JPH06289435A - Electrochromic element - Google Patents

Electrochromic element

Info

Publication number
JPH06289435A
JPH06289435A JP5077289A JP7728993A JPH06289435A JP H06289435 A JPH06289435 A JP H06289435A JP 5077289 A JP5077289 A JP 5077289A JP 7728993 A JP7728993 A JP 7728993A JP H06289435 A JPH06289435 A JP H06289435A
Authority
JP
Japan
Prior art keywords
layer
electrode
divided
electrodes
ecd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5077289A
Other languages
Japanese (ja)
Inventor
Akira Ishikawa
彰 石川
Akiko Miyagawa
晶子 宮川
Takuya Konagi
卓也 小梛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5077289A priority Critical patent/JPH06289435A/en
Publication of JPH06289435A publication Critical patent/JPH06289435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To distribute the transmittance and reflectivity of coloration stepwise within the element plane by dividing one of electrode layers to plural electrodes by fine lines consisting of a part of an electrochromic layer. CONSTITUTION:The electrode layer B of the electrochromic device (ECD) consisting of the electrochromic (EC) layer C and a pair of the electrode layers A, B holding the layer is divided to the plural electrodes Bs by the fine grooves Mh consisting of a part of the EC layer. The electrodes Bs are electrically conducted to each other via the high-resistance EC layers in plural fields. Only the upper and lower EC layer parts of the first divided electrode are colored if a coloring voltage is impressed between the one electrode (first divided electrode) among these electrodes Bs and the electrode layer opposite thereto. The EC layer parts of the adjacent divided electrodes are successively colored via the fine grooves consisting of the high-resistance EC layers as time passes by, but a voltage drop arises the furtherer from the first divided electrode and the coloring density is decreased stepwise with the first divided electrode as a start point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光量制御や表示に使用
されるエレクトロクロミック素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochromic device used for light quantity control and display.

【0002】[0002]

【従来の技術】電圧を印加すると可逆的に電解酸化また
は還元反応が起こり、可逆的に着消色する現象をエレク
トロクロミズムという。このような現象を示すエレクト
ロクロミック(以下、ECと略す場合がある)物質を用
いて、電圧操作により着消色するEC素子(以下、EC
Dと略す場合がある)を作り、このECDを光量制御素
子(例えば調光ガラスや防眩ミラー等)や7セグメント
を利用した数字表示素子に利用しようとする試みは、2
0年以上前から行われている。
2. Description of the Related Art A phenomenon in which a reversible electrolytic oxidation or reduction reaction occurs when a voltage is applied to cause reversible color fading is called electrochromism. Using an electrochromic (hereinafter sometimes abbreviated as EC) substance exhibiting such a phenomenon, an EC element (hereinafter, referred to as EC
It may be abbreviated as D), and an attempt to use this ECD for a light quantity control element (for example, a light control glass or an antiglare mirror) or a numerical display element using 7 segments is 2
It has been done for more than 0 years.

【0003】例えば、ガラス基板の上に透明電極層(陰
極)、三酸化タングステン薄膜層、二酸化ケイ素のよう
な絶縁層、電極層(陽極)を順次積層してなるECD
(特公昭52−46098号参照)が全固体型ECDと
して知られている。このECDに電圧(着色電圧)を印
加すると、三酸化タングステン(WO3 )薄膜層が青色
に着色する。その後、このECDに逆の電圧(消色電
圧)を印加すると、WO3 薄膜層の青色が消えて、無色
になる。この着消色する機構は詳しくは解明されていな
いが、WO3 薄膜層及び絶縁層(イオン導電層)中に含
まれる少量の水分がWO3 の着消色を支配していると理
解されている。
For example, an ECD formed by sequentially laminating a transparent electrode layer (cathode), a tungsten trioxide thin film layer, an insulating layer such as silicon dioxide, and an electrode layer (anode) on a glass substrate.
(See Japanese Examined Patent Publication No. 52-46098) is known as an all-solid-state ECD. When a voltage (coloring voltage) is applied to this ECD, the tungsten trioxide (WO 3 ) thin film layer is colored blue. Then, when a reverse voltage (decoloring voltage) is applied to this ECD, the blue color of the WO 3 thin film layer disappears and the WO 3 thin film layer becomes colorless. The mechanism of this color fading and discoloration has not been clarified in detail, but it is understood that a small amount of water contained in the WO 3 thin film layer and the insulating layer (ion conductive layer) controls the color fading and coloration of WO 3. There is.

