JPH02216131A - Display controller for electrochromic element - Google Patents

Display controller for electrochromic element

Info

Publication number
JPH02216131A
JPH02216131A JP1037822A JP3782289A JPH02216131A JP H02216131 A JPH02216131 A JP H02216131A JP 1037822 A JP1037822 A JP 1037822A JP 3782289 A JP3782289 A JP 3782289A JP H02216131 A JPH02216131 A JP H02216131A
Authority
JP
Japan
Prior art keywords
voltage
temperature
value
layer
coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1037822A
Other languages
Japanese (ja)
Other versions
JP2891361B2 (en
Inventor
Satoru Oshikawa
識 押川
Keiji Kohata
降幡 惠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1037822A priority Critical patent/JP2891361B2/en
Publication of JPH02216131A publication Critical patent/JPH02216131A/en
Application granted granted Critical
Publication of JP2891361B2 publication Critical patent/JP2891361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain a display controller of an electrochromic EC element capable of such control that the density of coloring of the EC element is not changed even at the time of the change of the ambient temperature by controlling the voltage application between both electrode layers of the EC element in accordance with the detected temperature of a temperature detecting sensor. CONSTITUTION:An EC layer 3 is laminated on a transparent electrode layer 2 on the display device of a glass substrate 1 and a reflecting electrode layer 4 is laminated on this layer 3 to obtain a reflecting EC element 5, and the ambient temperature of the EC element 5 is detected by a temperature detecting sensor 8, and the detection signal is outputted to an operation part 7b. The operation part 7b subtracts a reference temperature from the detected temperature and multiplies this calculated temperature by a temperature coefficient of voltage to calculate a minute change value of the voltage. The operation part 7b adds this minute change value to the value of the coloring voltage due to a setting part 7d to detect the voltage value. An application control part 7a controls the voltage application between both electrode layers 2 and 4 of an applying part 6 so that the value of the voltage applied between both electrode layers 2a and 4 by a measuring part 7c is equal to the voltage value detected by the operation part 7b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エレクトロクロミック素子の表示制御装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a display control device for an electrochromic device.

(従来の技術〕 一対の電極層と、その間に位置するエレクトロクロミッ
ク層(以下EC層と略称する)とからなるエレクトロク
ロミック素子(以下EC素子と略称する)は、ta+に
より前記両電極層の間に電圧を印加するとECl1iが
着色し、逆極性の電圧を印加するか、または前記両電極
間を短絡するとEC層が消色して元の無色透明に戻る。
(Prior Art) An electrochromic element (hereinafter referred to as an EC element) consisting of a pair of electrode layers and an electrochromic layer (hereinafter referred to as an EC layer) located between the two electrode layers is formed by ta+. When a voltage is applied to the EC layer, the ECl1i becomes colored, and when a voltage of opposite polarity is applied or the two electrodes are short-circuited, the EC layer is decolored and returns to its original colorless and transparent state.

このように着色または消色することにより、EC素子の
透過光量あるいは反射光量を調整することができ、調光
素子として使用することができる。
By coloring or decoloring in this manner, the amount of transmitted light or reflected light of the EC element can be adjusted, and it can be used as a light control element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、EC素子を着色させたとき、両電極層間の着色
電圧を一定に保って着色濃度を変えないように制’4B
シても、EC素子には温度特性があるために、EC素子
の周辺温度が変化すると、着色濃度も変化してしまい、
その1度を一定に保つことができないという問題点があ
った。
However, when the EC element is colored, the coloring voltage between both electrode layers is kept constant and the coloring density is not changed.
However, since EC elements have temperature characteristics, if the ambient temperature of the EC element changes, the coloring density will also change.
There was a problem in that it was not possible to keep the 1 degree constant.

本発明はこの問題点を解決し、前記周辺温度が変化して
も、着色11度が変化しないように制御するEC素子の
表示制御装置を得ることを目的とする。
An object of the present invention is to solve this problem and provide a display control device for an EC element that controls the coloring 11 degrees so that it does not change even if the ambient temperature changes.

(ii題を解決するための手段〕 ′上記目的を達成するために、本発明はEC素子の周辺
温度に応じて、EC素子の両電極層間への電圧印加を制
JRする構成とした。
(Means for solving problem ii) 'In order to achieve the above object, the present invention has a structure in which voltage application between both electrode layers of the EC element is controlled according to the ambient temperature of the EC element.

〔作用〕[Effect]

両電極間への電圧印加を制御することにより、両1tl
fi間の着色電圧が各温度に応じて調整され、そのため
に、着色濃度を一定に保つように制御することができる
By controlling the voltage application between both electrodes, both 1tl
The coloring voltage between fi is adjusted according to each temperature, and therefore the coloring density can be controlled to be kept constant.

