JPH02213489A - 磁気特性に優れた金属コバルト微粒子の製造方法 - Google Patents

磁気特性に優れた金属コバルト微粒子の製造方法

Info

Publication number
JPH02213489A
JPH02213489A JP3424589A JP3424589A JPH02213489A JP H02213489 A JPH02213489 A JP H02213489A JP 3424589 A JP3424589 A JP 3424589A JP 3424589 A JP3424589 A JP 3424589A JP H02213489 A JPH02213489 A JP H02213489A
Authority
JP
Japan
Prior art keywords
fine particles
metallic cobalt
cobalt
mol
electrolytic bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3424589A
Other languages
English (en)
Inventor
Kazuto Kamei
一人 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3424589A priority Critical patent/JPH02213489A/ja
Publication of JPH02213489A publication Critical patent/JPH02213489A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気記録媒体に適したコバルト微粒子の製造
方法に関するものである。
(従来の技術) 磁気記録媒体は、磁気テープ、フロッピーディスクなど
、塗布型の媒体を中心として広く利用されるに至ってい
る。これらの媒体には、主として1−Fe.O,が使用
されているが、磁気記録密度の高密度化に伴い、より優
れた特性を持つ磁性体が要求されるようになってきてい
る。ここで高密度化にとって望ましい磁気特性とは、磁
気記録の再生出力を充分な大きさにするための大きな磁
化と、高密度化により必然的に誘起される強い反磁界に
耐え得る大きな保磁力、の2つの特性である。
このような要求を満たすためにCry.、Co被着型γ
−Fe403 、鉄系の合金粒子へと開発が進行してき
た.中でも純鉄の単結晶微粒子は、その大きな飽和磁化
と保磁力ゆえに塗布媒体としては最も優れた特性を持っ
ている。しかしながら、純鉄単結晶微粒子は、主として
気相法による塩化鉄の水素還元により製造されているが
(日本化学会誌、l985、(1)、P22〜28)、
この方法は生産性に劣りきわめて高価なものになる。
一方、六方晶金属であり、その結晶磁気異方性ゆえに高
い保磁力が期待されるコバルトについても磁気記録媒体
への応用、例えば垂直磁化膜の作製などが無電解めっき
でも検討されている(ELECTROCHEMICAL
 5CfENCE AND TECNOLOGY、19
83.Vol。
130、 Nc+3. P568〜571)。
また、磁性体としてのコバルトの利用を考えると、薄膜
に限らず金属コバルトの純鉄同様な高純度微粒子が得ら
れれば、塗布媒体としてきわめて有望であると考えられ
る。しかしながら現在のところ、コバルトの微粒子を効
率的かつ経済的に得る技術は見当たらない。
(発明が解決しようとする課題) したがって、金属コバルト微粒子を経済的に製造するた
めには、気相法などの高コストのドライプロセスによら
ず、ウェットプロセスで、量産性に優れた製造法を開発
する必要がある。しかして、ウェットプロセスで金属微
粒子を得る方法としては、金属イオンを含む水溶液の電
気分解が最も簡便である。しかしながら、通常、金属の
電気分解すなわち電気めっきでは連続的な膜が形成され
るのみで、微粒子は得られない。そこで、微粒子を得る
ためには、電解浴の成分、電解条件を種々変化させ微粒
子が析出するに必要かつ十分な条件を模索する必要があ
るが、今のところそのような条件は見つかっていない。
本発明は、鉄微粒子に匹敵し、あるいは鉄微粒子をしの
ぐ優れた磁気特性を示す金属コバルト微粒子の効率的、
経済的な電気分解による製造方法を提供することを目的
としている。
(課題を解決するための手段) 本発明者は、亜鉛合金の電気めっきの基礎的な研究の過