【0004】着色の反応式は、以下のように推定されて
いる。 その他にECDとして知られているものは、素子基板上
の一対の電極層の間に還元着色性EC層(例えばW
3 )、イオン導電層、可逆的電解酸化層(例えば酸化
または水酸化イリジウム)が積層され、両電極層間に所
定の電圧を印加できる構造となっている。
The reaction formula for coloring is estimated as follows. Another known ECD is a reduction coloring EC layer (for example, W) between a pair of electrode layers on an element substrate.
O 3 ), an ion conductive layer, and a reversible electrolytic oxidation layer (for example, oxidization or iridium hydroxide) are laminated, so that a predetermined voltage can be applied between both electrode layers.

【0005】ところで、EC層を直接または間接的に挟
む一対の電極層は、EC層の着消色を外部に見せるため
に少なくとも一方は透明でなければならない。特に透過
型のECDの場合には両電極層とも透明でなければなら
ない。透明な電極層材料としては、現在のところSnO
2 、In2 3 、ITO(In2 3 とSnO2 の混合
物)、ZnO等が知られているが、これらの材料は比較
的透明度が悪いために薄くせねばならず、この理由及び
その他の理由からECDは基板(例えばガラス板やプラ
スチック板)の上に形成されるのが普通である。
By the way, at least one of the pair of electrode layers that directly or indirectly sandwich the EC layer must be transparent in order to make the color of the EC layer visible to the outside. Especially in the case of a transmissive ECD, both electrode layers must be transparent. Currently, SnO is used as the transparent electrode layer material.
2 , In 2 O 3 , ITO (mixture of In 2 O 3 and SnO 2 ), ZnO, etc. are known, but these materials have relatively poor transparency and must be thin. For this reason, the ECD is usually formed on a substrate (for example, a glass plate or a plastic plate).

【0006】一対の電極層には、外部電源から電圧を印
加するために、外部配線との接続部である取り出し電極
を設ける。電極層として透明電極層を使用した場合に
は、透明電極層が外部配線に比べて高抵抗であるので、
透明電極層に重ねて(即ち、接触させて)低抵抗の取り
出し電極を設けることが多い。通常は、基板表面端部に
位置する透明電極層の周辺に帯状に低抵抗電極部を設け
て(例えば、金属製クリップを装着する)、低抵抗の取
り出し電極としている。
In order to apply a voltage from an external power supply, the pair of electrode layers is provided with a take-out electrode which is a connecting portion with external wiring. When a transparent electrode layer is used as the electrode layer, the transparent electrode layer has a higher resistance than external wiring,
A low-resistance take-out electrode is often provided on (that is, in contact with) the transparent electrode layer. Usually, a low-resistance electrode portion is provided in a strip shape (for example, a metal clip is attached) around the transparent electrode layer located at the end portion of the substrate surface to form a low-resistance extraction electrode.

【0007】また、ECDは用途によって、素子を保護
するための封止基板を素子基板と対向するように配置
し、例えばエポキシ樹脂等を用いて密封封止して用いら
れる。
The ECD is used by arranging a sealing substrate for protecting the element so as to face the element substrate and hermetically sealing it with, for example, an epoxy resin or the like depending on the application.

【0008】[0008]

【発明が解決しようとする課題】従来のECDは、一対
の電極層間に着色電圧を印加すると、両電極層の取り出
し電極間距離が小さいときには、すぐに素子面全体が均
一な着色状態となり、取り出し電極間距離が大きいとき
でも、比較的短時間で素子面全体がほぼ均一な着色状態
となる。
In the conventional ECD, when a coloring voltage is applied between a pair of electrode layers, when the distance between the extraction electrodes of both electrode layers is small, the entire element surface immediately becomes a uniform coloring state and the extraction is performed. Even when the distance between the electrodes is large, the entire element surface is in a substantially uniform colored state in a relatively short time.

【0009】即ち、従来のECDでは、素子面内におい
て、着色の透過率や反射率を段階的に分布させ、しかも
この状態を長く維持することができなかった。本発明の
目的は、素子面内において、着色の透過率や反射率を段
階的に分布させ、しかもこの状態を長く維持することが
できるエレクトロクロミック素子を提供することにあ
る。
That is, in the conventional ECD, the transmittance and the reflectance of coloring are distributed stepwise in the device surface, and this state cannot be maintained for a long time. An object of the present invention is to provide an electrochromic device capable of gradually distributing the transmittance and the reflectance of coloring in the device surface and maintaining this state for a long time.