本発明に於いて使用されるEC素子は、既に知られてお
り、基本的には、表示側の透明電極層と、背後側の反射
性電極層又は透明電極層と、表示側および背後側の前記
′r4極層との間に位置されたEC層とから構成されて
いる。EC層の積層構造は、特に限定されるものではな
いが、本発明は還元発色層、イオン導電層、酸化発色層
の多層膜からなっている。
The EC element used in the present invention is already known, and basically consists of a transparent electrode layer on the display side, a reflective electrode layer or a transparent electrode layer on the back side, and a transparent electrode layer on the display side and the back side. and an EC layer located between the 'r quadrupole layer. Although the laminated structure of the EC layer is not particularly limited, the present invention is composed of a multilayer film including a reduction coloring layer, an ion conductive layer, and an oxidation coloring layer.

透明電極層の材料としては、例えば酸化スズ(SnOz
)、酸化インジウム(IngOff)、ITO(酸化ス
ズと酸化インジウムとの混合膜)などが使用される。こ
のような透明電極層は、−IIには真空蒸着、イオンブ
レーティング、スパッタリングなどの真空薄膜形成技術
で形成される。EC層の還元発色層としては、酸化タン
グステン(WO,+)、酸化モリブデン(Mob、)な
どが使用される。
As a material for the transparent electrode layer, for example, tin oxide (SnOz
), indium oxide (IngOff), ITO (a mixed film of tin oxide and indium oxide), etc. are used. Such a transparent electrode layer is formed in -II by a vacuum thin film forming technique such as vacuum evaporation, ion blasting, or sputtering. As the reduction coloring layer of the EC layer, tungsten oxide (WO, +), molybdenum oxide (Mob, ), etc. are used.

イオン導電層としては、例えば酸化タンタル(Taxe
s)、酸化チタン(Tilt)、酸化アルミニウム(A
ltoj)などが使用される。これらの物質薄膜は製造
方法により電子に対して絶縁体であるが、プロトン(H
゛)およびヒドロキシイオン(0「)に対しては良導体
となる。還元発色層の着色消色反応にはカチオンが必要
とされ、H゛イオンLi゛イオンを還元発色層その他に
含有させる必要がある。1(゛イオンは初めからイオン
である必要はなく、電圧が印加されたときにH”イオン
が生じればよく、従ってH”イオンの代わりに水を含有
させてもよい。この水は非常に少なくて十分であり、し
ばしば、大気中から自然に侵入をする水分でも着消色す
る。
As the ion conductive layer, for example, tantalum oxide (Taxe
s), titanium oxide (Tilt), aluminum oxide (A
ltoj) etc. are used. These thin films of materials are insulators for electrons due to the manufacturing method, but they are insulators for electrons (H
It becomes a good conductor for 2) and hydroxy ions (0).Cations are required for the coloring and decoloring reaction of the reduction coloring layer, and it is necessary to contain H' ions and Li' ions in the reduction coloring layer and other parts. 1 (The ions do not have to be ions from the beginning, it is sufficient that H" ions are generated when a voltage is applied. Therefore, water may be contained instead of H" ions. This water is extremely It is sufficient to have a small amount of water, and often even moisture that naturally enters from the atmosphere can cause discoloration.

還元発色層に対して間に417111層を挟んで可逆的
電解酸化層ないし酸化発色層又は触媒層を配設してもよ
い。このような層としては、例えば酸化ないし水酸化イ
リジウム、同じくニッケル、同じくクロム、同じくバナ
ジウム、同じくルテニウム、同じくロジウムなどがあげ
られる。これらの物質は、イオン導電層又は透明電極中
に分散されていても良いし、それらの構成物質を分散し
て含有していてもよい0反射性電極層としては、例えば
金、銀、アルミニウム、クロム、スズ、亜鉛、ニッケル
、ルテニウム、ロジウム、ステンレスなどの金属が使用
される。
A reversible electrolytic oxidation layer, an oxidation coloring layer, or a catalyst layer may be provided with a 417111 layer interposed between the reduction coloring layer. Such layers include, for example, iridium oxide or hydroxide, nickel, chromium, vanadium, ruthenium, rhodium, and the like. These substances may be dispersed in the ion conductive layer or the transparent electrode, or the reflective electrode layer may contain these constituent substances dispersedly, for example, gold, silver, aluminum, Metals such as chromium, tin, zinc, nickel, ruthenium, rhodium, and stainless steel are used.

以下、図面を引用して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

〔実施例〕〔Example〕

第1図+8+は、本発明の実施例に係るEC素子の垂直
断面図である。
FIG. 1 +8+ is a vertical sectional view of an EC element according to an embodiment of the present invention.

第1図+8+に於いて、ガラス基板1の上に表示側の透
明電極IM2として厚さ約2000人のITO膜を形成
し、エツチングを施して電極層2の本体2aと取出し部
2bとに分離した。その上にECl13として、厚さ約
1000人の酸化イリジウム−酸化スズ混合膜からなる
酸化発色層3c、厚さ約1.umの酸化タンタル膜から
なるイオン導電層3b、厚さ約5000人の酸化タング
ステン膜からなる還元発色1i3aを順次積層した。さ
らに、EC層3の上に背後側の反射性電捲層4として、
前記取出し部2bと抵触するように、厚さ約1000人
のアルミ膜を積層し、反射型EC素子5を作製した。
In FIG. 1+8+, an ITO film with a thickness of approximately 2000 wafers is formed on the glass substrate 1 as the transparent electrode IM2 on the display side, and is separated into the main body 2a and the extraction portion 2b of the electrode layer 2 by etching. did. On top of that, as ECl 13, there is an oxidized coloring layer 3c made of a mixed film of iridium oxide and tin oxide with a thickness of about 1,000 mm and a thickness of about 1. An ion conductive layer 3b made of a tantalum oxide film with a thickness of about 5,000 mm and a reduction color forming layer 1i3a made of a tungsten oxide film with a thickness of about 5000 mm were sequentially laminated. Further, on the EC layer 3, as a reflective capping layer 4 on the back side,
A reflective EC element 5 was fabricated by laminating an aluminum film with a thickness of about 1,000 layers so as to be in contact with the extraction portion 2b.

EC素子5の周辺温度が20℃および両型極層2a、4
間の印加電圧が零であるとき、反射性電極N4の電極取
出し部2bと、透明電掻層2の取出し部2Cとを経て、
前記両型極層2a、4の間に着色電圧(+1.35V)
を印加すると、ガラス基板1側から入射させた波長63
3nmの光に対して、10秒後に反射率が10%に減少
し、この反射率は電圧印加を止めても、しばらく保持さ
れた。次に消色電圧(−1,35V)を印加すると、同
じ<10秒後に反射率が60%に回復した。また、反射
率は両型極層2a、4間の印加電圧を変化させることに
より、10〜60%の間で任意に調節することが可能で
あった1゜ 第2図は、EC素子5の周辺温度と画電極N2a、4間
の印加電圧との関係を示すグラフであり、グラフ中の二
点鎖線ASBの一方Aは、周辺温度が20℃および印加
電圧が零であるとき、1.35Vの最大電圧を前記百雷
圧2a、4の間に印加させ、周辺温度の変化に関係なく
 、1.35Vの印加電圧を一定に保った状態を示して
いる。しかし、前述したように周辺温度の変化によって
も、EC素子5の着色濃度を変化させないためには、周
辺温度の変化に応じて1.35V前後の印加電圧を調整
しなければならず、図中の一方の斜線Cに基づいて印加
電圧を調整した結果、EC素子5の着色濃度を一定に保
つことができた。また、二点鎖iA、Bの他方Bは前記
一方Aと同様に、周辺温度が20℃および印加電圧が零
であるとき、1.32Vの電圧を印加させ、周辺温度の
変化に関係なく一定に保ったときを示しており、斜線の
他方りは、着色濃度の一定支持のために、各温度に対応
じて1.32V前後の印加電圧を調整しているときの状
態を示す。尚、それぞれの斜線C,Dの傾きは同一であ
る。
When the ambient temperature of the EC element 5 is 20°C and the bipolar pole layers 2a and 4
When the applied voltage between is zero, through the electrode lead-out part 2b of the reflective electrode N4 and the lead-out part 2C of the transparent electrode scratching layer 2,
Coloring voltage (+1.35V) between the two types of pole layers 2a and 4
When applying , the wavelength 63 incident from the glass substrate 1 side
The reflectance for 3 nm light decreased to 10% after 10 seconds, and this reflectance was maintained for a while even after the voltage application was stopped. Next, when a decoloring voltage (-1.35 V) was applied, the reflectance recovered to 60% after the same <10 seconds. Further, the reflectance can be arbitrarily adjusted between 10% and 60% by changing the applied voltage between the bipolar pole layers 2a and 4. Figure 2 shows the EC element 5. This is a graph showing the relationship between the ambient temperature and the applied voltage between the picture electrodes N2a and 4, and one side A of the two-dot chain line ASB in the graph is 1.35V when the ambient temperature is 20°C and the applied voltage is zero. The maximum voltage of 1.35 V is applied between the voltages 2a and 4, and the applied voltage of 1.35 V is kept constant regardless of changes in the ambient temperature. However, as mentioned above, in order to prevent the coloring density of the EC element 5 from changing due to changes in the ambient temperature, it is necessary to adjust the applied voltage of around 1.35 V according to the changes in the ambient temperature. As a result of adjusting the applied voltage based on one of the diagonal lines C, the color density of the EC element 5 could be kept constant. Similarly to the above-mentioned one A, the other B of the two-dot chains iA and B is applied with a voltage of 1.32V when the ambient temperature is 20°C and the applied voltage is zero, and is constant regardless of changes in the ambient temperature. The other side of the diagonal line shows the state when the applied voltage of around 1.32 V is adjusted in accordance with each temperature in order to maintain a constant coloring density. Note that the slopes of the diagonal lines C and D are the same.

