JPS63239424A - System for driving electrochromic element - Google Patents

System for driving electrochromic element

Info

Publication number
JPS63239424A
JPS63239424A JP7178087A JP7178087A JPS63239424A JP S63239424 A JPS63239424 A JP S63239424A JP 7178087 A JP7178087 A JP 7178087A JP 7178087 A JP7178087 A JP 7178087A JP S63239424 A JPS63239424 A JP S63239424A
Authority
JP
Japan
Prior art keywords
voltage
coloring
transmittance
switch
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7178087A
Other languages
Japanese (ja)
Inventor
Junichi Nagai
永井 順一
Sozo Matsunaga
松長 宗三
Tadatoshi Kamimori
神森 忠敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7178087A priority Critical patent/JPS63239424A/en
Publication of JPS63239424A publication Critical patent/JPS63239424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PURPOSE:To obtain a desired transmittance over a long period of time by connecting resistances having the resistance value conformed to the fluctuation in the coloring performance of the elements between one calculation circuit backup power source and the respective chromic elements in series and impressing the same voltage as a reference voltage to the elements. CONSTITUTION:Constant current of 150mA is passed for 100sec to the chromic element 1 in a driving circuit 3 for coloring and decoloring by turning on a switch 2 in such a manner that the transmittance attains 20%. 1min later, the switch 2 is turned off and a switch 4 is turned on. The voltage corresponding to the temp. of the element 1 is selected from the temp. data from a temp. sensor 5 and the characteristics of the transmittance-voltage between the chromic electrode and counter electrode at -20-+120 deg.C stored in the calculation circuit backup power source 6. This voltage is impressed to the element 1. Then, the initially set 20% transmittance is kept within the range of about + or -3% range even if the ambient temp. changes between -20-+120 deg.C in 24hr after the coloration. No abnormality is thus admitted in the coloring and decoloring state.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、エレクトロクロミック(EC)素子における
駆動方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a driving method for an electrochromic (EC) element.

[従来の技術] エレクトロクロミック素子(以下単にEC素子という、
)は1表示素子、調光窓、防眩鏡等に使用されることが
望まれている。第3図は、このEC素子の駆動の原理を
示す回路図であり、EC素子の代表的な駆動法のひとつ
である定電圧駆動法を示している。
[Prior art] Electrochromic device (hereinafter simply referred to as EC device)
) is desired to be used in display elements, dimming windows, anti-glare mirrors, etc. FIG. 3 is a circuit diagram showing the principle of driving this EC element, and shows a constant voltage driving method, which is one of the typical driving methods for the EC element.

EC素子は、ガラス、プラスチック等の基板に透明電極
(EC電極)を形成し、その上に酸化タングステン、醸
化モリブデン等のEC薄膜を配し、別のガラス等の基板
に対向電極を形成した第2の基板とを対向させ、それら
の間に、プロトン、リチウムイオン、ナトリウムイオン
等を含む電解質を封入し、当該透明電極と当該対向電極
との間に電圧を印加して着消色駆動する。
The EC element has a transparent electrode (EC electrode) formed on a substrate made of glass, plastic, etc., an EC thin film made of tungsten oxide, molybdenum fermentation, etc. placed on top of the transparent electrode, and a counter electrode formed on another substrate made of glass, etc. A second substrate is placed facing each other, an electrolyte containing protons, lithium ions, sodium ions, etc. is sealed between them, and a voltage is applied between the transparent electrode and the counter electrode to drive coloring and decoloring. .