【0010】[0010]

【課題を解決するための手段】そのため、本発明は、第
一に「少なくともエレクトロクロミック層とこれを挟む
一対の電極層とからなるエレクトロクロミック素子にお
いて、前記電極層の一方が前記エレクトロクロミック層
の一部からなる細い溝により、複数の電極に分割されて
いることを特徴とするエレクトロクロミック素子(請求
項1)」を提供する。
Therefore, in the first aspect of the present invention, "in an electrochromic device comprising at least an electrochromic layer and a pair of electrode layers sandwiching the electrochromic layer, one of the electrode layers is the electrochromic layer. There is provided an electrochromic device (claim 1) characterized in that it is divided into a plurality of electrodes by a thin groove formed of a part.

【0011】また、本発明は、第二に「前記複数の電極
のうち、任意の電極と対向する電極層との間に所定電圧
を印加する駆動回路を設けたことを特徴とする請求項1
記載のエレクトロクロミック素子(請求項2)」を提供
する。
A second aspect of the present invention is that "a drive circuit for applying a predetermined voltage is provided between an arbitrary electrode of the plurality of electrodes and an opposing electrode layer.
An electrochromic device according to claim 2 is provided.

【0012】[0012]

【作用】本発明にかかる分割された複数の電極間に介在
する細い溝は、EC層(可逆的電解酸化層または還元着
色性EC層)の一部で形成されている。EC層は、完全
な絶縁体ではなく、数メガΩ/□ 程度の抵抗体であ
る。即ち、複数の電極間は高抵抗のEC層を介して電気
的に導通している。
The thin groove interposed between the divided electrodes according to the present invention is formed by a part of the EC layer (reversible electrolytic oxidation layer or reduction coloring EC layer). The EC layer is not a perfect insulator, but a resistor of several mega Ω / □. That is, the plurality of electrodes are electrically connected via the high-resistance EC layer.

【0013】分割された複数の電極のうち、一つの電極
(第1分割電極と呼ぶ)と対向する電極層との間だけに
外部電源から着色電圧を印加すると、第1分割電極の上
または下にあるEC層部分だけが着色する。そして、時
間が経過すると、高抵抗のEC層からなる細い溝を介し
て第1分割電極と電気的に導通している隣の分割電極の
EC層部分も着色する。同様にして、時間経過ととも
に、外部電源と直接接続されていない他の分割電極のE
C層部分も着色していく。
When a coloring voltage is applied from an external power source only between one of the divided electrodes (referred to as a first divided electrode) and the opposing electrode layer, the upper or lower side of the first divided electrode is applied. Only the portion of the EC layer located at is colored. Then, after a lapse of time, the EC layer portion of the adjacent divided electrode which is electrically connected to the first divided electrode through the narrow groove formed of the high-resistance EC layer is also colored. Similarly, with the passage of time, E of other divided electrodes that are not directly connected to the external power source
The C layer portion is also colored.

【0014】しかし、各分割電極間は高抵抗のEC層を
介して電気的に導通しているだけなので、外部電源と直
接接続された第1分割電極から遠ざかるに従い、電圧降
下が生じ、各分割電極のEC層部分の着色濃度は低下す
る。そのため、第1分割電極のEC層部分を起点にし
て、着色濃度を段階的に減少させることができる。EC
Dを素子面内で段階的に着色させても、絶縁層(イオン
導電層)やEC層のイオン導電性(イオン伝導性)が大
きいときは、時間がたつと着色濃度が素子面全体で均一
となる。そこで、段階的な着色状態を長く維持するため
には、絶縁層(イオン導電層)やEC層のイオン導電性
を低くすることが好ましい。
However, since each of the divided electrodes is only electrically connected through the high resistance EC layer, a voltage drop occurs as the distance from the first divided electrode directly connected to the external power source increases, resulting in each divided electrode. The coloring density of the EC layer portion of the electrode is reduced. Therefore, the coloring density can be gradually reduced starting from the EC layer portion of the first divided electrode. EC
Even if D is colored stepwise within the element surface, if the insulating layer (ion conductive layer) or the EC layer has high ionic conductivity (ion conductivity), the coloring concentration becomes uniform over the entire element surface over time. Becomes Therefore, in order to maintain the stepwise colored state for a long time, it is preferable to lower the ionic conductivity of the insulating layer (ion conductive layer) or the EC layer.

