weight of 4-dichlorophenyl)-1,1-dimethylurea was added to obtain a resin composition.

この樹脂組成物を使用し、実施例1と同様にホットメル
ト法によソー方向プリプレグシートを製造した。このシ
ートの可使時間は2か月(20′C)で、シート断面に
空洞は認められなかつた。このものを135゜C、7k
9/CILl9吟の硬化条件て成形しした成形物の物性
は次のとおりであつた。 曲け強度 172k9/
i 曲け弾性率 13.1T/D ILSSlO.2k9/Mlt(室温) ILSS8.2k9/i(80′C) ノ ■F6l% また、このプリプレグシートを70℃、真空約1k9/
Cイ、30分、次いて135℃、加圧1k9/CTll
9O分の低圧で成形した成形物の物性は次のように前記
高圧成形の場合とほぼ同等であつた。
Using this resin composition, a prepreg sheet in the saw direction was manufactured by the hot melt method in the same manner as in Example 1. The pot life of this sheet was 2 months (20'C), and no cavities were observed in the cross section of the sheet. This one at 135°C, 7k
The physical properties of the molded product molded under the curing conditions of 9/CIL19Gin were as follows. Bending strength 172k9/
i Flexural modulus 13.1T/D ILSSIO. 2k9/Mlt (room temperature) ILSS8.2k9/i (80'C) ノ ■F6l% In addition, this prepreg sheet was heated at 70℃ and vacuum approximately 1k9/Mlt.
C, 30 minutes, then 135℃, pressurization 1k9/CTll
The physical properties of the molded product molded at a low pressure of 9O were almost the same as those of the high pressure molded case as described below.

内部にボイドは認められなかつた。 曲け強度 1
71kg/i 曲け弾性率 13.1T/I ILSSlO.lk9/i(室温) ILSS8.Ok9/Tnli(80。
No voids were found inside. Bending strength 1
71kg/i Flexural modulus 13.1T/I ILSSIO. lk9/i (room temperature) ILSS8. Ok9/Tnli (80.

C)冫 Vf59%比較例1 (フェノール●ノボラック型エポキシ樹脂不使用)エピ
コート828(ビスフェノールA型エポキシ樹脂、シェ
ル化学社製)6唾量部、エピコート1002(同上)4
呼量部よりなるエポキシ樹脂混合物を90゜Cで二ーダ
ーにて混練した後、10μ以下に粉砕したジシアンジア
ミド3重量部を添加してロールミルで混練した。
C) Vf 59% Comparative Example 1 (Phenol Novolac type epoxy resin not used) Epicoat 828 (bisphenol A type epoxy resin, manufactured by Shell Chemical Co., Ltd.) 6 parts, Epicoat 1002 (same as above) 4
An epoxy resin mixture consisting of parts by weight was kneaded in a kneader at 90°C, and then 3 parts by weight of dicyandiamide ground to 10 μm or less was added and kneaded in a roll mill.

次いで3−(3.4ジクロルフエニル)−1.1−ジメ
チル尿素5重量部を添加し混練した後、実施例1と同様
に一方向プリプレグを製造した。このものを135゜C
17k9/Dl9O分の硬化条件で成形した成形物の物
性は次のとおりであつた。曲け強度 158kg/
i 曲け弾性率 12.′7T/Tlui ILSS8.4k,/D ILSS5.Okg/Tr!i ■F6O% フェノール・ノボラック型エポキシ樹脂を添加した実施
例1,2の場合に比較しI?S値が低い。
Next, 5 parts by weight of 3-(3.4-dichlorophenyl)-1.1-dimethylurea was added and kneaded, and a unidirectional prepreg was produced in the same manner as in Example 1. Heat this to 135°C
The physical properties of the molded product molded under the curing conditions of 17k9/Dl9O were as follows. Bending strength 158kg/
i Flexural modulus 12. '7T/Tlui ILSS8.4k,/D ILSS5. Okg/Tr! i ■F6O% I? S value is low.

