JPH02216035A - Detection of fine particle - Google Patents

Detection of fine particle

Info

Publication number
JPH02216035A
JPH02216035A JP3696289A JP3696289A JPH02216035A JP H02216035 A JPH02216035 A JP H02216035A JP 3696289 A JP3696289 A JP 3696289A JP 3696289 A JP3696289 A JP 3696289A JP H02216035 A JPH02216035 A JP H02216035A
Authority
JP
Japan
Prior art keywords
wafer
light
laser
fine particle
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3696289A
Other languages
Japanese (ja)
Inventor
Takashi Ito
隆司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3696289A priority Critical patent/JPH02216035A/en
Publication of JPH02216035A publication Critical patent/JPH02216035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable the detection of fine particles with a diameter of 0.1mum and below by irradiating the surface of a substrate with ultraviolet rays to determine a level of scattered light from the surface of the substrate. CONSTITUTION:Light from a laser 3 is made incident into a silicon wafer 1. A condenser lens 4 condenses light scattering vertically from a main surface of the wafer 1. Moreover, a filter 5 allows the passage of a second harmonic of the laser 3 in band and the scattered light passing through the filter 5 is increased with a photomultiplier 6 and a signal thereof undergoes a signal processing 7 to shown on a display 8. Then, when no fine particle exists at the part of the surface of the wafer 1 exposed to light from the laser 3, light is mirror reflected on the surface of the wafer 1 and none thereof enters the lens 4. Therefore, only when the fine particle exists at the part of the surface of the wafer 1, the scattered light from the fine particle enters the lens 4. A moving base 2 on which carrying the wafer 1 can be moved horizontally and a position on the wafer 1 is shifted sequentially to scan entire surface of the wafer 1. Moreover, the movement of the position is inputted into a device 7 thereby enabling the display of the presence of the fine particle of the wafer 1 on a display 8.

Description

【発明の詳細な説明】 〔概要〕 微粒子の検出方法に係り、特に基板表面に付着する微粒
子の検出方法に関し 直径0.1 μm以下の微粒子を検出することを目的と
し。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for detecting fine particles, particularly for detecting fine particles adhering to the surface of a substrate, and is aimed at detecting fine particles having a diameter of 0.1 μm or less.

基板表面に付着する微粒子を検出するに際し。For detecting fine particles adhering to the substrate surface.

紫外光を該基板表面に照射して、該基板表面からの散乱
光の強弱から微粒子の存在を検出する微粒(産業上の利
用分野〕 本発明は微粒子の検出方法に係り、特に基板表面に付着
する微粒子の検出方法に関する。
The present invention relates to a method for detecting microparticles, in which the presence of microparticles is detected from the intensity of scattered light from the substrate surface by irradiating the substrate surface with ultraviolet light (industrial application field). This invention relates to a method for detecting fine particles.

半導体装置の微細なパターンを製造する工程において、
雰囲気の清浄度を監視することは極めて重要である。パ
ターン幅が1μm以下になると。
In the process of manufacturing fine patterns for semiconductor devices,
Monitoring the cleanliness of the atmosphere is extremely important. When the pattern width becomes 1 μm or less.

0.1 μm以下の径の微粒子の存在が製品の歩留りに
大きな影響を与える。
The presence of fine particles with a diameter of 0.1 μm or less has a large effect on the product yield.

このため、半導体基板に付着する0、1 μm以下の径
の微粒子を検出し、監視する必要がある。
Therefore, it is necessary to detect and monitor fine particles with a diameter of 0.1 μm or less that adhere to the semiconductor substrate.

〔従来の技術〕[Conventional technology]

従来、He−Neレーザ(波長6328人)を用いて微
粒子からの散乱光を光電子増倍管で検出し。
Conventionally, a He-Ne laser (wavelength 6328) was used to detect scattered light from fine particles with a photomultiplier tube.

半導体基板上の微粒子の付着数を計数することが行われ
てきた。そしてこの方法により、0.3 μm程度の径
の微粒子の検出が可能になっている。
Counting the number of particles attached to a semiconductor substrate has been carried out. This method makes it possible to detect fine particles with a diameter of about 0.3 μm.

しかしながら、従来の方法では0.1 μm程度の径の
微粒子になると、検出は極めて困難となる。
However, with conventional methods, it is extremely difficult to detect fine particles with a diameter of about 0.1 μm.

一方、大規模集積回路のパターンの加工寸法はサブミク
ロンに進めつつあり、微粒子汚染の制御も一層厳重に行
う必要が出てきている。例えば現在研究開発が進められ
ている16Mbメモリでは、0.5 μmのバクーン幅
を利用することになるので、その1/10のレベル、即
ち、 0.05μm程度の径の微粒子が製品の歩留り或
いは性能に大きく影響する。これに対して、従来の検出
技術では対応できない。
On the other hand, the processing dimensions of patterns for large-scale integrated circuits are progressing to submicron dimensions, and it is becoming necessary to control particulate contamination more strictly. For example, in the case of 16Mb memory, which is currently being researched and developed, a vacuum width of 0.5 μm is used, so fine particles with a diameter of about 1/10 of that, that is, about 0.05 μm, are used to improve the product yield. It greatly affects performance. In contrast, conventional detection techniques cannot cope with this problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は従来検出が極めて困難だった0、1.71m以
下の径の微粒子を検出する新規な方法を提供することを
目的とする。
An object of the present invention is to provide a new method for detecting fine particles with a diameter of 0.1.71 m or less, which has been extremely difficult to detect in the past.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は3基板1表面に付着する微粒子を検出するに
際し5紫外光を該基板1表面に照射して該基板1表面か
らの散乱光の強弱から微粒子の存在を検出する微粒子の
検出方法によって、解決される。
The above problem is solved by a particle detection method in which when detecting particles attached to the surface of a substrate 1, the surface of the substrate 1 is irradiated with ultraviolet light and the presence of particles is detected from the intensity of scattered light from the surface of the substrate 1. resolved.

[作用] まず1本発明の原理について説明する。[Effect] First, the principle of the present invention will be explained.

微粒子の半径rが光の波長に対して非常に小さい時を対
象にすると、微粒子による散乱光強度は0ster *
により次のように与えられる。
When the radius r of a particle is very small compared to the wavelength of light, the intensity of light scattered by the particle is 0ster *
is given as follows.

= (8π’  r6/λ4 D2 )X  ((m2
−1)2/ (m”  +1)21i□ −(Bπ4 
 r6 /λ″ D2 )X  I  (m2−1)”
 / (m2 →−1)2 )xc o s2 γ 工 *  G、0ster、The 5catterin(
Hof Light andIts Applicat
ions  to Chemistry″、 Chem
、Rev。
= (8π' r6/λ4 D2 )X ((m2
−1)2/ (m” +1)21i□ −(Bπ4
r6 /λ″ D2 )X I (m2-1)”
/ (m2 →-1)2 ) xc o s2 γ engineering * G, 0ster, The 5 catterin
Hof Light and Its Application
ions to Chemistry”, Chem
, Rev.

Vol、43.  pp、319−365(1948)
ここで 11と12 は。
Vol, 43. pp. 319-365 (1948)
Here 11 and 12 are.

それぞれ 散乱光強度 の垂直分極成分と水平分極成分であり、rは微粒子の半
径、λは光の波長、Dは微粒子から観測点までの距離2
mは周囲の媒体に対する微粒子の比屈折率、Tは入射光
と散乱光のなす角度である。
These are the vertical polarization component and the horizontal polarization component of the scattered light intensity, respectively, where r is the radius of the particle, λ is the wavelength of the light, and D is the distance from the particle to the observation point2.
m is the relative refractive index of the fine particles with respect to the surrounding medium, and T is the angle between the incident light and the scattered light.

上記の式により、散乱光強度を上げるにはλを小さくす
ればよいことがわかる。
From the above equation, it can be seen that in order to increase the scattered light intensity, λ can be made smaller.

波長λとして450 nm以下の紫外光を用いることに
より5従来のI(e −N eレーザ(波長6328人
)では検出が困難だった0、1 μm以下の径の微粒子
の検出が可能となる。
By using ultraviolet light with a wavelength λ of 450 nm or less, it becomes possible to detect fine particles with a diameter of 0.1 μm or less, which was difficult to detect with a conventional I(e-N e laser (wavelength 6328)).

波長λを小さくすれば散乱光強度を」二げることができ
るが、現状ではあまりλを小さくするとそれに惑する光
電子増倍管などの検出器の検出感度が低下する。
It is possible to reduce the intensity of scattered light by reducing the wavelength λ, but currently, if λ is made too small, the detection sensitivity of detectors such as photomultiplier tubes that are affected by this decreases.

また、 200 nm以下という真空紫外領域では雰囲
気が空気等の場合、光の吸収が起こり、散乱光強度が低
下するといった問題があるので2それを避けるために雰
囲気を吸収の起こらないガス、例えば窒素ガス等で置換
する必要がある。
In addition, in the vacuum ultraviolet region of 200 nm or less, if the atmosphere is air, etc., light absorption occurs and the intensity of scattered light decreases. It is necessary to replace it with gas, etc.

〔実施例〕〔Example〕

第1図は本発明の実施例で、シリコンウェハ表面に付着
している微粒子を検出するための装置構成を示す。
FIG. 1 is an embodiment of the present invention, showing the configuration of an apparatus for detecting fine particles adhering to the surface of a silicon wafer.

第1図において、■は基板であってシリコンウェハ、2
は移動台、3は光源であってAr+レーザ、4は集光レ
ンズ、5はフィルタ、6は検出器であって光電子増倍管
、7は信号処理装置、8はデイスプレィを表す。
In FIG. 1, ■ is a substrate, which is a silicon wafer, 2 is a silicon wafer,
3 is a moving stage, 3 is a light source and is an Ar+ laser, 4 is a condensing lens, 5 is a filter, 6 is a detector and is a photomultiplier tube, 7 is a signal processing device, and 8 is a display.

シリコンウェハ1は主面を水平にして移動台2に搭載さ
れる。
A silicon wafer 1 is mounted on a moving table 2 with its main surface horizontal.

光源としてAr’ レーザ3の第2高調波(波長257
 nm)を用いる。Ar’ レーザ3がらの光はシリコ
ンウェハ1に斜め上から入射する。そして集光レンズ4
はシリコンウェハ1の主面から垂直方向に散乱してくる
光を集める。
The second harmonic of Ar' laser 3 (wavelength 257
nm). The light from the Ar' laser 3 is incident on the silicon wafer 1 obliquely from above. and condenser lens 4
collects light scattered in the vertical direction from the main surface of the silicon wafer 1.

フィルタ5はAr” レーザの第2高調波(波長257
 nm)の帯域を通過させる。フィルタ5を通過した散
乱光は光電子増倍管6に入り増幅され、その信号は信号
処理装置7により処理されてディスプレイ8に表示され
る。
The filter 5 filters the second harmonic of the Ar” laser (wavelength 257
pass the band (nm). The scattered light that has passed through the filter 5 enters a photomultiplier tube 6 and is amplified, and the signal is processed by a signal processing device 7 and displayed on a display 8.

Ar’ レーザ3からの光があたったシリコンウェハ1
表面の部分に微粒子が存在しなければ、光はシリコンウ
ェハ1表面で鏡面反射して集光レンズ4には入らない。
Silicon wafer 1 exposed to light from Ar' laser 3
If there are no particles on the surface, the light will be specularly reflected on the surface of the silicon wafer 1 and will not enter the condenser lens 4.

Ar″レーザ3からの光があたったシリコンうエバ1表
面の部分に微粒子が存在する時だけ、微粒子からの散乱
光が集光レンズ4に入る。
Scattered light from the particles enters the condenser lens 4 only when particles are present on the surface of the silicone wafer 1 that is exposed to the light from the Ar'' laser 3.

シリコンウェハ1を搭載した移動台2は水平方向に移動
することができる。したがって、Ar”レーザ3からの
光があたるシリコンウェハ1トの位置を順次移動させて
、シリコンウェハ1の全面を走査することにより、さら
に移動量を信号処理装置7に入力してシリコンウェハ1
全面をデイスプレィ8に表示するようにすることにより
、デイスプレィ8にシリコンウェハ1上の微粒子の存在
を輝点として表示することができる。
The movable table 2 on which the silicon wafer 1 is mounted can be moved in the horizontal direction. Therefore, by sequentially moving the position of the silicon wafer 1 that is hit by the light from the Ar'' laser 3 and scanning the entire surface of the silicon wafer 1, the amount of movement is further input to the signal processing device 7, and the silicon wafer 1 is
By displaying the entire surface on the display 8, the presence of fine particles on the silicon wafer 1 can be displayed on the display 8 as bright spots.

Ar” レーザの第2高調波(波長257 nm)を用
いることにより、従来のHe −N eレーザ(波長6
32.8 nm)を用いる場合より、検出感度(散乱光
強度の入射光強度に対する比)を30倍程度高めること
ができた。また、従来検出が極めて困難だった0、1 
μm以下の径の微粒子を検出できるようになった。
By using the second harmonic (wavelength 257 nm) of the “Ar” laser, we can replace the conventional He-N e laser (wavelength 6
32.8 nm), the detection sensitivity (ratio of scattered light intensity to incident light intensity) could be increased about 30 times. In addition, 0, 1, which was extremely difficult to detect in the past,
It has become possible to detect fine particles with a diameter of μm or less.

第1図は暗視野系の観測系であるが、FJA視野系の観
測系とすることもできる。即ち、基板1表面に対して入
射光が鏡面反射する方向に集光レンズ4を設定する。こ
の場合は明視野の中に微粒子の存在する位置が暗点とし
て表示される。
Although FIG. 1 shows a dark-field observation system, it can also be an FJA-field observation system. That is, the condenser lens 4 is set in the direction in which the incident light is specularly reflected on the surface of the substrate 1. In this case, the position where the fine particles are present in the bright field is displayed as a dark spot.

さらに、第1図では光a3をAr“レーザとしてその第
2高調波を使用したが1次のような紫外光源を用いるこ
ともできる。
Further, in FIG. 1, the light a3 is an Ar laser and its second harmonic is used, but a first-order ultraviolet light source may also be used.

ArFエキシマレーザ F2 エキシマレーザ 低圧水銀ランプ 低圧水根ランプ シンクロトロン放射光 波長193 nm 波長152 nm 波長185 nm 波長254 nm 波長300 nm以下 〔発明の効果〕 以上説明した様に2本発明によれば2基板表面に付着す
る0、1 μm以下の径の微粒子を検出することができ
る。本発明の方法は5半導体装置の極微細パターンの形
成時の雰囲気の清浄度をモニタする手段として効果が大
きい。
ArF excimer laser F2 Excimer laser Low pressure mercury lamp Low pressure water root lamp Synchrotron radiation light Wavelength: 193 nm Wavelength: 152 nm Wavelength: 185 nm Wavelength: 254 nm Wavelength: 300 nm or less [Effects of the Invention] As explained above, according to the present invention, two Fine particles with a diameter of 0.1 μm or less attached to the substrate surface can be detected. The method of the present invention is highly effective as a means for monitoring the cleanliness of the atmosphere during the formation of ultrafine patterns for semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例 である。図において 1は基板であってシリコンウェハ 2は移動台 3は光源であってAr’ レーザ 4は集光レンズ5 5はフィルタ。 6は検出器であって光電子増倍管。 7は信号処理装置 8はディスプレイ ヂ 流 例 第 図 Figure 1 is an example It is. In the figure 1 is a substrate, which is a silicon wafer 2 is a moving platform 3 is a light source, which is an Ar' laser 4 is a condensing lens 5 5 is a filter. 6 is a detector, which is a photomultiplier tube. 7 is a signal processing device 8 is the display も flow example No. figure

Claims (1)

【特許請求の範囲】[Claims] 基板(1)表面に付着する微粒子を検出するに際し、紫
外光を該基板(1)表面に照射して、該基板(1)表面
からの散乱光の強弱から微粒子の存在を検出することを
特徴とする微粒子の検出方法。
When detecting fine particles adhering to the surface of the substrate (1), the surface of the substrate (1) is irradiated with ultraviolet light, and the presence of fine particles is detected from the intensity of scattered light from the surface of the substrate (1). A method for detecting fine particles.
JP3696289A 1989-02-16 1989-02-16 Detection of fine particle Pending JPH02216035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3696289A JPH02216035A (en) 1989-02-16 1989-02-16 Detection of fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3696289A JPH02216035A (en) 1989-02-16 1989-02-16 Detection of fine particle

Publications (1)

Publication Number Publication Date
JPH02216035A true JPH02216035A (en) 1990-08-28

Family

ID=12484362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3696289A Pending JPH02216035A (en) 1989-02-16 1989-02-16 Detection of fine particle

Country Status (1)

Country Link
JP (1) JPH02216035A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331559A (en) * 1993-05-18 1994-12-02 Hitachi Ltd Method and apparatus for inspection of foreign body
US5444529A (en) * 1992-06-08 1995-08-22 Matsushita Electric Industrial Co., Ltd. Method of inspecting particles on semiconductor devices
US6118525A (en) * 1995-03-06 2000-09-12 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
JP2002139451A (en) * 2000-08-04 2002-05-17 Nikon Corp Surface inspection apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103951A (en) * 1986-10-20 1988-05-09 Nec Yamagata Ltd Dust inspection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103951A (en) * 1986-10-20 1988-05-09 Nec Yamagata Ltd Dust inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444529A (en) * 1992-06-08 1995-08-22 Matsushita Electric Industrial Co., Ltd. Method of inspecting particles on semiconductor devices
JPH06331559A (en) * 1993-05-18 1994-12-02 Hitachi Ltd Method and apparatus for inspection of foreign body
US6118525A (en) * 1995-03-06 2000-09-12 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
US6292259B1 (en) 1995-03-06 2001-09-18 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
US6509965B2 (en) 1995-03-06 2003-01-21 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
JP2002139451A (en) * 2000-08-04 2002-05-17 Nikon Corp Surface inspection apparatus

Similar Documents

Publication Publication Date Title
US4761074A (en) Method for measuring impurity concentrations in a liquid and an apparatus therefor
JP5288568B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method
TW498008B (en) Laser correction method and apparatus
JP2002257533A (en) Defect inspection device and its method
JP5872452B2 (en) Mask inspection system and method using Fourier filtering and image comparison, and lithography system
US10630037B2 (en) Apparatus for delivering gas and illumination source for generating high harmonic radiation
TWI673491B (en) Light box structure and application of optical inspection equipment
JP2007086050A (en) Method for inspecting translucent article made of translucent material, method and apparatus for inspecting defect of glass substrate, glass substrate for mask blank, and manufacturing method therefor, mask bland and manufacturing method therefor, mask for exposure and manufacturing method therefor, and manufacturing method of semiconductor device
JPH10221267A (en) Micro-defect inspection method, its device, exposing method, and manufacture of semiconductor substrate
JPH02216035A (en) Detection of fine particle
TW201624108A (en) Method for detecting contaminant substance formed on photomask and photomask embodying the method
JP2973598B2 (en) Method and apparatus for detecting foreign matter on wafer
JP3102493B2 (en) Foreign matter inspection method and apparatus
TW202009612A (en) Extreme ultraviolet lithography system
KR101196708B1 (en) Apparatus and method of inspecting a defect on semiconductor substrate using scattered light occurred from white light
JPH0464041A (en) Method and apparatus for inspecting defect of pellicle
JPH01185434A (en) Inspection of foreign matter on mask for x-ray exposure
JPS63103951A (en) Dust inspection device
KR101196707B1 (en) Apparatus and method of inspecting a defect on semiconductor substrate using scattered light
JP2747368B2 (en) Particle counting device in liquid
KR100791396B1 (en) Apparatus for detecting hazes of photomask surface using real-time background-free detection of nanoscale particles and method for detecting thereof
JPH0493837A (en) Foreign matter detector and manufacture of semiconductor device
KR20230004535A (en) Contaminant identification metrology system, lithographic apparatus, and methods thereof
KR200229420Y1 (en) Reticle Inspection Device for Semiconductor Devices
EP3376288A1 (en) Apparatus for delivering gas