【0015】ECDの素子面内における任意の位置と範
囲で、段階的な着色をさせることができるように、本発
明にかかるEC素子には、複数の分割電極のうち、任意
の分割電極と対向する電極層との間に所定電圧を印加す
る駆動回路を設けることが好ましい。例えば、図2に示
すような駆動回路をECDに設けて、任意の分割電極と
対向する電極層との間に所定電圧を印加することによ
り、素子面内のある領域は均一な着色状態とし、その領
域から先を段階的な着色状態とすることもできる(図3
参照)。
The EC element according to the present invention is arranged so as to face any of the plurality of divided electrodes so that the EC element according to the present invention can be colored stepwise at any position and range within the element surface of the ECD. It is preferable to provide a drive circuit for applying a predetermined voltage between the electrode layer and the electrode layer. For example, a driving circuit as shown in FIG. 2 is provided in the ECD, and a predetermined voltage is applied between an arbitrary divided electrode and an opposing electrode layer, so that a certain region in the device surface is uniformly colored. It is possible to make a stepwise colored state from that area (FIG. 3).
reference).

【0016】段階的な着色状態を任意の時間にわたって
維持できるように、本発明にかかるECDには、複数の
分割電極のうち、任意の分割電極と対向電極層との間に
着色電圧を印加し、同時に、別の分割電極と対向電極層
との間に消色電圧を印加できる駆動回路(例えば、図4
に示す駆動回路)を設けることが好ましい。分割電極の
パターンは、種々のものが可能である。例えば、幾何学
模様の分割パターンとすることもできるが、段階的な着
色を効果的にするために、本発明にかかる分割された複
数の電極間に介在する細い溝の幅は、5〜500μm特
には10〜200μmとすることが好ましい。また、分
割電極の幅は、1〜20mm特には2〜5mmとするこ
とが好ましい。
In order to maintain a stepwise colored state for an arbitrary time, the ECD according to the present invention applies a coloring voltage between an arbitrary divided electrode and a counter electrode layer among a plurality of divided electrodes. At the same time, a driving circuit capable of applying an erasing voltage between another divided electrode and the counter electrode layer (see, for example, FIG.
It is preferable to provide the driving circuit shown in FIG. Various patterns can be used for the divided electrodes. For example, a divided pattern of a geometrical pattern may be used, but in order to make stepwise coloring effective, the width of the thin groove interposed between the divided electrodes according to the present invention is 5 to 500 μm. In particular, the thickness is preferably 10 to 200 μm. The width of the divided electrodes is preferably 1 to 20 mm, particularly 2 to 5 mm.

【0017】本発明にかかるECDの積層構造は、特に
どれと限定されるものではないが、固体型ECDの構造
としては、例えば電極層/EC層/イオン導電層/電
極層のような4層構造、電極層/還元着色型EC層/
イオン導電層/可逆的電解酸化層/電極層のような5層
構造があげられる。還元着色型EC層には、一般にWO
3 ,MoO3 等が使用される。イオン導電層には、例え
ば酸化ケイ素、酸化タンタル、酸化チタン、酸化アルミ
ニウム、酸化ニオブ、酸化ジルコニウム、酸化ハフニウ
ム、酸化ランタン、フッ化マグネシウム等が使用され
る。
The laminated structure of the ECD according to the present invention is not particularly limited, but the solid type ECD structure has four layers such as an electrode layer / EC layer / ion conductive layer / electrode layer. Structure, electrode layer / reduction coloring type EC layer /
A five-layer structure such as an ion conductive layer / reversible electrolytic oxidation layer / electrode layer can be mentioned. The reduction coloring type EC layer is generally composed of WO
3 , MoO 3, etc. are used. For the ion conductive layer, for example, silicon oxide, tantalum oxide, titanium oxide, aluminum oxide, niobium oxide, zirconium oxide, hafnium oxide, lanthanum oxide, magnesium fluoride or the like is used.