程において特定の浴組成めっき条件で針状の析出物が得
られることを見出した。そこで亜鉛と同じ最密六方構造
をとり、強磁性体であるコバルトに着目し、系統的な実
験を遂行したところ、最終的にコバルトの微粒子が析出
する浴組成、めっき条件を特定するに至ったのである。
すなわち本発明は、金属コバルトの電気分解において、
硫酸コバルト(CO504・6H20)を0.05mo
l/2以上、0.2+++ol/lfi以下、ホウ酸(
HJ(h)を0.1mo1/1以上、0.7mol/l
以下、硫酸ナトリウム(Na2S04)を1.5mo1
/41!以上、2.5mol/l以下、を含む電解浴を
用い、電流密度がIA/ds+”以上、10A/d++
+”以下で、かツPHが1.0以上、4.0以下で電解
することを要旨とするものである。
(作  用) 本発明における各種の限定理由について説明する。
■ 電解浴中の硫酸コバルト濃度の限定理由金属コバル
ト微粒子の析出反応は、基本的にはデンドライト析出の
一種であり、特異な電解条件の下でデンドライトが粒状
化したものと考えられる。デンドライトは、活性イオン
種、すなわち析出する金属のイオンの浴中濃度が低く析
出反応が活性イオンの拡散律速で進行する場合に形成さ
れやすい。
本発明の研究過程でも、コバルトイオン濃度が0.2t
aol/ lを越える濃度では連続膜が形成されるのみ
で微粒子は得られなかった。また0、05mol/ 4
1!を下回る濃度では、金属コバルトの析出速度がきわ
めて小さくなりほとんど実用には適さない。
従って、本発明では硫酸コバル[4度を0.05mol
/l以上、0.2a+ol/j!以下とした。
■ ホウ酸濃度の限定還油 ホウ酸は、浴中のコバルトイオンを安定化させるために
添加するが、種々添加量を変化させて実験を行ったとこ
ろ0.1mol/j!を下回る濃度及び0.7+ol/
1を越える濃度では、めっきムラが生じ安定した金属コ
バルト微粒子を得ることができなかったため、0.in
+ol//!以上、0.7mol/l!以下とした。
■ 硫酸ナトリウム濃度の限定理由 硫酸ナトリウムの添加はきわめて重要であり、その添加
量によりコバルト微粒子の生成が左右される。本発明者
の実験では微粒子が得られる添加量の下限は1.5mo
l/ 1であり、これを下回る濃度では微粒子の生成が
見られない。また、2.5mol/lを越えると硫酸ナ
トリウムは過飽和状態になり沈澱し始め、正常な電析が
困難になるので、1.5mol/j!以上、0.7mo
l//!以下とした。
この硫酸ナトリウムの作用は以下の2点、すなわち (a)  活性イオン種の電気泳動を抑制し、めっきム
ラなどの異常析出を防ぐ。
(b)  電解浴の粘性を増加させ、活性イオンの拡散
を遅くし、微粒子の析出を促進する。
にあると考えられる。
■ 電流密度の限定理由 電流密度の下限を1A/dm2としたのは、10A/d
++”を下回る電流密度では、金属コバルト微粒子の析
出速度がきわめて小さくなり実用に適さないためであり
、一方上限を10A/dm”としたのは10A/dm’
を越える電流密度では著しいめっきムラが生じるためで
ある。
従って本発明では1A/dm2以上、10A/dが以下
とした。
■ PHの限定理由 PHを1.0以上4.0以下としたのは、1.0を下回
るPHでは水素が多量に発生して金属コバルト微粒子の
析出速度がきわめて小さくなるからである。一方4.0
を越えるPHでは、コバルトはもはや微粒子とならず、
連続膜として析出するからである。
(実 施 例) 表1に実施例を示す。電解は11のビーカー中、中50
mm X to、4mm(7)銅板上ニコハルトを電析
させることにし、マグネティックスターラーを毎分50
0回転させることにより、液の撹拌を行った。評価は金
属コバルトの微粒子が得られた場合にはOを、また得ら
れなかった場合には×とした。微粒子が得られた場合に
はその電析条件で、微粒子を機械的に補集し、その保磁
力及び飽和磁化を測定した。
その結果も併せて表1に示した。なお、比較例中本を付
したものが本発明の条件を外れたものである。
上記表1より明らかな如く、磁気特性に優れた金属コバ
ルト微粒子を電気分解によって製造できることが判る。
(発明の効果) 以上説明したように本発明方法によって高飽和磁化、高
保持力を有する金属コバルト微粒子を経済的に製造でき
ることになる。
*:本発明条件外

Claims (1)