比較例2 (粒度が100μを越えるジシアンジアミドを使,用)
実施例1と同一の樹脂組成物(アラルダイトEPNll
38の70重量部、エピコート1002の20重量部、
エピコート828の1鍾量部)を90℃で二ーダーにて
混練した後、結晶の粒度が100pを越えるものを含む
ジシアンジアミド3重量部を添加しロールミル上にて混
練した。
Comparative Example 2 (Using dicyandiamide with a particle size exceeding 100μ)
The same resin composition as in Example 1 (Araldite EPNll
70 parts by weight of 38, 20 parts by weight of Epicote 1002,
After kneading 1 part by weight of Epikote 828 in a kneader at 90°C, 3 parts by weight of dicyandiamide containing crystals with a particle size exceeding 100p were added and kneaded on a roll mill.

この際ロールの間隔を若干大きくしてジシアンジアミド
の100μを越える粒度のものが多量残るようにした。
次いで3−(3.4ジクロルフエニル)−1.1−ジメ
チル尿素5重量部を添加し混練した後、実施例1と同様
にして一方向プリプレグを製造した。このプリプレグシ
ート中には多数の空洞が認められ、また実施例1と同様
の条件で低圧成形した成形物中には多数のポイドが存在
し低圧成形物の物性も次のとおり低下した。曲げ強度
160k9/d 曲げ弾性率 12.8T/I ILSS8.9k9/m!FL ■F6l%
At this time, the distance between the rolls was slightly increased so that a large amount of dicyandiamide particles with a particle size exceeding 100 μm remained.
Next, 5 parts by weight of 3-(3.4-dichlorophenyl)-1.1-dimethylurea was added and kneaded, and then a unidirectional prepreg was produced in the same manner as in Example 1. A large number of cavities were observed in this prepreg sheet, and a large number of voids were present in the molded product that was low-pressure molded under the same conditions as in Example 1, and the physical properties of the low-pressure molded product were also deteriorated as shown below. bending strength
160k9/d Flexural modulus 12.8T/I ILSS8.9k9/m! FL ■F6l%

Claims (1)

【特許請求の範囲】[Claims] 1 フェノール・ノボラック型エポキシ樹脂を少なくと
も50重量%含有するフェノール・ノボラック型エポキ
シ樹脂とビスフェノールA型エポキシ樹脂との混合物で
80℃における粘度が30〜300ポイズである樹脂混
合物100重量部に対し粒度100μ以下のジジアンジ
アミドと3−(3.4ジクロルフェニル)−1.1−ジ
メチル尿素とをおのおの0.5〜6重量部含有してなる
エポキシ樹脂組成物を離型紙にコーティングし、その上
に炭素繊維を配列せしめ、更にその上に離型紙を導入し
、次いで加熱された加熱板上を通して樹脂の粘度を下げ
た後加プレスローラーでプレスすることを特徴とするホ
ットメルト式炭素繊維プリプレグの製造法。
1 A mixture of a phenol novolac type epoxy resin and a bisphenol A type epoxy resin containing at least 50% by weight of a phenol novolac type epoxy resin and having a viscosity of 30 to 300 poise at 80°C.A particle size of 100μ per 100 parts by weight of the resin mixture. A release paper is coated with an epoxy resin composition containing 0.5 to 6 parts by weight of each of the following didiandiamide and 3-(3.4 dichlorophenyl)-1,1-dimethylurea, and then A hot-melt type carbon fiber prepreg characterized by arranging carbon fibers, introducing a release paper thereon, and then passing it over a heated heating plate and pressing it with a post-press roller that lowers the viscosity of the resin. Manufacturing method.
JP57004020A 1982-01-16 1982-01-16 Prepreg manufacturing method Expired JPS6047290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57004020A JPS6047290B2 (en) 1982-01-16 1982-01-16 Prepreg manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57004020A JPS6047290B2 (en) 1982-01-16 1982-01-16 Prepreg manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8960478A Division JPS585925B2 (en) 1978-07-23 1978-07-23 Epoxy resin composition for carbon fiber prepreg

Publications (2)

Publication Number Publication Date
JPS5823830A JPS5823830A (en) 1983-02-12
JPS6047290B2 true JPS6047290B2 (en) 1985-10-21

Family

ID=11573281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57004020A Expired JPS6047290B2 (en) 1982-01-16 1982-01-16 Prepreg manufacturing method

Country Status (1)

Country Link
JP (1) JPS6047290B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4477271B2 (en) * 1998-05-20 2010-06-09 サイテック テクノロジー コーポレーション Production and use of laminates without voids
ES2266293T3 (en) * 2000-10-16 2007-03-01 Akzo Nobel Coatings International B.V. PAINT COMPOSITION APPLIED IN THE FOUNDED STATE.
EP2850119B8 (en) * 2012-05-18 2018-05-16 Hexcel Composites Limited Fast cure epoxy resins and prepregs obtained therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1260409A (en) * 1969-03-10 1972-01-19 Sec Dep For Defence Formerly M Carbon fibre reinforced resin plastics sheet
GB1293142A (en) * 1969-09-09 1972-10-18 Ciba Geigy Uk Ltd Curable epoxide resin compositions
JPS4860772A (en) * 1971-12-03 1973-08-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1260409A (en) * 1969-03-10 1972-01-19 Sec Dep For Defence Formerly M Carbon fibre reinforced resin plastics sheet
GB1293142A (en) * 1969-09-09 1972-10-18 Ciba Geigy Uk Ltd Curable epoxide resin compositions
JPS4860772A (en) * 1971-12-03 1973-08-25

Also Published As

Publication number Publication date
JPS5823830A (en) 1983-02-12

Similar Documents

Publication Publication Date Title
DE60127660T2 (en) EPOXY RESIN COMPOSITION AND PREPREG MADE FROM THIS COMPOSITION
EP1144190B2 (en) Manufacture of void-free laminates and use thereof
US4500660A (en) Epoxy resin composition
JP4829766B2 (en) Epoxy resin composition for fiber reinforced composite materials
US20110111663A1 (en) Epoxy resin composition and prepreg using the same
WO2001027190A1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JPWO2008133054A1 (en) Resin composition and prepreg
NL8300120A (en) PREPREG FOR MAKING A COMPOSITION HAVING HIGH RACK AND GREAT HEAT RESISTANCE AND METHOD FOR MAKING SUCH COMPOSITIONS WITH PREPREG.
JP7055045B2 (en) Epoxy resin composition, epoxy resin impregnated tow prepreg and carbon fiber reinforced plastic
JPH10330513A (en) Prepreg and fiber-reinforced composite material
JPS585925B2 (en) Epoxy resin composition for carbon fiber prepreg
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2012149237A (en) Thermosetting resin composition, prepreg and fiber-reinforced composite material
JP4910684B2 (en) Epoxy resin composition for fiber reinforced composite materials
JPH04249544A (en) Resin composition, prepreg and production of prepreg
JP5495285B2 (en) Prepreg and its manufacturing method
JPH05239317A (en) Epoxy resin composition, prepreg and production of prepreg
JPS6047290B2 (en) Prepreg manufacturing method
JP2002145986A (en) Epoxy resin composition and prepreg using the epoxy resin composition
JPH02113031A (en) Epoxy resin mixture for fibrous composite material
JP2001302760A (en) Epoxy resin composition
JPS59207920A (en) Heat-resistant epoxy resin composition
CN110684321B (en) Epoxy resin composition for fiber reinforced composite material and prepreg using same
JPS624405B2 (en)
TW202116890A (en) Composition and application of epoxy resin for prepreg