【0018】イオン導電層は、電子に対して絶縁体であ
るが、プロトン(H+ )及びヒドロキシイオン(O
- )に対しては良導体となる。EC層の着消色反応に
はカチオンが必要とされ、H+ やLi+ をEC層その他
に含有させる必要がある。H+ は初めからイオンである
必要はなく、電圧が印加された時にH+ が生じればよ
く、従ってH+ の代わりに水を含有させてもよい。この
水は、非常に少なくて十分であり、しばしば大気中から
自然に侵入する水分でも着消色する。
The ionic conductive layer, which is an insulator for electrons, contains protons (H + ) and hydroxy ions (O 2 ).
H -) becomes a good conductor for. A cation is required for the coloration / decoloration reaction of the EC layer, and H + and Li + must be contained in the EC layer and the like. H + does not have to be an ion from the beginning, and H + may be generated when a voltage is applied, and thus water may be contained instead of H + . This water is very small and sufficient, and even water that naturally infiltrates from the atmosphere often fades.

【0019】EC層とイオン導電層とは、どちらを上に
しても下にしてもよい。更にEC層に対して間にイオン
導電層を挟んで(場合により酸化着色性EC層ともな
る)可逆的電解酸化層ないし触媒層を配設してもよい。
このような層としては、例えば酸化ないし水酸化イリジ
ウム、同じくニッケル、同じくクロム、同じくバナジウ
ム、同じくルテニウム、同じくロジウム等があげられ
る。これらの物質は、イオン導電層または透明電極層中
に分散されていてもよいし、逆にそれらを分散していて
もよい。
Either the EC layer or the ionic conductive layer may be on either side. Further, a reversible electrolytic oxidation layer or a catalyst layer may be arranged with an ion conductive layer sandwiched between the EC layer (which also serves as an oxidation coloring EC layer in some cases).
Examples of such a layer include iridium oxide or hydroxide, nickel, chromium, vanadium, ruthenium, rhodium and the like. These substances may be dispersed in the ion conductive layer or the transparent electrode layer, or conversely may be dispersed therein.

【0020】本発明にかかるECDは、例えば、眼鏡レ
ンズ、建築用窓、ネオンサインのように流れる表示など
に適用できる。以下、実施例により本発明を具体的に説
明するが、本発明はこれに限定されるものではない。
The ECD according to the present invention can be applied to, for example, spectacle lenses, architectural windows, displays such as neon signs, and the like. Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

【0021】[0021]