第3図において37は対向電極であり38はEC電極で
ある。酸化タングステン、酸化モリブデン等の還元着色
型のEC薄膜を使用した場合には、このEC素子を着色
させる場合には、電池のプラス側のスイッチ31を32
の側に倒し、電池のプラスを対向電極37に接続すると
ともに、電池のマイナス側のスイッチ34を35の側に
倒し、電池のマイナスをEC電極38に接続すればよい
、所望の濃さに着色した時点で、この2つのスイッチの
接点をオープンにすれば、EC素子はその状態を保ち、
表示が継続される。逆に、このEC素子を消色させる場
合には、電池のプラス側のスイッチ31を32の側に倒
し、電池のプラスをEC電極38に接続するとともに、
電池のマイナス側スイッチ34を38の側に倒し、電池
のマイナスを対向電極37に接続すればよい。
In FIG. 3, 37 is a counter electrode and 38 is an EC electrode. When using a reduction colored EC thin film such as tungsten oxide or molybdenum oxide, if you want to color this EC element, turn the switch 31 on the positive side of the battery to 32.
, and connect the positive terminal of the battery to the counter electrode 37. At the same time, flip the switch 34 on the negative side of the battery to the 35 side, and connect the negative terminal of the battery to the EC electrode 38. Color the battery to the desired density. At that point, if you open the contacts of these two switches, the EC element will maintain that state,
Display continues. Conversely, when decolorizing this EC element, turn the switch 31 on the positive side of the battery to the 32 side, connect the positive side of the battery to the EC electrode 38, and
The negative side switch 34 of the battery may be turned to the 38 side, and the negative terminal of the battery may be connected to the counter electrode 37.

[発明の解決しようとする問題点] このEC素子は、電荷の蓄積により着色するため、電荷
の蓄積量に応じて透過率(以下単にTVという、)が異
なってくる。このため、一定の電流の一定時間の駆動、
又は一定電圧の一定時間の駆動により最初に所望の電荷
を注入しても、当該EC素子の内部放電によって、当初
のTVを維持することができない。
[Problems to be Solved by the Invention] Since this EC element is colored by the accumulation of charge, the transmittance (hereinafter simply referred to as TV) differs depending on the amount of charge accumulation. For this reason, driving a constant current for a constant time,
Alternatively, even if a desired charge is first injected by driving at a constant voltage for a certain period of time, the original TV cannot be maintained due to internal discharge of the EC element.

このような問題点を解消するために従来では電解質及び
着色EC層の相互作用により、着色のメモリ性が決まる
ので、EC層の物性を制御するか(例えば、−03膜の
密度を上げる。第5図参照)電解質中での酸化体拡散を
抑制しなければならなかった(例えば、ポリマー 濃度
を上げる。又はセルギャップを広げる。第6図参照)。
Conventionally, in order to solve these problems, since the memory property of coloring is determined by the interaction between the electrolyte and the colored EC layer, it is necessary to control the physical properties of the EC layer (for example, increase the density of the -03 film. Oxidant diffusion in the electrolyte had to be suppressed (eg, by increasing the polymer concentration or widening the cell gap; see Figure 6).

ここで第5図と第6図の説明をすると第5図は、EC素
子を20%の透過率で着色後の透過率とWO3膜の密度
の特性を示し、 (ll103膜の密度がメモリ性に関
係していることを示している。)第6図は、EC素子の
着色後1時間後のメモリ性の特性(81は、ポリマー濃
度5%セルギャップ50濤■、62は、ポリマー濃度1
0%セルギャップ50ILm 、 63は、ポリマー濠
度5%セルギャップ20OIL層、の特性を示し、61
.62.63ともl1103膜の密度は5.5g/e厘
3である。)を示す。
To explain Figures 5 and 6 here, Figure 5 shows the characteristics of the transmittance and the density of the WO3 film after coloring the EC element at a transmittance of 20%. ) Figure 6 shows the memory characteristics of the EC element one hour after coloring (81 indicates a polymer concentration of 5% and a cell gap of 50mm, 62 indicates a polymer concentration of 1%).
0% cell gap 50ILm, 63 shows the characteristics of a polymer moat 5% cell gap 20OIL layer, 61
.. The density of both 62.63 and 1103 films is 5.5 g/e. ) is shown.

前述したように、メモリ性を改善すると消色特性が著し
るしく悪くなり、消色電圧が同じであった場合は、消色
時間は、約2倍〜数倍も長くなってしまう、又、消色時
間を短かくしようとして、消色電圧を上げると(通常1
.0v以上)対向電極に損傷を生じたりする。
As mentioned above, if the memory property is improved, the decoloring property becomes significantly worse, and if the decoloring voltage is the same, the decoloring time becomes about twice to several times longer. If you try to shorten the erasing time and increase the erasing voltage (usually 1
.. 0V or more) may cause damage to the counter electrode.

[問題点を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、エレクトロクロック素子において、着色後のEC電
極と対向電極間の電圧にほぼ等しい直流電圧を印加する
ことを特徴とするエレクトロクロミック素子の駆動方式
を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and in an electroclock element, a DC voltage approximately equal to the voltage between the EC electrode and the counter electrode after coloring is applied. The present invention provides a method for driving an electrochromic element characterized by applying a voltage.

[作用] 本発明において、連続通電によって紫外線昭射時の寿命
が伸びることの作用について述べると、着色反応は、対
極: XA+ XB+ Xe−、WO31: XLi争
+W03+Xe−+LixWOx (ただし、 X=実
数、A=還元体、B=酸化体)のように行われ、紫外線
照射を行うと酸化体Aが減少するので消色反応が十分に
行われなくなり、劣化の原因となるが、連続通電すると
紫外線照射により酸化体Aが減少することが少ない、こ
のように、本発明の連続通電による酸化体Aの減少の防
止によってEC素子の長寿命化の如き効果を生ずるもの
と考えられる。
[Function] In the present invention, to describe the effect of extending the lifespan during ultraviolet irradiation by continuous energization, the coloring reaction is as follows: Opposite electrode: XA+ XB+ Xe-, WO31: A = reduced form, B = oxidized form), and when irradiated with ultraviolet rays, oxidized form A decreases, so the decoloring reaction is not carried out sufficiently and causes deterioration, but continuous energization causes irradiation with ultraviolet rays. Therefore, it is thought that the prevention of the decrease in oxidant A due to continuous energization according to the present invention produces effects such as prolonging the life of the EC element.

[実施例] 30cm角の透明電極を設けた硝子基板上に一〇3を蒸
着したEC側基板と、透明電極を設けた硝子基板からな
る対向電極基板とを相対向させ周辺をシールして内部に
スルホランと3−メチルスルホランの4=1(体積比)
の混合溶媒にLiIを0.75M/i、ポリビニルピロ
リドン5重量%を配合した電解質を注入して封止してE
C素子を形成した。第1図、第2図にこの駆動回路のブ
ロック図を示す。
[Example] An EC side substrate in which 103 was deposited on a glass substrate with a 30 cm square transparent electrode and a counter electrode substrate made of a glass substrate with a transparent electrode were placed facing each other and the periphery was sealed to seal the inside. 4=1 (volume ratio) of sulfolane and 3-methylsulfolane
An electrolyte containing 0.75 M/i of LiI and 5% by weight of polyvinylpyrrolidone was injected into the mixed solvent of E and sealed.
A C element was formed. FIGS. 1 and 2 show block diagrams of this drive circuit.

第1図、第2図において、 1,21は上述のEC素子
であり、 3,23は、当該EC素子を定電流駆動可能
な着e消色駆動回路であり、5.25は、EC素子1の
温度を測定するための温度センサーであり、27は、E
C素子21の電極の電圧を測定するてめの起電力測定器
である。
In FIGS. 1 and 2, 1 and 21 are the above-mentioned EC elements, 3 and 23 are coloring and decoloring drive circuits that can drive the EC elements with constant current, and 5.25 is the EC element. 27 is a temperature sensor for measuring the temperature of E
This is the first electromotive force measuring device for measuring the voltage of the electrode of the C element 21.

6.26は、第4図に示した、透過率平衝値TV(当該
EC素子は、着色後約1分間で、電極の電圧が安定する
。)と着色時のEC素子1.21の電極の電圧の特性を
記憶させた計算回路とその計算回路に基づきEC素子1
,21に電圧を供給するバックアップ電源である。
6.26 is the transmittance average value TV (the voltage of the electrode becomes stable in about 1 minute after coloring of the EC element) and the electrode of EC element 1.21 during coloring, shown in Figure 4. EC element 1 based on the calculation circuit that memorizes the voltage characteristics of
, 21.

尚、第4図は、EC素子に電荷注入(着色)後1分後の
TVとEC電極と対向電極間の電圧(以下単にe■fと
いう、)の周囲温度をパラメータとした場合の特性図で
ある。
Fig. 4 is a characteristic diagram of the voltage between the TV, the EC electrode, and the counter electrode (hereinafter simply referred to as e f) one minute after charge injection (coloring) into the EC element, with the ambient temperature as a parameter. It is.