    【特許請求の範囲】
  1. (1)金属コバルトの電気分解において、硫酸コバルト
    (CoSO_4・6H_2O)を0.05mol/l以
    上、0.2mol/l以下、ホウ酸(H_3BO_3)
    を0.1mol/l以上、0.7mol/l以下、硫酸
    ナトリウム(Na_2SO_4)を1.5mol/l以
    上、2.5mol/l以下を含む電解浴を用い、電流密
    度が1A/dm^2以上、10A/dm^2以下で、か
    つPHが1.0以上、4.0以下で電解することを特徴
    とする磁気特性に優れた金属コバルト微粒子の製造方法
JP3424589A 1989-02-14 1989-02-14 磁気特性に優れた金属コバルト微粒子の製造方法 Pending JPH02213489A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3424589A JPH02213489A (ja) 1989-02-14 1989-02-14 磁気特性に優れた金属コバルト微粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3424589A JPH02213489A (ja) 1989-02-14 1989-02-14 磁気特性に優れた金属コバルト微粒子の製造方法

Publications (1)

Publication Number Publication Date
JPH02213489A true JPH02213489A (ja) 1990-08-24

Family

ID=12408777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3424589A Pending JPH02213489A (ja) 1989-02-14 1989-02-14 磁気特性に優れた金属コバルト微粒子の製造方法

Country Status (1)

Country Link
JP (1) JPH02213489A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192874A (ja) * 1992-12-24 1994-07-12 Japan Energy Corp コバルトの精製方法
JPH06192879A (ja) * 1992-12-24 1994-07-12 Japan Energy Corp コバルトの精製方法
CN102797019A (zh) * 2011-05-25 2012-11-28 南通新玮镍钴科技发展有限公司 微米级、近球形金属钴粉的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192874A (ja) * 1992-12-24 1994-07-12 Japan Energy Corp コバルトの精製方法
JPH06192879A (ja) * 1992-12-24 1994-07-12 Japan Energy Corp コバルトの精製方法
CN102797019A (zh) * 2011-05-25 2012-11-28 南通新玮镍钴科技发展有限公司 微米级、近球形金属钴粉的制备方法

Similar Documents

Publication Publication Date Title
US5582927A (en) High magnetic moment materials and process for fabrication of thin film heads
US2974104A (en) High-energy magnetic material
US8221598B2 (en) System for plating
JP2003034891A (ja) コバルト鉄系合金およびコバルト鉄系合金めっき磁性薄膜の製造方法、並びに4成分系合金およびコバルト鉄モリブデン合金めっき磁性薄膜の製造方法
Nakano et al. Effect of electrolysis factors on crystal orientation and morphology of electrodeposited cobalt
Esther et al. Structural and magnetic properties of electrodeposited Ni-Fe-W thin films
JPS63307294A (ja) 強磁性コーティング用メッキ浴及びその使用方法
JPH02213489A (ja) 磁気特性に優れた金属コバルト微粒子の製造方法
Abd El-Rehim et al. Electrodeposition of cobalt-nickel alloys from Watts-type baths
CN103243356A (zh) 一种铁-镍-钴-钼合金箔的电沉积制备方法
CN101593523B (zh) 一种l10型超高密度磁性记录金属薄膜的制备方法
Maksimović et al. Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni-Co alloy powders
Wranglen Electrodeposition of metal powders
Abd El-Halim et al. Some characteristics of Ni-Co alloy powders electrodeposited from dilute sulphate baths
US4728363A (en) Acicular magnetic particles
Fischer et al. Morphology of the growth of isolated crystals in cathodic metal deposits
US4668355A (en) Solutions for extracting magnetic particles
Zheng et al. Fabrication and magnetic properties of novel rare-earth-free Fe-Mn-Bi-P thin films by one-step electrodeposition
US3578571A (en) Method of electrodepositing a magnetic alloy and electrolyte therefor
JPS62218596A (ja) コバルト−ガドリニウム合金めつき浴
US4657583A (en) Method of producing ferromagnetic particles
US4698140A (en) Techniques for preparing magnetic particles having utility in recording media
JPS62218595A (ja) コバルト−ガドリニウム合金めつき浴
JPH0324292A (ja) 希土類金属―遷移金属系合金めっき方法
Schwartz et al. Direct & pulse current electrodeposition of iron group thin film alloys containing vanadium