【実施例1】図1は、本実施例にかかるECDの概略垂
直断面図(a),(b)及び分割された電極層の概略平
面図(c)である。図1に示すECDを以下の手順で作
製した。 (1)15cm×8cmサイズのガラス製素子基板Sの
表面全体にDCスパッタリングによりITO電極層を形
成した。スパッタリング時の基板加熱温度は200°
C、ITO電極層の膜厚は2000Å、ITO電極層の
シート抵抗は10Ωであった。 (2)フォトエッチングまたはレーザーカッティングに
よりITO電極層に溝(幅1mm)Mを形成し、上部I
TO電極層A用の取り出し電極Fと下部電極層Bとに分
離した。さらに、下部電極層Bを前記溝Mとは垂直な方
向の溝(幅100μm)Mhで分割し、幅3mmの複数
の分割電極Bsを形成した。 (3)DCスパッタリングにより、酸化イリジウムと酸
化スズとの混合物からなる可逆的電解酸化層を複数の分
割電極間の溝部分及び複数の分割電極上(膜厚3000
Å)に形成し、可逆的電解酸化層Cの一部からなる細い
溝Mh’及び分割電極上の可逆的電解酸化層Cを形成し
た。可逆的電解酸化層Cのイオン導電率はスパッタリン
グレートや膜厚を増大することにより、低くなるように
した。 (4)DCスパッタリングにより、可逆的電解酸化層C
上に酸化タンタルのイオン導電層D、酸化タングステン
層E(各膜厚4000Å)を順次形成した。イオン導電
層Dや酸化タングステン層Eのイオン導電率は、スパッ
タリングレートや膜厚を増大することにより、低くなる
ようにした。 (5)DCスパッタリングにより上部ITO電極層Aを
形成した。この時、ITO電極層Aは既に素子基板S上
に形成された取り出し電極Fと一端が接触するように形
成した。スパッタリング時の基板加熱は行わず、上部I
TO電極層の膜厚は2000Å、電極層のシート抵抗は
20Ωであった。 (6)エポキシ樹脂または合わせガラス用中間膜のシー
トR(変成EVAまたは可塑化PVB)及びガラス製の
封止基板Gにより素子を封止した。そして、複数の分割
電極Bsの各取り出し電極Bs’と上部電極層Aの取り
出し電極Fに駆動回路Kを接続し、任意の分割電極Bs
と上部電極層Aとの間に所定電圧を印加できるようにし
て(図2参照)、本実施例のECDを作製した。
Embodiment 1 FIG. 1 is a schematic vertical sectional view (a), (b) of an ECD according to this embodiment and a schematic plan view (c) of divided electrode layers. The ECD shown in FIG. 1 was produced by the following procedure. (1) An ITO electrode layer was formed on the entire surface of the glass element substrate S having a size of 15 cm × 8 cm by DC sputtering. The substrate heating temperature during sputtering is 200 °
C, the thickness of the ITO electrode layer was 2000Å, and the sheet resistance of the ITO electrode layer was 10Ω. (2) A groove (width 1 mm) M is formed in the ITO electrode layer by photo etching or laser cutting, and the upper part I
The extraction electrode F for the TO electrode layer A and the lower electrode layer B were separated. Further, the lower electrode layer B was divided by a groove (width 100 μm) Mh in a direction perpendicular to the groove M to form a plurality of divided electrodes Bs having a width of 3 mm. (3) By DC sputtering, a reversible electrolytic oxidation layer made of a mixture of iridium oxide and tin oxide is formed on the groove portions between the plurality of divided electrodes and the plurality of divided electrodes (thickness 3000).
Å), and the thin groove Mh ′ formed of a part of the reversible electrolytic oxidation layer C and the reversible electrolytic oxidation layer C on the divided electrode were formed. The ionic conductivity of the reversible electrolytic oxidation layer C was made lower by increasing the sputtering rate and the film thickness. (4) Reversible electrolytic oxidation layer C by DC sputtering
An ion conductive layer D of tantalum oxide and a tungsten oxide layer E (each film thickness of 4000 Å) were sequentially formed thereon. The ionic conductivity of the ionic conductive layer D and the tungsten oxide layer E was made low by increasing the sputtering rate and the film thickness. (5) The upper ITO electrode layer A was formed by DC sputtering. At this time, the ITO electrode layer A was formed so that one end thereof was in contact with the extraction electrode F already formed on the element substrate S. The substrate is not heated during sputtering, and the upper part I
The thickness of the TO electrode layer was 2000Å, and the sheet resistance of the electrode layer was 20Ω. (6) The element was sealed with the sheet R (modified EVA or plasticized PVB) of the epoxy resin or the interlayer film for laminated glass and the sealing substrate G made of glass. Then, the drive circuit K is connected to each extraction electrode Bs ′ of the plurality of divided electrodes Bs and the extraction electrode F of the upper electrode layer A, and an arbitrary divided electrode Bs is connected.
A predetermined voltage was applied between the upper electrode layer A and the upper electrode layer A (see FIG. 2) to fabricate the ECD of this example.

【0022】この様にして作製したECDの最端の分割
電極Bs1(取り出し電極Bs1’)と上部電極層A
(取り出し電極F)との間に駆動電源Suから2Vの着
色電圧を30秒間印加したところ、ECDの一端から他
端にかけて段階的な着色が観察され、段階的な着色状態
を30分以上保持することができた。この段階的な着色
状態での透過率(He−Neレーザーで測定)を表1に
示す。また、段階的な着色の模式的な状態図を図3
(a)に示す。
The divided electrode Bs1 (outer electrode Bs1 ') at the end of the ECD thus produced and the upper electrode layer A
When a coloring voltage of 2 V was applied from the driving power supply Su to the (take-out electrode F) for 30 seconds, gradual coloring was observed from one end to the other end of the ECD, and the gradual coloring state was maintained for 30 minutes or more. I was able to. Table 1 shows the transmittance (measured with a He-Ne laser) in this stepwise colored state. In addition, a schematic state diagram of stepwise coloring is shown in FIG.
It shows in (a).

【0023】[0023]

【実施例2】実施例1で作製したECDの最端の分割電
極Bs1(取り出し電極Bs1’)及びその隣の分割電
極Bs2(取り出し電極Bs2’)と上部電極層A(取
り出し電極F)との間に駆動電源Suから2Vの着色電
圧を30秒間印加したところ、分割電極Bs1及びBs
2上のEC層領域はほぼ均一な着色状態となり、その領
域から先は段階的な着色状態となった(表1、図3b参
照)。またこのような状態を30分以上保持することが
できた。
Example 2 The divided electrode Bs1 (extraction electrode Bs1 ′) at the end of the ECD manufactured in Example 1 and the adjacent divided electrode Bs2 (extraction electrode Bs2 ′) and the upper electrode layer A (extraction electrode F) are formed. When a coloring voltage of 2 V was applied for 30 seconds from the driving power supply Su in the meantime, the divided electrodes Bs1 and Bs
The EC layer region on No. 2 was in a substantially uniform colored state, and the region beyond that was in a stepwise colored state (see Table 1, FIG. 3b). Moreover, such a state could be maintained for 30 minutes or more.

【0024】[0024]

【比較例】下部電極層がEC層の一部である細い溝によ
り複数の電極に分割されておらずまた、上下電極層の各
電極取り出し部F,B’に金属性クリップを装着し、こ
れに外部配線をボンディングして駆動電源Suと接続し
た他は、実施例1と全く同様にしてECDを作製した。
[Comparative Example] The lower electrode layer is not divided into a plurality of electrodes by the thin groove which is a part of the EC layer, and a metal clip is attached to each electrode lead-out portion F, B'of the upper and lower electrode layers. An ECD was produced in exactly the same manner as in Example 1 except that external wiring was bonded to and connected to the drive power source Su.

【0025】このECDに駆動電源Suから2Vの着色
電圧を30秒間印加したところ、素子全面がほぼ均一に
着色した(表1参照)。
When a coloring voltage of 2 V was applied to this ECD from the driving power source Su for 30 seconds, the entire surface of the device was colored almost uniformly (see Table 1).

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上の通り、本発明によれば、ECD面
内において、着色の透過率や反射率を段階的に分布さ
せ、しかもこの状態を長く維持することができる。
As described above, according to the present invention, the transmittance and the reflectance of coloring can be gradually distributed in the ECD plane, and this state can be maintained for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、実施例1にかかるECDの概略垂直断面図
(a),(b)及び分割された電極層の概略平面図
(c)である。
1A and 1B are schematic vertical sectional views (a) and (b) of an ECD according to Example 1, and a schematic plan view (c) of a divided electrode layer.

【図2】は、複数の分割電極Bsのうち、任意の分割電
極Bsと電極層Aとの間に所定電圧を印加する駆動回路
Kを設けた本発明にかかるEC素子の概略平面図であ
る。
FIG. 2 is a schematic plan view of an EC device according to the present invention in which a drive circuit K for applying a predetermined voltage is provided between an arbitrary divided electrode Bs and an electrode layer A among a plurality of divided electrodes Bs. .

【図3】は、本発明にかかるECDの段階的な着色の状
態を模式的に示す状態図である。
FIG. 3 is a state diagram schematically showing a stepwise coloring state of the ECD according to the present invention.

【図4】は、本発明にかかるECDの別の例であり、複
数の分割電極のうち任意の分割電極と対向電極層との間
に着色電圧を印加し、同時に、別の分割電極と対向電極
層との間に消色電圧を印加できる駆動回路を設けたEC
Dである。
FIG. 4 is another example of the ECD according to the present invention, in which a coloring voltage is applied between an arbitrary divided electrode of a plurality of divided electrodes and a counter electrode layer, and at the same time, the divided electrode is opposed to another divided electrode. EC with a drive circuit that can apply decoloring voltage between the electrode layer
It is D.

【符号の説明】[Explanation of symbols]

A・・・上部電極層 F・・・上部電極層の取り出し電極 B・・・下部電極層 B’・・下部電極層の取り出し電極 Bs・・分割電極 Bs’・分割電極の取り出し電極 E・・・酸化タングステン層 D・・・イオン導電層 C・・・可逆的電解酸化層 R・・・エポキシ樹脂または合わせガラス用中間膜 S・・・素子基板 G・・・封止基板 M・・・上部電極層と下部電極層との間の溝 Mh・・分割電極間の溝 K・・・駆動回路 Su・・駆動電源 以 上 A ... Upper electrode layer F ... Extraction electrode of upper electrode layer B ... Lower electrode layer B '... Derivation electrode of lower electrode layer Bs ... Split electrode Bs'. Split electrode extraction electrode E ... -Tungsten oxide layer D ... Ion conductive layer C ... Reversible electrolytic oxidation layer R ... Epoxy resin or interlayer film for laminated glass S ... Element substrate G ... Sealing substrate M ... Top Groove between electrode layer and lower electrode layer Mh ... Groove between divided electrodes K ... Driving circuit Su ... Driving power source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともエレクトロクロミック層とこ
れを挟む一対の電極層とからなるエレクトロクロミック
素子において、前記電極層の一方が前記エレクトロクロ
ミック層の一部からなる細い溝により、複数の電極に分
割されていることを特徴とするエレクトロクロミック素
子。
1. An electrochromic device comprising at least an electrochromic layer and a pair of electrode layers sandwiching the electrochromic layer, wherein one of the electrode layers is divided into a plurality of electrodes by a narrow groove formed of a part of the electrochromic layer. An electrochromic device characterized in that
【請求項2】 前記複数の電極のうち、任意の電極と対
向する電極層との間に所定電圧を印加する駆動回路を設
けたことを特徴とする請求項1記載のエレクトロクロミ
ック素子。
2. The electrochromic device according to claim 1, wherein a drive circuit for applying a predetermined voltage is provided between an arbitrary electrode of the plurality of electrodes and an electrode layer facing the arbitrary electrode.
JP5077289A 1993-04-05 1993-04-05 Electrochromic element Pending JPH06289435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5077289A JPH06289435A (en) 1993-04-05 1993-04-05 Electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5077289A JPH06289435A (en) 1993-04-05 1993-04-05 Electrochromic element

Publications (1)

Publication Number Publication Date
JPH06289435A true JPH06289435A (en) 1994-10-18

Family

ID=13629723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5077289A Pending JPH06289435A (en) 1993-04-05 1993-04-05 Electrochromic element

Country Status (1)

Country Link
JP (1) JPH06289435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267834A (en) * 2005-03-25 2006-10-05 Ricoh Co Ltd Electrochromic display element
JP2007520752A (en) * 2004-02-05 2007-07-26 サン−ゴバン グラス フランス Transparent glazing with field of view that can be partially darkened, and method of controlling surface elements that can be electrochromically brightened within the transparent glazing
CN111133374A (en) * 2017-08-23 2020-05-08 国立研究开发法人物质·材料研究机构 Electrochromic element and display system using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520752A (en) * 2004-02-05 2007-07-26 サン−ゴバン グラス フランス Transparent glazing with field of view that can be partially darkened, and method of controlling surface elements that can be electrochromically brightened within the transparent glazing
JP4936902B2 (en) * 2004-02-05 2012-05-23 サン−ゴバン グラス フランス Transparent glazing with field of view that can be partially darkened, and method of controlling surface elements that can be electrochromically brightened within the transparent glazing
JP2006267834A (en) * 2005-03-25 2006-10-05 Ricoh Co Ltd Electrochromic display element
JP4738860B2 (en) * 2005-03-25 2011-08-03 株式会社リコー Electrochromic display element
CN111133374A (en) * 2017-08-23 2020-05-08 国立研究开发法人物质·材料研究机构 Electrochromic element and display system using the same
CN111133374B (en) * 2017-08-23 2022-09-13 国立研究开发法人物质·材料研究机构 Electrochromic element and display system using the same

Similar Documents

Publication Publication Date Title
KR0128732B1 (en) Electrochromic device
JP2512880B2 (en) EC element with electrodes taken out from the third electrode layer
JPH0728099A (en) Fully solid state type electrochromic element and its production
JPH10253995A (en) Light-controlling glass, and its manufacture
JPH06167724A (en) Production of light control glass
JPH06289435A (en) Electrochromic element
JPH07140308A (en) Half mirror variable in ratio of transmittance/ reflectivity
JPH0693067B2 (en) Dimmer
JP2827247B2 (en) Electrochromic element that uniformly colors
JPH04107427A (en) Production of transmission type electrochromic element
JPH07140494A (en) Electrochromic element
JPH0820648B2 (en) EC device with extraction electrodes on the end face
JPS6186733A (en) Electrochromic element
JP2567786Y2 (en) Electrochromic device
JP2725352B2 (en) Electrochromic device
JP2505006Y2 (en) Electrochromic device
JP2936186B2 (en) Method for manufacturing electrochromic device
JP2722505B2 (en) Method for manufacturing sealed electrochromic device
JP2650258B2 (en) Electrochromic device having sealing structure
JPH07175090A (en) Electrochromic ophthalmic lens
JP2936185B2 (en) Method for manufacturing electrochromic device
JPH0128927B2 (en)
JPH0578806B2 (en)
JPH052128U (en) EC anti-glare mirror
JPH0980489A (en) Fully solid state type electrochromic element and its production