実施例1 第1図において、TVが20%になるようにスイッチ2
をオンして、着−消色駆動回路3で、150mAの定電
流を10Qsec間流す、(このEC素子は、この条件
でT V = 20%となる。)そして1分間後、スイ
ッチ2をオフし、スイッチ4をオンして、計算回路・バ
ックアップ電源Bは、温度センサー5から温度データー
と計算回路令バックアップ電源8の中に記憶しである一
20℃〜+120℃との間の温度をパラメーターとした
時の、T V −emf特性(第7図)よりT V =
 20%においてのEC素子の温度に対応したasfに
等しい電圧を選択し (常温なら、第7図より約0.5
4V)、出力すべき電圧をEC素子に与える。
Example 1 In FIG. 1, switch 2 is set so that the TV is at 20%.
is turned on, and a constant current of 150 mA is caused to flow for 10 Qsec by the coloring/decoloring drive circuit 3. (This EC element becomes T V = 20% under this condition.) Then, after 1 minute, the switch 2 is turned off. Then, by turning on the switch 4, the calculation circuit/backup power supply B receives the temperature data from the temperature sensor 5 and the temperature between -20°C and +120°C stored in the calculation circuitry backup power supply 8 as a parameter. From the T V -emf characteristics (Fig. 7) when T V =
Select a voltage equal to asf corresponding to the temperature of the EC element at 20% (at room temperature, approximately 0.5 from Figure 7).
4V), the voltage to be output is given to the EC element.

温度の検出は、周期的に行って周期的に計算回路・・バ
ックアップ電源8の出力電圧を温度に合わせて可変する
。当該周期は、EC素子の設置されている環境によって
も異なるが、数分〜数十分程度が適当である。
Temperature detection is performed periodically, and the output voltage of the calculation circuit/backup power supply 8 is periodically varied in accordance with the temperature. Although the period varies depending on the environment in which the EC element is installed, it is appropriate to range from several minutes to several tens of minutes.

尚出力電圧は、第4図から理解されるように数十露マの
誤差が生じても、TVは数%しかずれない。
As can be seen from FIG. 4, even if an error of several tens of exposures occurs in the output voltage, the TV will deviate by only a few percent.

以上のように行うことにより、着色後24時間経過後、
その間に、周囲温度が一20℃〜+120℃の間で変化
しても当初に設定された20%の透過率は、約±3%の
範囲の変化に収まり、且つ当該EC素子1の着ψ消色状
態に何ら異常は認められなかった。
By doing as above, 24 hours after coloring,
During that time, even if the ambient temperature changes between -120°C and +120°C, the initially set transmittance of 20% will remain within a range of approximately ±3%, and No abnormality was observed in the decolorized state.

実施例2 第2図において、上述と同様にスイッチ22をオンして
、着・消色駆動回路23で、 150mAの定電流を1
00sec間流す、1分間後、スイッチ22をオフし、
スイッチ24をオンして、最初に起電力測定器25によ
り測定したe■fと同じ値の電圧を計算回路・バックア
ップ電源2Bは、記憶するとともにEC素子21に与え
る。この際温度も記憶する (以下、この際記憶された
温度、emfをそれぞれTo、 Eoという、)、とこ
ろで、第7図は本実例に使用した製造直後のEC素子に
ついて、T V = 20%の時の、EC素子の温度と
e+sfの特性図であるがEC素子は一般に、経時変化
によって第7図の特性が変化することがある。
Embodiment 2 In FIG. 2, the switch 22 is turned on in the same manner as described above, and the coloring/decoloring drive circuit 23 applies a constant current of 150 mA to 1.
After 1 minute, turn off the switch 22,
When the switch 24 is turned on, the calculation circuit/backup power supply 2B stores a voltage having the same value as e■f initially measured by the electromotive force measuring device 25 and supplies it to the EC element 21. At this time, the temperature is also stored (hereinafter, the temperature and emf stored at this time will be referred to as To and Eo, respectively). By the way, FIG. 7 is a characteristic diagram of the temperature and e+sf of the EC element at the time of the test. In general, the characteristics of the EC element shown in FIG. 7 may change due to changes over time.