上述の斜線Cにおいて、グラフの横軸上に位置する最低
温度(−20℃)に対応した印加電圧は約1.41 V
であり、また最高温度(90℃)に対応する印加電圧は
約1.24Vである。この印加電圧(1,24V)から
前記電圧(1,41V)を引いてその値(−〇。17)
を検出し、また−上述の最高温度(90℃)から最低温
度(−20℃)を引いてその値(110℃)を検出し、
印加電圧の前記検出値(−0,17)を温度の前記検出
値(110℃)で割ることにより、その値(−1,5m
V/℃)が電圧の温度係数(斜線の傾き)として算出さ
れる。
At the diagonal line C above, the applied voltage corresponding to the lowest temperature (-20°C) located on the horizontal axis of the graph is approximately 1.41 V
, and the applied voltage corresponding to the maximum temperature (90° C.) is about 1.24V. Subtract the voltage (1,41V) from this applied voltage (1,24V) and get the value (-〇.17)
Detecting, and - subtracting the minimum temperature (-20°C) from the above-mentioned maximum temperature (90°C) and detecting the value (110°C),
By dividing the detected value of applied voltage (-0,17) by the detected value of temperature (110°C), the value (-1,5 m
V/° C.) is calculated as the temperature coefficient of voltage (slope of the diagonal line).

そして、上述の温度係数(−1,5m V / ’c 
)により、EC素子5への電圧印加を制御する本装置の
構成を第1図(blに示す。
And the temperature coefficient mentioned above (-1,5m V/'c
) The configuration of this device that controls voltage application to the EC element 5 is shown in FIG. 1 (bl).

第1図(1〕)に於いて、電極取出し部2b、2cに接
続する印加部6は、取出し部2b、2cを経て両型極層
2a、40間に電圧を印加する。また、印加部6の電圧
印加を制御する印加制御部7aは演算部7bおよび測定
部7cと接続されている。
In FIG. 1 (1), the application section 6 connected to the electrode extraction parts 2b and 2c applies a voltage between the bipolar electrode layers 2a and 40 via the electrode extraction parts 2b and 2c. Further, an application control section 7a that controls voltage application by the application section 6 is connected to a calculation section 7b and a measurement section 7c.

測定部7cば、両型極層2a、4間の印加電圧を測定す
るものであり、例えば電圧計などが使われる。演算部7
bは設定部7dおよび検温センサー8に接続されている
。設定部7dは、EC素子5の着色濃度を設定するキー
ボードであり、各キーの操作により着色濃度を設定する
と、前記周辺の基準温度(20℃)における両型極層2
a、4間の着色電圧が上述の設定濃度に応じて設定され
、該着色電圧の値に対応した電圧信号が演算部7bに出
力される。検温センサー8は、EC素子5の周辺温度T
tに応じた検温信号を演算部7bに出力する。演算部7
bは検温信号の入力により検知温度T℃を検知して、そ
の検温温度T’Cから基準温度(20℃)を引いて算出
し、その算出温度を電圧の温度係数(−1,5m V 
/ ℃)に乗算して電圧の微小変化値を算出する9次い
で演算部7bが前記電圧の微小変化値を、設定部7dに
よる着色電圧の値に加算してその電圧値を検出する。印
加制御部7aは測定部7cによる両型極層2a、4間の
印加電圧の値が演算部7bの上記電圧値に等しくなるよ
うに、印加部6の画電極N2.4間への電圧印加を制御
する。
The measuring section 7c measures the voltage applied between the bipolar electrode layers 2a and 4, and uses, for example, a voltmeter. Arithmetic unit 7
b is connected to the setting section 7d and the temperature sensor 8. The setting unit 7d is a keyboard for setting the coloring density of the EC element 5, and when the coloring density is set by operating each key, the bipolar polar layer 2 at the surrounding reference temperature (20° C.) is set.
The coloring voltage between a and 4 is set according to the above-mentioned set density, and a voltage signal corresponding to the value of the coloring voltage is output to the calculation section 7b. The temperature sensor 8 detects the ambient temperature T of the EC element 5.
A temperature measurement signal corresponding to t is output to the calculation section 7b. Arithmetic unit 7
b is calculated by detecting the detected temperature T°C by inputting the temperature measurement signal, subtracting the reference temperature (20°C) from the measured temperature T'C, and calculating the calculated temperature by the temperature coefficient of the voltage (-1.5m V
/° C.) to calculate the voltage minute change value.Next, the arithmetic unit 7b adds the voltage minute change value to the coloring voltage value provided by the setting unit 7d to detect the voltage value. The application control section 7a controls the application of voltage between the picture electrodes N2.4 of the application section 6 so that the value of the voltage applied between the polar layers 2a and 4 by the measurement section 7c is equal to the voltage value of the calculation section 7b. control.

次に、第2図に示すグラフ中の各温度により、斜線Cに
伴って、百雷IJi2a、4間への電圧印加を制御する
動作を説明する。
Next, the operation of controlling the voltage application between Hyakurai IJi 2a and IJi 4 according to the diagonal line C based on each temperature in the graph shown in FIG. 2 will be described.

まず、第1図(blのキーボード7dが、各キーの操作
により最大の着色濃度を設定すると、それに応じて前記
基準温度(20℃)での着色電圧が最大の1.35Vに
設定され、その最大着色電圧(1,35V)に応じた信
号を演算部7bに出力する。一方、EC素子5の周辺温
度が例えばマイナス20℃であることを、検温センサー
8が検知すると、その温度に応じた検温信号を演算部7
bに出力する。演算部7bは検温信号の入力により検知
温度(−20℃)から基準温度(20℃)を引いて算出
し、その算出温度(−40℃)を前述の温度係数(−1
,5m V / ℃)に乗算して、電圧の微小変化値(
△0.06V)を算出する。
First, when the keyboard 7d in FIG. 1 (bl) sets the maximum coloring density by operating each key, the coloring voltage at the reference temperature (20°C) is set to the maximum 1.35V, and A signal corresponding to the maximum coloring voltage (1,35V) is output to the calculation unit 7b.On the other hand, when the temperature sensor 8 detects that the ambient temperature of the EC element 5 is, for example, -20°C, the signal corresponding to the maximum coloring voltage (1,35V) is outputted to the calculation unit 7b. Temperature measurement signal is calculated by calculation unit 7
Output to b. The calculation unit 7b calculates by subtracting the reference temperature (20°C) from the detected temperature (-20°C) based on the input of the temperature measurement signal, and calculates the calculated temperature (-40°C) by using the above-mentioned temperature coefficient (-1
, 5mV/℃) to obtain the minute voltage change value (
Δ0.06V) is calculated.

次いで演算部7bが上記微小変化値(△0.06V)を
最大着色電圧(1,35V)に加算して、その電圧値(
1,41V)を検出する。印加制御部7aは、測定部7
Cによる画電極層2a、4間の印加電圧の値が上記の電
圧値(1,41V)と等しくなるように、印加部6の画
電極1’12a、4間への電圧印加を制御する。印加部
6の電圧印加に伴って、印加電圧の値が上記の電圧値(
1,41V)に達すると、測定部7Cを経て印加制御部
7aが検知し、印加部6の電圧印加を停止する。そのた
めに、マイナス20℃の周辺温度における印加電圧の値
は1.41Vとなり、前述の設定濃度に応じて着色させ
ることができる。
Next, the calculation unit 7b adds the minute change value (Δ0.06V) to the maximum coloring voltage (1.35V) to obtain the voltage value (
1,41V) is detected. The application control section 7a is the measurement section 7
The application of voltage between the picture electrodes 1'12a and 4 by the application section 6 is controlled so that the value of the voltage applied between the picture electrode layers 2a and 4 by C is equal to the above voltage value (1, 41V). As the voltage application unit 6 applies voltage, the value of the applied voltage changes to the above voltage value (
1.41V), the voltage application control unit 7a detects this via the measurement unit 7C and stops applying the voltage from the voltage application unit 6. Therefore, the value of the applied voltage at an ambient temperature of -20° C. is 1.41 V, and it is possible to color the film according to the above-mentioned set density.

また、EC素子5の周辺温度がプラス90℃であること
を検温センサー8が検知すると、その温度に応じた検温
信号を演算部7bに出力する。演算部7bは検知温度(
90℃)から基準温度(20℃)を引いて算出し、その
算出温度(70℃)を前述の温度係数(−1,5m V
 / t)に乗算して、電圧の微小変化値(△−0,1
1V)を算出する。次いで演算部7bが微小変化値(△
−0,1,1,V)を前述の最大着色電圧(1,35V
)に加算して、その電圧(i(1,24V)を検出する
。印加制御部7aは、測定部7Cによる百雷種層2a、
4間の印加電圧の値が、上記の電圧値(1,24V)と
等しくなるように、印加部6の電圧印加を制御する。印
加部6の電圧印加に伴って、画電極1i2a、4間の印
加電圧の値が上記の電圧値(1,24V)に達すると、
測定部7Cを経て印加制御部7aが検知し、印加部6の
電圧印加を停止する。
Further, when the temperature sensor 8 detects that the ambient temperature of the EC element 5 is +90° C., it outputs a temperature signal corresponding to the detected temperature to the calculation unit 7b. The calculation unit 7b calculates the detected temperature (
Calculated by subtracting the reference temperature (20°C) from 90°C, and then converting the calculated temperature (70°C) to the aforementioned temperature coefficient (-1.5mV
/ t) to obtain the minute voltage change value (△-0,1
1V). Next, the calculation unit 7b calculates the minute change value (△
-0,1,1,V) to the maximum coloring voltage (1,35V)
) and detects the voltage (i (1, 24V).The application control unit 7a controls the measurement unit 7C to add the voltage (i (1, 24V)
The voltage application of the application unit 6 is controlled so that the value of the applied voltage between the voltages 4 and 4 is equal to the above voltage value (1, 24V). When the voltage applied between the picture electrodes 1i2a and 4 reaches the above voltage value (1, 24V) as the voltage application unit 6 applies the voltage,
The application control unit 7a detects this through the measurement unit 7C, and stops applying the voltage from the application unit 6.

そのために、プラス90℃の周辺温度における印加電圧
の値は1.24Vとなり、前述の設定濃度に応じて着色
させることができる。
Therefore, the value of the applied voltage at an ambient temperature of plus 90° C. is 1.24 V, and it is possible to color according to the above-mentioned set density.

さらに、EC素子5の周辺温度が例えばプラス20℃ま
たは60℃であることを、検温センサー8が検知すると
、演算部7bによる前記同様の算出により、20℃の周
辺温度に対応する印加電圧は1.35Vとなり、60℃
の周辺温度に対応する印加電圧は1.29Vとなり、前
述と同様に印加電圧が調整される。
Furthermore, when the temperature sensor 8 detects that the ambient temperature of the EC element 5 is, for example, plus 20°C or 60°C, the applied voltage corresponding to the ambient temperature of 20°C is calculated by the calculation unit 7b in the same manner as described above. .35V and 60℃
The applied voltage corresponding to the ambient temperature is 1.29V, and the applied voltage is adjusted in the same manner as described above.

第2図のグラフ中の斜線りに伴う印加電圧の調整は、中
間色に応じた着色濃度を設定することによって行われる
。すなわち、中間濃度の設定のために、第1図[b)の
キーボード7dの各キーを操作すると、基準温度(20
℃)における着色電圧が中間濃度に応じて、たとえば前
述の1.32Vに設定され、その電圧(1,32V)に
応じた信号が演算部7bに出力される。演算部7bが検
温センサー8の検温信号および設定部7dの電圧(1,
32V)1s号の入力を受けると、前述と同様に検知温
度から基準温度(20℃)を引いて算出し、その算出温
度を電圧の温度係数(−1,5m V / ’c )に
乗算して、電圧の微小変化値を算出する。次いで演算部
7bがその微小変化値を前述の着色電圧(1,32V)
に加算して、その電圧値を検出し、印加制御部7aは、
演算部7bの上記電圧値が測定部7Cによる印加電圧の
値に等しくなるように、印加部6の電圧印加を制御する
。これによって、EC素子5は、前述の設定された中間
濃度に応じて着色されることができる。
Adjustment of the applied voltage due to the diagonal line in the graph of FIG. 2 is performed by setting the coloring density according to the intermediate color. That is, when each key on the keyboard 7d in FIG. 1 [b] is operated to set the intermediate concentration, the reference temperature (20
The coloring voltage at 0.degree. C.) is set, for example, to the aforementioned 1.32 V in accordance with the intermediate density, and a signal corresponding to the voltage (1.32 V) is output to the calculation section 7b. The calculation unit 7b calculates the temperature measurement signal from the temperature measurement sensor 8 and the voltage (1,
32V) When the 1s number is input, the temperature is calculated by subtracting the reference temperature (20℃) from the detected temperature in the same way as above, and the calculated temperature is multiplied by the temperature coefficient of the voltage (-1.5mV/'c). Then, calculate the minute change value of the voltage. Next, the calculation unit 7b applies the minute change value to the above-mentioned coloring voltage (1.32V).
The application control unit 7a detects the voltage value by adding the voltage to
The voltage application by the application part 6 is controlled so that the voltage value of the calculation part 7b becomes equal to the value of the voltage applied by the measurement part 7C. Thereby, the EC element 5 can be colored according to the above-described set intermediate density.

従って、EC素子5の着色濃度を予め設定する設定部7
dを備えたために、希望通りに着色濃度を設定すること
ができ、周辺温度の変化に応じて、設定部7dの設定濃
度を一定に保つことができる。
Therefore, the setting section 7 for presetting the coloring density of the EC element 5
d, the coloring density can be set as desired, and the set density of the setting section 7d can be kept constant according to changes in the ambient temperature.

また、周辺温度が高温であるときは、その印加電圧が基
Y$湯温度20℃)での最大印加電圧(1,,35V)
よりも低くなるために、EC素子5に過電圧が印加され
ることなく、着色ムラが発生したり、ECDが破1貝さ
れてしまうこともない利点も得られる。
In addition, when the surrounding temperature is high, the applied voltage is the maximum applied voltage (1, 35 V) at the base temperature (20°C).
Since the voltage is lower than that, there is an advantage that no overvoltage is applied to the EC element 5, and uneven coloring does not occur or the ECD is not damaged.

以上の実施例によれば、背後側の反射性電極層2を設け
た反射型EC素子5を用いて、該素子5ヘの電圧印加を
制御することを述べたが、本発明はこれに限らず、背後
側に透明電極層を形成した透過型EC素子を用いてもよ
く、電圧印加の制御により、前述の同様に一定の着色濃
度を保つことができるのはいうまでもない。
According to the above embodiments, it has been described that the reflective EC element 5 provided with the reflective electrode layer 2 on the rear side is used to control the voltage application to the element 5, but the present invention is not limited to this. Of course, a transmission type EC element having a transparent electrode layer formed on the rear side may be used, and it goes without saying that by controlling the voltage application, a constant coloring density can be maintained as described above.

IEC素子5を構成した各層2.3a〜3C14の材料
について、本実施例では、透明電極層2はITO薄膜で
あり、ECC84酸化発色層3cは酸化イリジウム−酸
化スズとの混合膜、イオン導電層3bは酸化タンタル膜
、還元発色層3aは酸化タングステン膜、反射性電極層
4はアルミ膜からなっていることを述べたが、これらの
材料に限定せず、例えば透明電極層2は酸化インジウム
でもよく、還元発色層3aは酸化モリブデンでもよいと
いうように、各層2.3a〜3c、4を、本実゛施例で
述べた材料から別の材料に変えてE C素子を構成し、
該素子への電圧印加を制御するようにすれば良い。
Regarding the materials of each layer 2.3a to 3C14 that constituted the IEC element 5, in this example, the transparent electrode layer 2 is an ITO thin film, and the ECC84 oxidized coloring layer 3c is an iridium oxide-tin oxide mixed film, an ion conductive layer. 3b is a tantalum oxide film, the reduction color forming layer 3a is a tungsten oxide film, and the reflective electrode layer 4 is an aluminum film. Often, the EC element is constructed by changing each layer 2.3a to 3c, 4 from the material described in this embodiment to another material, such as molybdenum oxide may be used as the reduction coloring layer 3a.
What is necessary is to control the voltage application to the element.

〔発明の効果〕〔Effect of the invention〕

以上の本発明によれば、検温センサーの検知温度に応じ
てEC素子への電圧印加を制御するために、EC素子の
周辺温度の変化に応じて印加電圧が調整され、それによ
ってEC素子の着色4度を一定に保つように制御するこ
とができる。
According to the present invention, in order to control the voltage application to the EC element according to the temperature detected by the temperature sensor, the applied voltage is adjusted according to the change in the ambient temperature of the EC element, thereby coloring the EC element. It can be controlled to keep 4 degrees constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fa)は、本発明の実施例に係るEC素子の垂直
断面図である。 第1図tb+は、本発明の実施例に係るEC素子および
その表示制御装置の概略構成図である。 第2図は、EC素子の周辺温度と、両電極層間の充電電
圧との関係を示すグラフである。 〔主要部分の符号の説明〕 2−−−−m−表示側の透明電極層 3 −エレクトロクロミック層 4−m−背後側の反射性電極層 s −−−一エレクトロクロミソク素子6−−−−−一
印加部 7 a −−−−−−印加制御部  7 b −−−一
演算部7 c −−−−一測定部  7d−・設定部8
−・−・・−−一一検温センサー
FIG. 1 fa) is a vertical cross-sectional view of an EC element according to an embodiment of the present invention. FIG. 1tb+ is a schematic configuration diagram of an EC element and its display control device according to an embodiment of the present invention. FIG. 2 is a graph showing the relationship between the ambient temperature of the EC element and the charging voltage between both electrode layers. [Explanation of symbols of main parts] 2----m-transparent electrode layer 3 on the display side -electrochromic layer 4-m-reflective electrode layer s on the back side---1-electrochromic element 6--- ---Application section 7a ---Application control section 7b ---Arithmetic section 7c ---A measurement section 7d--Setting section 8
−・−・・−−11 Temperature sensor

Claims (1)

【特許請求の範囲】 少なくとも、表示側の透明電極層と、背後側の反射性電
極層又は透明電極層と、表示側および背後側の前記両電
極層の間に位置するエレクトロクロミック層とからなる
エレクトロクロミック素子と、前記両電極層の間に電圧
を印加させる印加手段とを設けたエレクトロクロミック
素子の表示制御装置に於いて、 前記素子の周辺温度を検知する検温センサーと;前記素
子の着色濃度を予め設定し、それによって、前記素子周
辺の基準温度における前記両電極層間の着色電圧が上記
設定濃度に応じて設定される設定手段と; 前記検温センサーの検知温度から前記基準温度を引いて
算出し、その算出温度を電圧の温度係数に乗算して電圧
の微小変化値を算出し、該微小変化値を、前記設定手段
による着色電圧の値に加算してその電圧値を検出する演
算手段と; 前記印加手段の電圧印加により、両電極層間に印加され
た電圧の値を測定する測定手段と;該測定手段による印
加電圧の値が、前記演算部の電圧値と等しくなるように
、前記印加手段の電圧印加を制御する印加制御手段と; を備えたことを特徴とするエレクトロクロミック素子の
表示制御装置。
[Claims] Consisting of at least a transparent electrode layer on the display side, a reflective electrode layer or a transparent electrode layer on the back side, and an electrochromic layer located between the two electrode layers on the display side and the back side. A display control device for an electrochromic element, which includes an electrochromic element and an application means for applying a voltage between the two electrode layers, comprising: a temperature sensor that detects the ambient temperature of the element; and a temperature sensor that detects the ambient temperature of the element; a setting means for setting in advance a coloring voltage between the two electrode layers at a reference temperature around the element, thereby setting a coloring voltage between the two electrode layers according to the set concentration; calculated by subtracting the reference temperature from the temperature detected by the temperature sensor; and calculating means for multiplying the calculated temperature by the temperature coefficient of the voltage to calculate a minute change value of the voltage, and adding the minute change value to the value of the colored voltage by the setting means to detect the voltage value. a measuring means for measuring the value of the voltage applied between both electrode layers by the voltage application of the applying means; and a measuring means for measuring the value of the voltage applied between the two electrode layers; 1. A display control device for an electrochromic element, comprising: an application control means for controlling voltage application to the means;
JP1037822A 1989-02-17 1989-02-17 Display control device for electrochromic device Expired - Fee Related JP2891361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1037822A JP2891361B2 (en) 1989-02-17 1989-02-17 Display control device for electrochromic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1037822A JP2891361B2 (en) 1989-02-17 1989-02-17 Display control device for electrochromic device

