JPH02213442A - Rotor material for compressor - Google Patents

Rotor material for compressor

Info

Publication number
JPH02213442A
JPH02213442A JP3279689A JP3279689A JPH02213442A JP H02213442 A JPH02213442 A JP H02213442A JP 3279689 A JP3279689 A JP 3279689A JP 3279689 A JP3279689 A JP 3279689A JP H02213442 A JPH02213442 A JP H02213442A
Authority
JP
Japan
Prior art keywords
rotor
compressor
rotor material
average particle
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3279689A
Other languages
Japanese (ja)
Inventor
Akio Kikuchi
菊地 昭雄
Yasuhiro Fukuda
福田 康廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP3279689A priority Critical patent/JPH02213442A/en
Publication of JPH02213442A publication Critical patent/JPH02213442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To manufacture the rotor material for a compressor having required high temp. strength and wear resistance and having good machinability by forming a composite material constituted of an Al alloy contg. specified ratios of Si, Cu and Mg and having specified average particle diameter of each Si in the outer circumferential part and central part. CONSTITUTION:Material powder is prepd. from the ingot of an Al alloy contg., by weight, 14 to 30% Si, 0.5 to 5% Cu, 0.3 to 3% Mg and the balance Al with impurities by an atomizing method. Next, by using the material powder, a composite material having <=2mu average particle diameter of Si in the outer circumferential part and <=10mu one of Si in the central part is manufactured by cold isotatic pressing and is formed by hot pressing at about 350 to 500 deg.C into a stock. The stock is externally cut into a billet for extrusion, which is extruded at about 350 to 500 deg.C to manufacture a rotor material. In this way, the rotor material preferably suitable as that of a compressor for a car cooler can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はコンプレッサ用のロータ材、例えばカークー
ラ用のコンプレッサのロータ材として適するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is suitable as a rotor material for a compressor, for example, a rotor material for a compressor for a car cooler.

[従来の技術] 近年、自動車のF−F化(ProntEngineFr
ont Drive)が進み、車体フロント部品の軽量
化が重要視されている。その目標の一つとしてカークー
ラ用コンプレッサの軽量化が重要視されている。
[Prior art] In recent years, automobiles have become F-F (ProntEngineFr).
Ont Drive) is progressing, and weight reduction of the front parts of the vehicle body is becoming more important. One of the goals is to reduce the weight of car cooler compressors.

従来、カークーラ用コンプレッサの主要部品は鋼製で、
アルミニウム合金はベーン、カバーおよびケース等に限
られている。そして、その重量は大型のカークーラでは
10kgf’を越えるものがある。
Traditionally, the main parts of car cooler compressors are made of steel.
Aluminum alloy is limited to vanes, covers, cases, etc. Some large car coolers weigh more than 10 kgf'.

現在用いられているロータの形状の一例を図面によって
示すと、幅1〜61の溝1がロータ2の円周上に等間隔
に2〜5個設けられ、この溝の中をベーン材3が摺動す
るようになっている。
An example of the shape of a rotor currently used is shown in a drawing. Two to five grooves 1 with a width of 1 to 61 are provided at equal intervals on the circumference of the rotor 2, and the vane material 3 is passed through the grooves. It is designed to slide.

ロータ72の材料としては鋼、例えばSCMが用いられ
ている。
The rotor 72 is made of steel, such as SCM.

しかし、コンプレッサの軽量化のためにロータをアルミ
ニウム合金で作製することが提案されている。すなわち
、アルミニウム合金を用いた場合、重量は鋼製のl/3
程度になり、それによってコンプレッサの性能を向上す
ることができる。
However, in order to reduce the weight of the compressor, it has been proposed to make the rotor from an aluminum alloy. In other words, when aluminum alloy is used, the weight is 1/3 that of steel.
degree, thereby improving the performance of the compressor.

ところでアルミニウム合金をロータ材として用いるには
下記の問題がある。
However, there are the following problems when using aluminum alloy as a rotor material.

■)耐摩耗性を向上させるためにStを14〜30%含
有させることが必要であるが、円周部分、特に、鋭角の
部分が割れるので良質の製品ができない。
(2) In order to improve wear resistance, it is necessary to contain 14 to 30% of St, but since the circumferential portion, especially the acute angle portion, cracks, it is not possible to produce a high quality product.

2)I/M合金(Ingot Metatlurgy合
金)ではSt含有量を12%以上にすると大きな割れが
発生して、側底完全な製品ができない。
2) In I/M alloy (Ingot Metallurgy alloy), if the St content is 12% or more, large cracks will occur, making it impossible to produce a product with a complete bottom.

3)充分な高温強度、耐摩耗性を有し、切削性の良好な
材料が得られない。
3) A material with sufficient high temperature strength, wear resistance, and good machinability cannot be obtained.

[発明が解決しようとする課題] この発明は、ロータ材として必要な高温強度と耐摩耗性
を有し、かつ、切削性の良好なアルミニウム合金を提供
しようとするものである。
[Problems to be Solved by the Invention] The present invention aims to provide an aluminum alloy that has high temperature strength and wear resistance necessary as a rotor material and has good machinability.

[課題を解決するための手段] 上記課題を解決するためのこの発明の構成は特許請求の
範囲に記載のとおり、重量基準で、組成が5L14〜,
30%、Cu0.5〜5%、Mg0.3〜3%、残部A
lおよび不純物からなり、外周部のSiの平均粒径は2
μm以下、中心部のSlの平均粒径が10μm以下であ
る複合材より成るコンプレッサ用ロータ材である。
[Means for Solving the Problem] As described in the claims, the structure of the present invention for solving the above problem is based on the weight, and the composition is 5L14~,
30%, Cu0.5-5%, Mg0.3-3%, balance A
1 and impurities, and the average grain size of Si at the outer periphery is 2.
This rotor material for a compressor is made of a composite material in which the average particle diameter of Sl in the center is 10 μm or less.

上記合金の各成分の作用とその含有量について説明する
と、 SI:耐摩耗性を向上させる成分であり、その量が14
%未満では耐摩耗性が不足し、30%を越えると延性が
小さくなるので押出成形が困難になる。
To explain the action and content of each component of the above alloy, SI: A component that improves wear resistance, and its amount is 14
If it is less than 30%, the wear resistance will be insufficient, and if it exceeds 30%, the ductility will be low, making extrusion molding difficult.

CuおよびMg:CuはMgと共存して耐摩耗性を向上
させ、かつ、固溶強化により高温強度を向上させる。C
uの量が0.5%未満では効果が充分でなく、5.0%
を越えても上記効果は向上しないうえ、押出加工性と耐
食性を害する。
Cu and Mg: Cu coexists with Mg to improve wear resistance, and also improves high temperature strength through solid solution strengthening. C
If the amount of u is less than 0.5%, the effect is not sufficient, and 5.0%
Even if it exceeds this, the above-mentioned effects will not be improved, and extrusion processability and corrosion resistance will be impaired.

また、Mgの量が0.3%未満では効果が充分でなく、
3%を越えても効果は向上しない。
Furthermore, if the amount of Mg is less than 0.3%, the effect is not sufficient,
Even if it exceeds 3%, the effect will not improve.

Stの粒径:Slの平均粒径が10μ濡を越えると切削
や研削が困難でロータ材の仕上げ加工ができなくなるう
え熱間加工性が低下して押出しが困難になる。特に、外
周部のStの平均粒径が2μ−を越えると外周部の鋭角
の部分に深さ 3〜4sm位の割れが発生し、押出が困
難になる。また、これらの割れを考慮して、大きな素材
を作製し、外削すると歩留りが悪化し、原価が上昇する
ので実用的ではない。更にボイドがきつくなって押出時
のダイスの破損の原因になり、製造が困難になる。
Particle size of St: If the average particle size of Sl exceeds 10 μm, cutting or grinding becomes difficult and finishing of the rotor material becomes impossible, and hot workability decreases, making extrusion difficult. In particular, if the average particle size of St at the outer periphery exceeds 2 μ-, cracks with a depth of about 3 to 4 sm will occur at the acute angle portion of the outer periphery, making extrusion difficult. Furthermore, if a large material is manufactured and externally machined in consideration of these cracks, the yield will deteriorate and the cost will increase, which is not practical. Furthermore, the voids become tighter, causing damage to the die during extrusion, making manufacturing difficult.

これに対して、全体のStの平均粒径が小さく、例えば
1μ−以下になると耐摩耗性が悪化し、実用性がなくな
る。
On the other hand, if the average particle size of the entire St is small, for example, 1 μm or less, the wear resistance deteriorates and the material becomes impractical.

次に、この発明のロータ材の製造工程の概要を説明する
と、所定の組成のアルミニウム合金の鋳塊からアトマイ
ズ法によって原料粉末をっく  る 。
Next, the outline of the manufacturing process for the rotor material of the present invention will be explained. Raw material powder is collected from an aluminum alloy ingot of a predetermined composition by an atomization method.

つぎに粒径150〜300μ−の原料粉末が中心部にな
り、その周囲に粒径150μm以下の原料粉末が充填さ
れるようにして中心部と外周部とが異なった粒径の原料
粉末からなる成形体を冷間静水圧プレスにより作製する
Next, the raw material powder with a particle size of 150 to 300 μm becomes the center, and the raw material powder with a particle size of 150 μm or less is filled around it, so that the center and the outer periphery are made of raw material powder with different particle sizes. A molded body is produced by cold isostatic pressing.

この成形体を温度350〜500℃でホットプレスして
素材を成形し、その素材を外削して押出成形用ビレット
とし、温度350〜500℃で押出成形によってロータ
材を製作する。
This molded body is hot pressed at a temperature of 350 to 500°C to form a material, the material is externally machined to form a billet for extrusion molding, and a rotor material is manufactured by extrusion molding at a temperature of 350 to 500°C.

St粒子の粗大化を防止するために、押出温度は550
℃以下が適当である。
In order to prevent the St particles from becoming coarse, the extrusion temperature was set at 550°C.
A temperature below ℃ is appropriate.

[実施例] 以下、実施例によって、その発明を具体的に説明する。[Example] The invention will be specifically explained below with reference to Examples.

組成が511g〜22%、Cu  1.5〜2.5%、
Mg0.3〜2%残部Alおよび不純物からなる鋳塊か
らアトマイズ法によって原料金属粉を製造する。
Composition: 511g to 22%, Cu 1.5 to 2.5%,
Raw metal powder is produced by an atomization method from an ingot consisting of 0.3 to 2% Mg, balance Al, and impurities.

この原料金属粉から外周部と中心部とが異なる粒径の成
形体を作製するのに二つの方法がある。
There are two methods for producing a molded body having different particle sizes at the outer periphery and the center from this raw metal powder.

その一方法では、上記原料金属粉を分級して150〜3
00μ5(Siの平均粒径2μl)の粉末を冷間静水圧
プレスにより中心部を成形し、それを成形型の中心に配
置してその外周部に150μm未満(Slの平均粒径1
.5μm)の粉末を充填しこれを冷間静水圧プレスを行
った後、350〜500℃でホットプレスする方法であ
る。
In one method, the raw metal powder is classified to
00 μm (average particle size of Si 2 μl) is molded in the center by cold isostatic pressing, placed in the center of the mold, and the outer periphery of the powder is less than 150 μm (average particle size of Si 1
.. This is a method in which powder of 5 μm) is filled, cold isostatically pressed, and then hot pressed at 350 to 500°C.

他の方法は、上記原料金属分を分級することなく成形用
の型に入れ、20〜30分間振動させると中心に比較的
粗い粒子、外周部に微細粒子が集合す゛る。これを35
0〜500℃でホットプレスすることによって、成形体
を作製する。
Another method is to put the raw metal into a mold without classifying it and vibrate it for 20 to 30 minutes, so that relatively coarse particles gather in the center and fine particles gather around the periphery. This is 35
A molded body is produced by hot pressing at 0 to 500°C.

上記何れかの方法で作製した成形体の外表面を削り取り
(外削)、所定の形状にしたビレットを350〜500
℃で押出して、ロータ材を作製する。
The outer surface of the molded body produced by any of the above methods is scraped (outer cutting), and the billet made into a predetermined shape is made into a 350-500 mm
Extrude at ℃ to produce rotor material.

こうして作製されたロータ材中のSi粒子の平均粒径は
外周部が1.5μ腸、中心部は2μmであった。ただし
、外周部の厚さは、原料粉末を分級してから成形する上
記一方法では外周面から半径の173であり、原料粉末
を分級しないで用いる第二の方法では外周面から5〜1
0svである。
The average particle size of the Si particles in the rotor material thus produced was 1.5 μm at the outer periphery and 2 μm at the center. However, the thickness of the outer periphery is 173 radii from the outer periphery in the above method in which the raw material powder is classified and then molded, and 5 to 1 radii from the outer periphery in the second method in which the raw material powder is not classified.
It is 0sv.

こうして作製したロータ材では先端部の割れがない。The rotor material produced in this way has no cracks at the tip.

[発明の効果] 以上説明したように、この発明による効果を要約すると
下記のとおりである。
[Effects of the Invention] As explained above, the effects of this invention can be summarized as follows.

<1)溝を切削することなく押出で成形できるので製品
の歩留りが従来法より20〜30%向上する。
<1) Since molding can be performed by extrusion without cutting grooves, the product yield is improved by 20 to 30% compared to conventional methods.

(2)ボイド部が深くないため、溝幅が2μmでも押出
することができる。(溝幅の小さいロータ材でもアルミ
ニウム合金で作製することができる。) (3)ロータ材をアルミニウム合金で作製することによ
って、その重量を従来のもののl/3にするこ7とがで
き、コンプレッサの軽量化と性能向上に極めて有効であ
る。
(2) Since the void portion is not deep, extrusion can be performed even with a groove width of 2 μm. (Even a rotor material with a small groove width can be made of aluminum alloy.) (3) By making the rotor material of aluminum alloy, its weight can be reduced to 1/3 of the conventional one, and the compressor It is extremely effective in reducing weight and improving performance.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明ならびに従来のロータ材とベーンの関係
を示す断面図である。 1・・・溝、2・・・ロータ、3・・・ベーン。
The drawings are cross-sectional views showing the relationship between rotor materials and vanes according to the present invention and the conventional technology. 1... Groove, 2... Rotor, 3... Vane.

Claims (1)

【特許請求の範囲】[Claims]  重量基準で、組成がSi14〜30%、Cu0.5〜
5%、Mg0.3〜3%、残部Alおよび不純物からな
り、外周部のSiの平均粒径は2μm以下、中心部のS
iの平均粒径が10μm以下である複合材より成ること
を特徴とするコンプレッサ用ロータ材。
On a weight basis, the composition is Si14~30%, Cu0.5~
5% Mg, 0.3-3% Mg, and the remainder Al and impurities.
A rotor material for a compressor, characterized in that it is made of a composite material in which the average particle diameter of i is 10 μm or less.
JP3279689A 1989-02-14 1989-02-14 Rotor material for compressor Pending JPH02213442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279689A JPH02213442A (en) 1989-02-14 1989-02-14 Rotor material for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279689A JPH02213442A (en) 1989-02-14 1989-02-14 Rotor material for compressor

Publications (1)

Publication Number Publication Date
JPH02213442A true JPH02213442A (en) 1990-08-24

Family

ID=12368812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279689A Pending JPH02213442A (en) 1989-02-14 1989-02-14 Rotor material for compressor

Country Status (1)

Country Link
JP (1) JPH02213442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025449A1 (en) * 1996-01-05 1997-07-17 Norsk Hydro Technology B.V. Wear-resistant aluminum alloy and compressor piston formed therefrom
JP2007075884A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Aluminum alloy-made forging-formed product and producing method therefor, and die for forging and forging apparatus, and aluminum alloy-made rotor blank and aluminum alloy-made rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025449A1 (en) * 1996-01-05 1997-07-17 Norsk Hydro Technology B.V. Wear-resistant aluminum alloy and compressor piston formed therefrom
US5851320A (en) * 1996-01-05 1998-12-22 Norsk Hydro, A. S. Wear-resistant aluminum alloy and compressor piston formed therefrom
JP2007075884A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Aluminum alloy-made forging-formed product and producing method therefor, and die for forging and forging apparatus, and aluminum alloy-made rotor blank and aluminum alloy-made rotor

Similar Documents

Publication Publication Date Title
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
US5976214A (en) Slide member of sintered aluminum alloy and method of manufacturing the same
US5338168A (en) Oil pump made of aluminum alloys
JPS6210237A (en) Aluminum alloy for hot forging
US5494540A (en) Abrasion-resistant aluminum alloy and method of preparing the same
JPS6121295B2 (en)
JPS6316459B2 (en)
JPS5846539B2 (en) Aluminum alloy for bearings and its manufacturing method
CN100371485C (en) Aluminum alloy extrudate excelling in cutting/calking property and wear resistance
JPH02213442A (en) Rotor material for compressor
JPH0828493A (en) Manufacture of aluminum alloy-made scroll
JPH0999353A (en) Half-melting injection molding part and production thereof
JPS6050137A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPH0118981B2 (en)
US5265457A (en) Method of forming an oil groove on the end surface of a rotor of an aluminum alloy
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JP4412594B2 (en) Aluminum alloy, rod-shaped material, forged molded product, machined molded product, wear-resistant aluminum alloy having excellent anodized film hardness using the same, sliding component, and production method thereof
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JPH0246659B2 (en)
JP2907389B2 (en) Aluminum alloy material for wear resistance processing with excellent toughness
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JP3057468B2 (en) Wear-resistant aluminum-based sintered alloy and method for producing the same
JPS6184343A (en) Manufacture of member made of aluminum alloy
JPH0256401B2 (en)