その変化の度合はe■f軸方向に負あるいは正方向に約
200〜300膳V平行にずれることがある。
The degree of the change may be approximately 200 to 300 degrees V parallel to the negative or positive direction of the e and f axes.

従って、経時変化に対応した制御が望ましい。Therefore, control that responds to changes over time is desirable.

であるから第7図において、計算回路・バックアップ電
・源2BはTo、 Eoの点を通り、第7図に示した基
準となる直線と同じ傾きを有する直線を演算することに
よって決定し、以後この決定された直線(以下、単にF
(c)という、)によりEC素子21の制御を行う、制
御は実施例1と同様に数分〜数十分毎に温度センサー2
5によりEC素子21の温度を測定し、F(c)上のそ
の温度に対応したe層fの値をEC素子21に印加する
Therefore, in Fig. 7, the calculation circuit/backup power supply/source 2B is determined by calculating a straight line that passes through the points To and Eo and has the same slope as the reference straight line shown in Fig. 7. This determined straight line (hereinafter simply F
The EC element 21 is controlled by (c)), and the control is carried out by the temperature sensor 21 every few minutes to several tens of minutes, as in the first embodiment.
5, the temperature of the EC element 21 is measured, and the value of the e layer f corresponding to the temperature on F(c) is applied to the EC element 21.

具体的にEC素子21に印加する電圧は、常温で約0.
5±0.2〜0.3v程度である。
Specifically, the voltage applied to the EC element 21 is about 0.0 at room temperature.
It is about 5±0.2 to 0.3v.

以上のように行うことにより、製造直後のもの、製造後
200時間駆動したもの製造後1000時間駆動したも
のの3つのEC素子を使い、温度範囲一20℃〜+12
0℃の間で温度を可変したが、24時間経過後3つのE
C素子のいずれの素子も当初に設定された20%の透過
率は、約±3%の範囲の変化に収まり、且つ当該EC調
光対の着・消色状態に何ら異常は認められなかった。実
施例2は、実施例1と比較すると、EC素子自体の経時
変化に対しても、一定のTVを維持できる。
By doing the above, three EC elements, one immediately after manufacture, one operated for 200 hours after manufacture, and one operated for 1000 hours after manufacture, were used, and the temperature range was -20℃ to +12℃.
The temperature was varied between 0℃, but after 24 hours, three E
The originally set transmittance of 20% for all C elements was within a range of approximately ±3%, and no abnormality was observed in the colored or bleached state of the EC dimming pair. . In comparison with Example 1, Example 2 can maintain a constant TV even when the EC element itself changes over time.

[発明の効果] 本発明は、メモリー性の劣るEC素子でも、長時間所望
の透過率を正確に保持できるという優れた効果を有し、
特に多数のEC素子の駆動の際、1つの計算回路・バッ
クアップ電源と各EC素子の間に、当該各EC素子の着
色性能のバラツキに合わせた抵抗値を有する抵抗を直列
に接続し、基準のEC素子に印加する電圧とほぼ同じ電
圧を印加することにより同じ透過率にできるという効果
も認められる(この場合、当該EC調光体は数十〜数m
Aの電流が流れこの電流値と当該抵抗による電圧効果に
よって印加電圧を調整することによって透過率を調整す
る。)、更にEC素子は太陽光等の紫外線照射により劣
化するが、本発明の駆動方式の連続通電により通電しな
い場合より約4〜5倍寿命が伸びることがわかり、EC
素子の品質維持に絶大なる効果があることがわかった。
[Effects of the Invention] The present invention has the excellent effect that even an EC element with poor memory performance can accurately maintain a desired transmittance for a long time.
In particular, when driving a large number of EC elements, a resistor having a resistance value that matches the variation in coloring performance of each EC element is connected in series between one calculation circuit/backup power supply and each EC element, and It is also observed that the same transmittance can be achieved by applying almost the same voltage as that applied to the EC element (in this case, the EC light control body is several tens to several meters
A current flows and the transmittance is adjusted by adjusting the applied voltage based on this current value and the voltage effect due to the resistor. ), furthermore, although EC elements deteriorate due to ultraviolet irradiation from sunlight, etc., it was found that continuous energization using the drive method of the present invention extends the lifespan by about 4 to 5 times than when no energization occurs.
It was found that this method has a great effect on maintaining the quality of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図・・・本発明の実施例のブロック図。 第3図・・・EC素子の駆動の回路図。 第4図・・・実施例に使用したEC素子のTVとamf
’の特性図。 第5図・・・EC素子のTVと一03膜の密度の特性図
。 第6図・・・EC素子の1時間後のメモリ性の特性図。 第7図・・・EC素子の透過率20%時の温度とamf
の特性図。 EC素子・・・1,21 着・消色駆動回路・・・3,23 温度センサー・・・5 計算回路Φバックアップ電源・・・6,2613ω  
        賀牟口 =  (已/アyh((vン
FIGS. 1 and 2 are block diagrams of embodiments of the present invention. Fig. 3: Circuit diagram for driving the EC element. Figure 4: TV and amf of the EC element used in the example
Characteristic diagram of '. Fig. 5: Characteristic diagram of the TV of the EC element and the density of the 103 film. Fig. 6: Characteristic diagram of memory properties of the EC element after 1 hour. Figure 7...Temperature and amf when the transmittance of the EC element is 20%
Characteristic diagram. EC element...1, 21 Coloring/decoloring drive circuit...3, 23 Temperature sensor...5 Calculation circuit Φ backup power supply...6,2613Ω
Kamuguchi= (已/ayh((vn

Claims (1)

【特許請求の範囲】[Claims] (1)エレクトロクロック素子において、着色後のEC
電極と対向電極間の電圧にほぼ等しい直流電圧を印加す
ることを特徴とするエレクトロクロミック素子の駆動方
式。
(1) In electro clock elements, EC after coloring
A driving method for an electrochromic device characterized by applying a DC voltage approximately equal to the voltage between an electrode and a counter electrode.
JP7178087A 1987-03-27 1987-03-27 System for driving electrochromic element Pending JPS63239424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178087A JPS63239424A (en) 1987-03-27 1987-03-27 System for driving electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7178087A JPS63239424A (en) 1987-03-27 1987-03-27 System for driving electrochromic element

Publications (1)

Publication Number Publication Date
JPS63239424A true JPS63239424A (en) 1988-10-05

Family

ID=13470425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178087A Pending JPS63239424A (en) 1987-03-27 1987-03-27 System for driving electrochromic element

Country Status (1)

Country Link
JP (1) JPS63239424A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216131A (en) * 1989-02-17 1990-08-29 Nikon Corp Display controller for electrochromic element
JP2016218358A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device
JP2016218357A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device
JP2016218437A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216131A (en) * 1989-02-17 1990-08-29 Nikon Corp Display controller for electrochromic element
JP2016218358A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device
JP2016218357A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device
JP2016218437A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device

Similar Documents

Publication Publication Date Title
US5973818A (en) Method and apparatus for controlling an electrochromic device
EP3072011B1 (en) Method and apparatus for control of electrochromic devices
US4302751A (en) Driver circuit for electrochromic displays
WO2002017008A2 (en) Method and apparatus for controlling an electrochromic device
US4205903A (en) Writing/erasing technique for an electrochromic display cell
JPS5922949B2 (en) Display device drive method
EP1812925A2 (en) Display driver
WO2007095139A1 (en) Method and system for lowering the drive potential of an electrochromic device
EP0007110B1 (en) Electrooptical display
JPH05147983A (en) Light transmittance variable glass
JPS63239424A (en) System for driving electrochromic element
RU2743655C1 (en) Method for stabilized control of high-speed optical switching of an electrochromic module and a device for using this method
US6650465B2 (en) Light-switching device
JPS592907B2 (en) Hiyojisouchinokudouhouhou
Knowles Optical regeneration of aged WO3 electrochromic cells
JP2002229072A (en) Method and unit for controlling electrochromic light control element
JPS63192024A (en) Method and circuit for driving ec glare-proof mirror
Hamada et al. Electrochromic displays: status and future prospects
US4209770A (en) Driving technique for electrochromic displays of the segmented type driving uncommon segment electrodes only
JPH0359545A (en) Electrochromic element
Bruinink Electrochromic display devices
JPS638888Y2 (en)
JPS625219A (en) Electro chromic displaying device
Shay et al. Performance of a seven‐segment iridium oxide electrochromic display
JPS6131851B2 (en)