Publications (2)

Publication Number Publication Date
JPH02216131A true JPH02216131A (en) 1990-08-29
JP2891361B2 JP2891361B2 (en) 1999-05-17

Family

ID=12508213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1037822A Expired - Fee Related JP2891361B2 (en) 1989-02-17 1989-02-17 Display control device for electrochromic device

Country Status (1)

Country Link
JP (1) JP2891361B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475847A1 (en) * 1990-09-14 1992-03-18 Saint-Gobain Vitrage Electrochromic window
EP0718667A1 (en) * 1994-12-23 1996-06-26 Saint-Gobain Vitrage Electronic supply method for a electrically controllable window
WO2002017008A3 (en) * 2000-08-23 2002-10-10 Ppg Ind Ohio Inc Method and apparatus for controlling an electrochromic device
WO2007052951A1 (en) * 2005-11-02 2007-05-10 Lg Chem, Ltd. An electrochromic device
JP2011017873A (en) * 2009-07-08 2011-01-27 Ricoh Co Ltd Electrochromic display device and driving method therefor
JP2016218357A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device
US11681196B2 (en) 2019-07-30 2023-06-20 Ricoh Company, Ltd. Electrochromic device, control device of electrochromic device, and control method of electrochromic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202110359U (en) 2011-05-25 2012-01-11 王麒 Intelligent nanometer glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239424A (en) * 1987-03-27 1988-10-05 Asahi Glass Co Ltd System for driving electrochromic element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239424A (en) * 1987-03-27 1988-10-05 Asahi Glass Co Ltd System for driving electrochromic element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475847A1 (en) * 1990-09-14 1992-03-18 Saint-Gobain Vitrage Electrochromic window
FR2666804A1 (en) * 1990-09-14 1992-03-20 Saint Gobain Vitrage Int ELECTROCHROME GLAZING.
EP0718667A1 (en) * 1994-12-23 1996-06-26 Saint-Gobain Vitrage Electronic supply method for a electrically controllable window
FR2728696A1 (en) * 1994-12-23 1996-06-28 Saint Gobain Vitrage METHOD FOR ELECTRICALLY POWERING ELECTRO-CONTROLLABLE GLAZING
WO2002017008A3 (en) * 2000-08-23 2002-10-10 Ppg Ind Ohio Inc Method and apparatus for controlling an electrochromic device
US6614577B1 (en) 2000-08-23 2003-09-02 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
AU2001283365B2 (en) * 2000-08-23 2004-12-23 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
WO2007052951A1 (en) * 2005-11-02 2007-05-10 Lg Chem, Ltd. An electrochromic device
US7697190B2 (en) 2005-11-02 2010-04-13 Lg Chem, Ltd. Electrode structure of electrochromic device
JP2011017873A (en) * 2009-07-08 2011-01-27 Ricoh Co Ltd Electrochromic display device and driving method therefor
JP2016218357A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device
US11681196B2 (en) 2019-07-30 2023-06-20 Ricoh Company, Ltd. Electrochromic device, control device of electrochromic device, and control method of electrochromic device

Also Published As

Publication number Publication date
JP2891361B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US6329044B1 (en) Transparent conductive film and method of making the film
EP0356099B2 (en) Electrochromic device
US4824221A (en) Electrochromic device
WO2016126460A2 (en) Electrochromic devices
JP2007532940A (en) Method for powering electrically controlled devices with variable optical and / or energy characteristics
JPH02216131A (en) Display controller for electrochromic element
US5847860A (en) High density electrochromic display
US5157540A (en) Electrochromic display device with improved absorption spectrum and method of producing it
TWI662350B (en) Electrochromic panel
JPH05142585A (en) Display panel
JPH10282907A (en) Electrode substrate
JP2827247B2 (en) Electrochromic element that uniformly colors
JPH04318525A (en) Reflection type electrochromic element
JPH06289435A (en) Electrochromic element
JPH07140494A (en) Electrochromic element
JPS6186733A (en) Electrochromic element
US9995986B2 (en) Light control element, light control device, and method for producing light control element
JPS5834438A (en) Electrochromic display device
JP2008108807A (en) Nonlinear element, method for fabricating nonlinear element, and electro-optic device
JP3544598B2 (en) Wiring board having two-terminal switching element
JP2567786Y2 (en) Electrochromic device
JPH0820648B2 (en) EC device with extraction electrodes on the end face
JPH0262518A (en) Liquid crystal image display device
JP6894588B2 (en) Dimming element, dimming equipment, and manufacturing method of dimming element
US4215918A (en) Electrochromic display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees