JP2973598B2 - Method and apparatus for detecting foreign matter on wafer - Google Patents

Method and apparatus for detecting foreign matter on wafer

Info

Publication number
JP2973598B2
JP2973598B2 JP3154430A JP15443091A JP2973598B2 JP 2973598 B2 JP2973598 B2 JP 2973598B2 JP 3154430 A JP3154430 A JP 3154430A JP 15443091 A JP15443091 A JP 15443091A JP 2973598 B2 JP2973598 B2 JP 2973598B2
Authority
JP
Japan
Prior art keywords
wafer
foreign matter
condensation
foreign
condensation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3154430A
Other languages
Japanese (ja)
Other versions
JPH053238A (en
Inventor
正文 久保田
幹夫 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3154430A priority Critical patent/JP2973598B2/en
Publication of JPH053238A publication Critical patent/JPH053238A/en
Application granted granted Critical
Publication of JP2973598B2 publication Critical patent/JP2973598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はウエハ表面上に付着した
異物の計数技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for counting foreign matter adhering on a wafer surface.

【0002】[0002]

【従来の技術】近年、半導体技術の進展はめざましく、
O.5μm以下のプロセスルールの超LSIが開発されつつあ
る。このような状況においては、製造プロセスにおける
異物、パーティクルの歩留りへの影響が極めて大きくな
りつつある。生産現場を超清浄なクリーン環境にすると
ともに、実際のウエハ表面の異物がどの程度であるかを
常に監視し、問題があれば対策を打って行く必要があ
る。
2. Description of the Related Art In recent years, progress in semiconductor technology has been remarkable.
Ultra LSIs with a process rule of 0.5 μm or less are being developed. In such a situation, the influence on the yield of foreign particles and particles in the manufacturing process is becoming extremely large. In addition to making the production site an ultra-clean and clean environment, it is necessary to constantly monitor the actual amount of foreign matter on the wafer surface and take measures if there is a problem.

【0003】本発明は、この様なウエハ表面の異物計数
技術に関するものである。以下図面を参照しながら、従
来のウエハ表面の異物計数技術の一例について説明す
る。
The present invention relates to such a technique for counting foreign matter on a wafer surface. An example of a conventional foreign matter counting technique on a wafer surface will be described below with reference to the drawings.

【0004】(図4)は従来の異物検出装置の原理を示
すものである。(図4)において、1は被測定ウエハで
ある。2は回転ステージで、直線移動機構3との組合せ
によってウエハ1の表面全体を走査する機構となってい
る。He-Neレーザ4から射出したレーザ光はビームエキ
スパンダ5により拡大され、ミラー6を経て集光レンズ
系7によってウエハ1上に照射される。ウエハ1表面の
異物からの散乱光はレーザの光軸周辺に設置した((図
4)では1つしか示していないが通常は)複数の受光用
光ファイバ8で受光し、光電子増倍管で電気信号に変換
し、散乱光の強度とパルス数から異物粒子の大きさと個
数を求めている。
FIG. 4 shows the principle of a conventional foreign matter detection device. In FIG. 4, reference numeral 1 denotes a wafer to be measured. Reference numeral 2 denotes a rotary stage which scans the entire surface of the wafer 1 in combination with the linear moving mechanism 3. The laser light emitted from the He-Ne laser 4 is expanded by a beam expander 5 and is irradiated on the wafer 1 by a condenser lens system 7 via a mirror 6. The scattered light from the foreign material on the surface of the wafer 1 is received by a plurality of light receiving optical fibers 8 (usually only one is shown in FIG. 4) disposed around the optical axis of the laser, and the light is multiplied by a photomultiplier tube. The size and the number of foreign particles are calculated from the intensity of the scattered light and the number of pulses.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、レーザ光の集光限界により異物粒子の大
きさが最小0.3μm径程度のものまでしか測定できなか
った。レーザ光の波長を更に短波長にする(Ar、He-Cd
レーザの使用)ことにより0.1μm径程度までは限界値
を小さくできるものと考えられるが、それ以上は困難と
考えられる。他方、LSI製造工程においてはプロセスル
ールの5分の1以下の異物粒子の管理が必要であり、0.
05μm程度の異物粒子を測定できる技術が求められてい
た。
However, in the above configuration, the size of foreign particles can be measured only up to a diameter of at least about 0.3 μm due to the laser light focusing limit. Further shorten the wavelength of laser light (Ar, He-Cd
It is considered that the limit value can be reduced to a diameter of about 0.1 μm by using a laser), but it is considered to be more difficult than that. On the other hand, in the LSI manufacturing process, it is necessary to control foreign particles less than 1/5 of the process rule.
There has been a demand for a technique capable of measuring foreign particles of about 05 μm.

【0006】本発明は上記問題点に鑑み、ウエハ表面上
の0.05μm程度の超微粒子異物の検出法を提供するもの
である。
The present invention has been made in view of the above problems, and provides a method for detecting ultra-fine particles of about 0.05 μm on a wafer surface.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに本発明のウエハ上異物検出装置は、異物を核として
凝縮反応を生じさせるため被測定ウエハを過飽和蒸気圧
に曝すことのできる凝縮室を備えたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an apparatus for detecting foreign matter on a wafer according to the present invention comprises a condenser capable of exposing a wafer to be measured to a supersaturated vapor pressure to cause a condensation reaction with foreign matter as a nucleus. It has a room.

【0008】[0008]

【作用】本発明は上記した構成によって、凝縮室中で被
測定ウエハをアルコール等の過飽和蒸気圧状態に曝し、
異物を核として凝縮反応を生じさせ、拡大された凝縮核
数を測定するものである。凝縮反応によって、0.05μm
径の異物は0.5μmあるいはそれ以上の径に拡大される
ため、容易に計測数できることとなる。
According to the present invention, a wafer to be measured is exposed to a supersaturated vapor pressure state of alcohol or the like in a condensation chamber by the above-described structure.
A condensation reaction is caused using foreign matter as nuclei, and the number of expanded condensation nuclei is measured. 0.05μm due to condensation reaction
A foreign substance having a diameter is enlarged to a diameter of 0.5 μm or more, so that the number of foreign substances can be easily measured.

【0009】[0009]

【実施例】以下本発明の一実施例のウエハ上異物検出装
置について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus for detecting foreign matter on a wafer according to one embodiment of the present invention will be described below with reference to the drawings.

【0010】(図1)は本発明の実施例におけるウエハ
上異物検出装置のシステム構成を示すものである。(図
1)において、10はウエハローダ、11はゲートバル
ブ、12は異物を核として凝縮反応を生じさせる凝縮
室、13は凝縮により拡大された異物を計数する異物計
数室、14はウエハアンローダである。
FIG. 1 shows a system configuration of an apparatus for detecting foreign matter on a wafer according to an embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a wafer loader, 11 denotes a gate valve, 12 denotes a condensing chamber for generating a condensing reaction using foreign substances as nuclei, 13 denotes a foreign substance counting chamber for counting foreign substances enlarged by condensation, and 14 denotes a wafer unloader. .

【0011】(図2)は本発明の実施例における凝縮室
12の構成を示すものである。(図2)において、21
はウエハ1が載置された温度制御されたステージ、22
は飽和蒸気圧状態を作るために凝縮室12中に注入する
アルコール量を制御する流量コントローラである。
FIG. 2 shows the configuration of the condensation chamber 12 in the embodiment of the present invention. In FIG. 2, 21
Denotes a temperature-controlled stage on which the wafer 1 is mounted, 22
Is a flow controller for controlling the amount of alcohol injected into the condensation chamber 12 to create a saturated vapor pressure state.

【0012】以上のように構成されたウエハ上異物検出
装置について、以下(図1)及び(図2)を用いてその
動作を説明する。
The operation of the apparatus for detecting foreign matter on a wafer configured as described above will be described below with reference to FIGS. 1 and 2.

【0013】(図1)のように、ウエハ1はローダ10
からゲートバルブ11を経てまず凝縮室12に搬送され
る。凝縮室12でウエハ1は、(図2)に示すように温
度制御されたステージ21により所定の温度に冷却され
る。この場合は約10℃に冷却している。次に、流量コ
ントローラ22からほぼ飽和蒸気圧になるようにアルコ
ール瓶23のアルコールが注入される。この場合はn-ブ
チルアルコールを用いたが、イソブチルアルコール等の
他のアルコールでも可能である。凝縮室12の側壁に比
べてウエハ1は数度から数十度低く設定されているの
で、ウエハ表面近傍のアルコール蒸気は冷却され、過飽
和状態となる。ウエハ表面に異物が存在するとそれが核
となってアルコールが凝縮する。アルコールが凝縮した
異物は0.5μmから数μm程度の大きさになる。
As shown in FIG. 1, a wafer 1 is loaded on a loader 10.
Through the gate valve 11 to the condensation chamber 12. In the condensation chamber 12, the wafer 1 is cooled to a predetermined temperature by a temperature-controlled stage 21 as shown in FIG. In this case, it is cooled to about 10 ° C. Next, the alcohol in the alcohol bottle 23 is injected from the flow rate controller 22 so as to have a substantially saturated vapor pressure. In this case, n-butyl alcohol was used, but other alcohols such as isobutyl alcohol can be used. Since the temperature of the wafer 1 is set to be several degrees to several tens degrees lower than the side wall of the condensation chamber 12, the alcohol vapor near the wafer surface is cooled and becomes supersaturated. When foreign matter is present on the wafer surface, it becomes a nucleus and alcohol condenses. The foreign matter in which alcohol condenses has a size of about 0.5 μm to several μm.

【0014】凝縮反応が終了すると、ウエハ1は異物計
数室13に搬送される。ここでは、従来例で述べたよう
な周知の計数法によってウエハ1上の異物粒子が計数さ
れる。この時、異物計数室のウエハステージ(図示せ
ず)も凝縮室とほぼ同等の温度に設定されている。ま
た、凝縮したアルコールが昇華しにくいよう飽和蒸気圧
には至らないアルコールを導入することが望ましい。こ
うしてアルコールの凝縮によって拡大された異物が計数
され、ウエハ上のマップ、粒子径分布等のデータが出力
される。ウエハ全面の計数が終了すると、ウエハ1はア
ンローダ14に移送され、取り出される。凝縮により粒
子径が拡大されているため、粒子径分布は正確に得るこ
とはできないが、工程管理には最小限ある一定値以上の
粒子数が分かればよく、このためには十分なデータであ
る。
When the condensation reaction is completed, the wafer 1 is transferred to the foreign substance counting chamber 13. Here, foreign particles on the wafer 1 are counted by a well-known counting method as described in the conventional example. At this time, the temperature of the wafer stage (not shown) of the foreign matter counting chamber is set to substantially the same temperature as that of the condensation chamber. It is also desirable to introduce an alcohol that does not reach a saturated vapor pressure so that the condensed alcohol is less likely to sublime. The foreign matter enlarged by the condensation of the alcohol is counted, and data such as a map on the wafer and a particle size distribution are output. When the counting of the entire surface of the wafer is completed, the wafer 1 is transferred to the unloader 14 and taken out. Since the particle size is enlarged by condensation, the particle size distribution cannot be obtained accurately, but it is sufficient for the process control to find out the number of particles above a certain value, which is sufficient data for this purpose. .

【0015】なお、本異物検出装置の設置環境温度が低
い場合、凝縮室12の側壁がウエハに比べて十分低温に
できない場合、凝縮室12の側壁にヒータ等を設置し、
昇温することも可能である。
If the temperature of the installation environment of the present foreign matter detection device is low, and if the side wall of the condensation chamber 12 cannot be made sufficiently lower than the wafer, a heater or the like is installed on the side wall of the condensation chamber 12.
It is also possible to raise the temperature.

【0016】このように、本発明の異物検出装置によれ
ば0.05μm以下の微細な異物であっても、凝縮により拡
大し、容易にその計数を行うことができ、LSI製造工程
の管理、改善に極めて有益なツールであるといえる。
As described above, according to the foreign matter detection apparatus of the present invention, even a fine foreign matter having a size of 0.05 μm or less can be enlarged and condensed easily by condensation. This is a very useful tool.

【0017】以下本発明の第2の実施例について図面を
参照しながら説明する。(図3)は本発明の第2の実施
例を示す異物検出装置の凝縮室12の模式図である。本
実施例においては、凝縮室12内がポンプ24によって
弱真空にできるシステムとなっている点が第1の実施例
と異なっており、他は同様である。凝縮室12でウエハ
1は、温度制御されたステージ21により所定の温度に
冷却される。次に、流量コントローラ22からほぼ飽和
蒸気圧になるようにアルコールが注入される。この際、
弱真空にしておくことによりアルコールが断熱膨張によ
り容易に冷却され、過飽和蒸気圧の状態になりやすくな
るのである。凝縮室12の側壁に比べてウエハ1は数度
から数十度低く設定しておくことにより、ウエハ表面近
傍のアルコール蒸気が冷却され、過飽和状態となること
は同様である。また、凝縮室12とともに異物計数室1
3を弱真空にすることにより、装置外部の湿度等の状況
による影響を減じるとともに、計数の際に気体分子によ
るレーザ光の散乱を減らすことにも役立つので測定のSN
比・再現性を高める効果もある。
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. (FIG. 3) is a schematic view of the condensation chamber 12 of the foreign matter detection device according to the second embodiment of the present invention. The present embodiment is different from the first embodiment in that a system in which the inside of the condensation chamber 12 can be weakly vacuumed by a pump 24 is different from that of the first embodiment. The wafer 1 is cooled to a predetermined temperature by the temperature-controlled stage 21 in the condensation chamber 12. Next, alcohol is injected from the flow rate controller 22 so as to have a substantially saturated vapor pressure. On this occasion,
By keeping the vacuum low, the alcohol is easily cooled by adiabatic expansion, so that the alcohol tends to have a supersaturated vapor pressure. By setting the temperature of the wafer 1 to be several degrees to several tens degrees lower than that of the side wall of the condensation chamber 12, the alcohol vapor near the wafer surface is cooled and becomes supersaturated. In addition to the condensing chamber 12, the foreign matter counting chamber 1
By making 3 a weak vacuum, the influence of conditions such as humidity outside the device is reduced, and it is also useful to reduce the scattering of laser light by gas molecules during counting.
It also has the effect of increasing the ratio and reproducibility.

【0018】なお、実施例においては凝縮室でアルコー
ルを凝縮させる場合の例を示したが、必ずしも凝縮を行
う必要はなく、単に凝縮室を通過させて粒子数を測定す
ることにより従来法の結果を得ることができることは言
うまでもない。
In the embodiment, the case where the alcohol is condensed in the condensing chamber is shown. However, it is not always necessary to condense the alcohol. The result of the conventional method can be obtained by simply passing the condensing chamber and measuring the number of particles. It goes without saying that you can get

【0019】本発明の効果について従来例との比較を
(表1)に示す。
Table 1 shows a comparison of the effects of the present invention with the conventional example.

【0020】[0020]

【表1】 [Table 1]

【0021】なお、実施例において、n-ブチルアルコー
ルを用いた場合を示したが、イソブチルアルコール等の
他のアルコールや、同様の機能のある薬品を用いてもよ
い。
In the embodiment, the case where n-butyl alcohol is used is shown. However, other alcohols such as isobutyl alcohol and chemicals having the same function may be used.

【0022】[0022]

【発明の効果】以上のように本発明は、凝縮室中で被測
定ウエハをアルコール等の過飽和蒸気圧状態に曝し、異
物を核として凝縮反応を生じさせ、拡大された凝縮核数
を測定することにより、0.05μm以下の微細な異物であ
っても、凝縮により拡大し、容易にその計数を行うこと
ができるというものである。これによりLSI製造工程の
異物管理、歩留り改善に極めて有益なデータを得ること
ができる。
As described above, according to the present invention, a wafer to be measured is exposed to a supersaturated vapor pressure state such as alcohol in a condensation chamber to cause a condensation reaction with foreign matter as nuclei, and the number of expanded condensation nuclei is measured. Thus, even a fine foreign substance having a size of 0.05 μm or less can be enlarged by condensation and can be easily counted. As a result, it is possible to obtain extremely useful data for foreign substance management and yield improvement in the LSI manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における異物検出装置の
システム構成を示す図である。
FIG. 1 is a diagram showing a system configuration of a foreign object detection device according to a first embodiment of the present invention.

【図2】同実施例における動作説明のための凝縮室の構
成図である。
FIG. 2 is a configuration diagram of a condensation chamber for explaining an operation in the embodiment.

【図3】本発明の第2の実施例の異物検出装置における
凝縮室の説明図である。
FIG. 3 is an explanatory diagram of a condensation chamber in a foreign object detection device according to a second embodiment of the present invention.

【図4】従来の異物検出装置の概略図である。FIG. 4 is a schematic diagram of a conventional foreign matter detection device.

【符号の説明】[Explanation of symbols]

1 ウエハ 10 ローダ 11 ゲートバルブ 12 凝縮室 13 異物計数室 14 アンローダ 21 温度制御ステージ 22 流量コントローラ 24 ポンプ DESCRIPTION OF SYMBOLS 1 Wafer 10 Loader 11 Gate valve 12 Condensation chamber 13 Foreign substance counting chamber 14 Unloader 21 Temperature control stage 22 Flow controller 24 Pump

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/66 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01L 21/66

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ウェハ表面の異物を核として,雰囲気中
気体の凝縮作用で前記ウェハ表面に径大な凝縮生成物
生じさせた後、前記凝縮生成物を観測することにより、
前記ウェハ上の異物を計数することを特徴とするウェハ
上異物検出方法。
1. An atmosphere containing foreign matter on a wafer surface as a nucleus.
After producing a large-diameter condensation product on the wafer surface by the gas condensation action, by observing the condensation product,
Wafer on foreign substance detecting method characterized by counting the foreign material on the wafer.
【請求項2】 ウェハ表面を気体の過飽和蒸気圧に曝
し,前記ウェハ上の異物を核として前記気体の縮を
じさせることのできる凝縮室を備えたことを特徴とする
ウェハ上異物検出装置。
2. Exposing the wafer surface to a supersaturated vapor pressure of a gas.
And, the wafer on the foreign material detecting apparatus characterized by having a condensation chamber can with Turkey raw <br/> not hesitate to condensable of the gas foreign matter on the wafer as a nucleus.
【請求項3】 凝縮室内にウェハの温度制御が可能な
料台を備えことを特徴とする請求項2記載のウェハ上
異物検査出装置。
3. A condensation chamber on wafer particle inspection detection device according to claim 2, further comprising a trial <br/> fee table whose temperature can be controlled in the wafer within.
【請求項4】 ウェハ載置の試料台を凝縮室中最も低温
に保持する機構を備えていることを特徴とする請求項2
記載のウェハ上異物検査出装置。
4. The apparatus according to claim 2, further comprising a mechanism for holding the sample stage on which the wafer is mounted at the lowest temperature in the condensation chamber.
Inspection device for foreign matter on a wafer as described in the above.
【請求項5】 凝縮室内の気圧制御する機構を備えて
いることを特徴とする請求項2記載のウェハ上異物検査
出装置。
Wherein it comprises a mechanism for controlling the air pressure in the condensation chamber wafer on particle inspection detection device according to claim 2, wherein.
【請求項6】 ウェハ上異物数を計数する機構が、前
記ウェハを搬送する機構で凝縮室結合されていること
を特徴とする請求項2記載のウェハ上異物検査出装置。
6. A mechanism for counting the number of foreign substances on a wafer is provided by a
Serial wafer on particle inspection detection device according to claim 2, characterized in that it is combined with the condensation chamber with a mechanism for transferring the wafer.
JP3154430A 1991-06-26 1991-06-26 Method and apparatus for detecting foreign matter on wafer Expired - Fee Related JP2973598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3154430A JP2973598B2 (en) 1991-06-26 1991-06-26 Method and apparatus for detecting foreign matter on wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3154430A JP2973598B2 (en) 1991-06-26 1991-06-26 Method and apparatus for detecting foreign matter on wafer

Publications (2)

Publication Number Publication Date
JPH053238A JPH053238A (en) 1993-01-08
JP2973598B2 true JP2973598B2 (en) 1999-11-08

Family

ID=15584013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3154430A Expired - Fee Related JP2973598B2 (en) 1991-06-26 1991-06-26 Method and apparatus for detecting foreign matter on wafer

Country Status (1)

Country Link
JP (1) JP2973598B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622627A1 (en) * 1993-04-30 1994-11-02 Applied Materials, Inc. Method and apparatus for detecting particles on a substrate
JPH07260698A (en) * 1994-03-18 1995-10-13 Sony Corp Foreign object inspection device and method
JP3506854B2 (en) 1996-03-07 2004-03-15 シャープ株式会社 Particle surface modification method and apparatus therefor
JP3652058B2 (en) * 1997-04-04 2005-05-25 沖電気工業株式会社 Manufacturing method of semiconductor device
JP4902572B2 (en) * 2008-02-25 2012-03-21 東京エレクトロン株式会社 Particle detection auxiliary method, particle detection method, particle detection auxiliary device and particle detection system

Also Published As

Publication number Publication date
JPH053238A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
US4761074A (en) Method for measuring impurity concentrations in a liquid and an apparatus therefor
US4393311A (en) Method and apparatus for surface characterization and process control utilizing radiation from desorbed particles
US10082470B2 (en) Defect marking for semiconductor wafer inspection
US5965446A (en) Method for placing fluorescent single molecules on surface of substrate and method for visualizing structural defect of surface of substrate
JPH05340885A (en) Particle inspecting method
JP2973598B2 (en) Method and apparatus for detecting foreign matter on wafer
JPH05218163A (en) Method and device for inspecting foreing matter
US4792199A (en) System for detection of extremely small particles in a low pressure environment
US20170189945A1 (en) Apparatus and method for contamination identification
US7355709B1 (en) Methods and systems for optical and non-optical measurements of a substrate
KR100871876B1 (en) Apparatus for detecting hazes of photomask surface using photo detector and method for detecting thereof
TW201831993A (en) Apparatus and method for contamination identification
JP3803109B2 (en) Defect inspection method and defect inspection apparatus
JPH0773093B2 (en) Lithography development endpoint determination method
US20220244648A1 (en) Sensitivity improvement of optical and sem defection inspection
US7078689B1 (en) Integrated electron beam and contaminant removal system
US6479018B2 (en) Detection of a gaseous substance emanating from a layer of polymeric composition
JPH02216035A (en) Detection of fine particle
US6797981B2 (en) Test wafer and method for producing the test wafer
JPH11305053A (en) X-ray optical element and its manufacture, and x-ray analyzing apparatus
van Es et al. Highly spatially resolved chemical metrology on latent resist images
US5061068A (en) Process for detection of sub-micron particulate contamination on a bare (planar) substrate
JP2003077969A (en) Dust particle detection method, its device and semiconductor device manufacturing method
JPS63103951A (en) Dust inspection device
Docter et al. Nano-hole Arrays in Thin Au/Pd Film on Glass, for High Speed Molecular Analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees