JPH02210894A - Aln multilayer board with internal wiring including conductor and resistor and manufacture thereof - Google Patents

Aln multilayer board with internal wiring including conductor and resistor and manufacture thereof

Info

Publication number
JPH02210894A
JPH02210894A JP1031912A JP3191289A JPH02210894A JP H02210894 A JPH02210894 A JP H02210894A JP 1031912 A JP1031912 A JP 1031912A JP 3191289 A JP3191289 A JP 3191289A JP H02210894 A JPH02210894 A JP H02210894A
Authority
JP
Japan
Prior art keywords
aln
printed
resistor
paste
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1031912A
Other languages
Japanese (ja)
Other versions
JP2615970B2 (en
Inventor
Yoshio Kuromitsu
祥郎 黒光
Hideaki Yoshida
秀昭 吉田
Tadaharu Tanaka
田中 忠治
Michio Yuzawa
湯澤 通男
Toshiyuki Nagase
敏之 長瀬
Yoshio Kanda
義雄 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1031912A priority Critical patent/JP2615970B2/en
Publication of JPH02210894A publication Critical patent/JPH02210894A/en
Application granted granted Critical
Publication of JP2615970B2 publication Critical patent/JP2615970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To eliminate defective print and prevent occurrence of defects in conductors and resistors by joining a plurality of baked AlN sheets, on whose surfaces conductors and resistors are wired, with an inorganic binder together. CONSTITUTION:An oxide layer 5 is formed on the surface of an AlN board 1 obtained by baking, and further an SiO2 layer 6 is formed on the surface of the oxide layer 5 and surface treatment is carried out, then conductor paste 2 and resistor paste 3 are printed on the surface which has been surface treated to form an AlN ceramic sheet (AlN printed sheet). A plurality of AlN printed sheets, obtained by applying glass paste 4 to the part except the conductor paste 2 and the resistor paste 3 on this AlN printed sheet, are superposed and baked. Thus, printing mistakes are eliminated, and defectives produced by disconnection of the conductors and the resistors can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、コンピューターやその周辺機器。[Detailed description of the invention] [Industrial application field] This invention applies to computers and their peripherals.

民生用電子機器等に用いられる多層配線基板・に関する
ものである。
This invention relates to multilayer wiring boards used in consumer electronic devices and the like.

〔従来の技術〕[Conventional technology]

従来から、アルミナのグリーンシート上にタングステン
もしくはモリブデンを印刷し、それらを重ね合せて焼成
することにより、印刷されたタングステンもしくはモリ
ブデンの焼成と同時にアルミナのグリーンシート、を焼
成一体化し、アルミナセラミックス多層基板を製造する
方法が知られている。
Conventionally, tungsten or molybdenum is printed on an alumina green sheet, and then the printed tungsten or molybdenum is fired at the same time as the printed tungsten or molybdenum, and the alumina green sheet is fired and integrated, resulting in an alumina ceramic multilayer substrate. A method of manufacturing is known.

しかし、上記アルミナセラミックス多層基板の焼成温度
は1500〜1600℃と高温であるために1層内に同
時に実用的な受動素子を形成することができず、また配
線部分として融点の高いりングステンまたはモリブデン
を用いなければならないために抵抗が増すという問題点
があった。
However, since the firing temperature of the alumina ceramic multilayer substrate is as high as 1,500 to 1,600°C, practical passive elements cannot be simultaneously formed in one layer, and the wiring portion is made of phosphorus, which has a high melting point, or molybdenum. There was a problem in that resistance increased because it had to be used.

これらの問題点を解決するために、最近、上記アルミナ
セラミックスに代えて、ガラスとアルミナの複合アルミ
ナセラミックス(以下、複合セラミックスという)を用
いて多層基板が形成されるようになってきた。
In order to solve these problems, multilayer substrates have recently been formed using composite alumina ceramics of glass and alumina (hereinafter referred to as composite ceramics) instead of the alumina ceramics described above.

この複合セラミックスを用いる多層基板の製造方法は、
複合セラミックスの焼成温度が900℃〜1000℃と
いう低温であるために、複合セラミックスのグリーンシ
ート上にAgやCuなどの導体やRu Oz系の抵抗体
を印刷し、それらを重ね合せて上記焼成温度で焼成し、
多層基板を形成する方法でめり、現在さかんに開発研究
されている方法である。この方法で得られた多層基板は
、第3図に示されているように1M、20.粉末とホウ
ケイ酸ガラス粉末との混合粉末に有機バインダーを混合
してドクターブレード法によりグリーンシートラを作製
し、このグリーンシートラの表面に導電に一スト2およ
び抵抗体ペースト3全印刷して印刷グリーンシート旦を
作製し、これら印刷グリーンシート旦をそのまま重ね合
せて焼成し、第4図に示されるよう複合セラミックス9
内部に導体2′および抵抗体3′ヲ有する複合セラミッ
クス多層基板が形成されるものである。
The method for manufacturing a multilayer board using this composite ceramic is as follows:
Since the firing temperature of composite ceramics is as low as 900°C to 1000°C, a conductor such as Ag or Cu or a RuOz-based resistor is printed on a green sheet of composite ceramics, and these are superimposed and fired at the above firing temperature. Baked with
This method was first developed as a method for forming multilayer substrates, and is currently being actively researched and developed. The multilayer substrate obtained by this method is 1M, 20. A green sheeter is prepared by mixing an organic binder with a mixed powder of powder and borosilicate glass powder using a doctor blade method, and the conductive paste 2 and resistor paste 3 are printed on the surface of this green sheeter to produce a printed green sheet. The printed green sheets were stacked together and fired to form a composite ceramic 9 as shown in Figure 4.
A composite ceramic multilayer substrate having a conductor 2' and a resistor 3' inside is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、近年、IC−?LSIの高集積化および高機
械化に伴って、そこに接続される多層基板の配線も高密
度化および高強度化が要求されるようになってきた。し
かし、上記複合セラミックス多層基板では、複合セラミ
ックス自体の熱伝導率が上記アルミナセラミックスの熱
伝導率の115〜1/10と低いために、配線の微細化
、多層化および高密度化に限界が、あり、さらに基板の
強度についても上記複合セラミックス基板は上記アルミ
ナセラミックス基板の約1/2程度であり、過酷な条件
での使用には信頼性が薄いという問題点があった。
However, in recent years, IC-? As LSIs become more highly integrated and mechanically integrated, the wiring of multilayer substrates connected thereto is also required to have higher density and strength. However, in the composite ceramic multilayer substrate, the thermal conductivity of the composite ceramic itself is as low as 115 to 1/10 of that of the alumina ceramics, so there is a limit to miniaturization, multilayering, and high density wiring. In addition, the strength of the composite ceramic substrate is about 1/2 that of the alumina ceramic substrate, and there is a problem that the reliability is low when used under severe conditions.

また、この複合セラミックス多層基板は裏造工程におい
てグリーンシート表面に導体ペーストや抵抗体ペースト
を直接印刷するために欠陥印刷されることがあり、II
:8wされて得られる導体や抵抗体に欠陥が発生しやす
く製品の信頼りも低いという問題点もあった。
In addition, this composite ceramic multilayer substrate may have defects printed because the conductor paste or resistor paste is directly printed on the surface of the green sheet during the backing process.
: There was also the problem that defects were likely to occur in the conductors and resistors obtained by 8w, and the reliability of the products was low.

〔課題を解決するための手段〕[Means to solve the problem]

そこで2本発明者等は、内部にAgやCuなどの良導体
や十分に制御された抵抗体を高い信頼性のもとて高密度
に配線し、上記配線され九抵抗体が発生する熱を効率よ
く放出できる熱伝導性の優れた多層基板を開発すべく研
究を行った結果。
Therefore, the inventors of the present invention have wired high-density internal conductors such as Ag and Cu and well-controlled resistors with high reliability, and efficiently dissipated the heat generated by the wired resistors. This is the result of research to develop a multilayer board with excellent heat conductivity that can effectively release heat.

アルミナよりも熱伝導性および強度のすぐれた焼成され
たAIINセラミックスシートに導体ペーストおよび抵
抗体ペーストなどを印刷したAlNセラミックスシート
(以下、これQMN印刷シートという)を作製し、との
AfiN印刷シートを3次元的に積み重ね、バインダー
で接合することにより得られた多層基板は、従来の多層
基板よりも一層すぐれたものであるという知見を得たの
である。
An AlN ceramic sheet (hereinafter referred to as a QMN printed sheet) is produced by printing a conductor paste, a resistor paste, etc. on a fired AIIN ceramic sheet, which has better thermal conductivity and strength than alumina, and an AfiN printed sheet is produced. They found that a multilayer board obtained by stacking three-dimensionally and bonding with a binder is even superior to conventional multilayer boards.

この発明は、かかる知見にもとづいてなされたものであ
って。
This invention was made based on this knowledge.

上記AlN印刷シートを積み重ね、それらを複合酸化物
ソルダーで接合することを特徴とする多層基板の製造方
法に特徴を有するものである。
This method is characterized by stacking the above-mentioned AlN printed sheets and joining them with a composite oxide solder.

上記AlN印刷シートは、  lJ、Nシートの表面を
表面処理して表面処理層を形成したのちその表面に印刷
配線してAlN印刷シートを作製する方が好ましい。
It is preferable to produce the above-mentioned AlN printed sheet by surface treating the surface of the lJ,N sheet to form a surface treated layer, and then printing wiring on the surface.

アルミナよりも熱伝導性および強度のすぐれた基板材料
として上記AINの外にベリリヤがあるが。
In addition to the above-mentioned AIN, there is Beryllium as a substrate material that has better thermal conductivity and strength than alumina.

ベリリヤは毒性が強いことから実用上績も熱を効率よく
放散し、高密度実装が実現できる多層基板用セラミック
スシートとしてはONが最も好ましく、さらにAiNは
シリコンと熱膨張係数がほぼ等しいことから大型チップ
塔載も可能である。
Since beryllya is highly toxic, ON is the most preferred ceramic sheet for multilayer boards because it dissipates heat efficiently and can achieve high-density mounting, and since AiN has a coefficient of thermal expansion that is almost the same as silicon, it can be used in large sizes. Chip mounting is also possible.

つぎに、内部に配線されたAjlN多層基板の製造方法
を図面にもとづいて具体的に説明する。
Next, a method for manufacturing an AJIN multilayer board with internal wiring will be specifically explained based on the drawings.

第1図は、 A1.N印刷シートの断面図である。焼成
して得られたA(N基板上の表面に酸化物層5を形成し
、その酸化物層5の表向にさらに8102層6を形成し
て表面処理したのち、その底面処理した表面に導体ペー
スト2および抵抗体イースト3を印刷し、UN印刷シー
トを作製する。このAlN印刷シートの導体は−スト2
および抵抗体イースト3以外の部分にガラスイースト番
を塗布して得られたAlN印刷シートを複数枚積み重ね
て焼成すると第2図に示されるようなガラス4′に囲ま
れて内部に配線された導体2′および抵抗体3′を有す
るAlN多層基板が得られるのである。
Figure 1 shows A1. It is a sectional view of the N printing sheet. An oxide layer 5 is formed on the surface of the A(N substrate) obtained by firing, and an 8102 layer 6 is further formed on the surface of the oxide layer 5 for surface treatment. Conductor paste 2 and resistor yeast 3 are printed to produce a UN printed sheet.The conductor of this AlN printed sheet is -st 2
When a plurality of AlN printed sheets obtained by applying glass yeast number to the parts other than the resistor yeast 3 are stacked and fired, a conductor surrounded by glass 4' and wired inside as shown in Fig. 2 is formed. Thus, an AlN multilayer substrate having resistor 2' and resistor 3' is obtained.

〔実施例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

まず、原料粉末としてそれぞれ平均粒径:3μmのUN
粉末およびY2O5粉末を用意し、上記Y20.粉末:
2重量%金上記AlN粉末に配合し、混合し。
First, UN with an average particle size of 3 μm was used as the raw material powder.
Powder and Y2O5 powder were prepared, and the above Y20. Powder:
Add 2% by weight of gold to the above AlN powder and mix.

さらに有機バインダーと混合し、ドクターブレード法に
よりAINグリーンシートに成形後、1800℃で2時
間窒素雰囲気中で焼結し、厚さ:0.3I!l。
Furthermore, it was mixed with an organic binder, formed into an AIN green sheet using the doctor blade method, and then sintered at 1800°C for 2 hours in a nitrogen atmosphere to a thickness of 0.3I! l.

幅:50.8朋、長さ:50.8鵡の寸法を有するAI
N基板を得た。
AI with dimensions of width: 50.8 mm and length: 50.8 mm
An N substrate was obtained.

つぎに、この基板を、酸素分圧:2XlOatm。Next, this substrate was heated to an oxygen partial pressure of 2XlOatm.

水蒸気分圧:1XIOatmの雰囲気で3時間保持の表
面処理を施して、基板表面に厚さ:マμ講の酸化物層を
形成したのち、ゾルゲル法により厚さ20.52票の8
102層を形成した。
Surface treatment was carried out for 3 hours in an atmosphere with a water vapor partial pressure of 1XIO atm to form an oxide layer with a thickness of 20.52 mm on the surface of the substrate, and then a 20.52 mm thick 8
102 layers were formed.

この表面処理したA1.N基板に6通常のAg −Pd
系導体イーストおよびRuO2系抵抗体イーストを印刷
し、そのAg−Pd系イーストおよびRu Oz系抵抗
体イースト以外の部分にガラスペーストとしてホウケイ
酸ガラス(コーニング社製、)720.軟化点二フ55
℃)ペーストを印刷し、第1因に示される構造のAlN
印刷シートを10枚作製した。
This surface-treated A1. 6 normal Ag-Pd on N substrate
After printing the conductor yeast and RuO2 resistor yeast, apply borosilicate glass (manufactured by Corning, Inc.) 720. Softening point 2F 55
°C) Print the paste and use AlN with the structure shown in the first factor.
Ten printed sheets were produced.

上記UN印刷シ〒ト10枚t−3次元的に恵ね合せ、大
気雰囲気中、温度二り50℃、10分間保持の条件で焼
成してAlN多層基板を作製し、そのAIN多1多基一
基板伝導度および曲げ強度を測定してその結果t−fi
1表に示した。
Ten of the above UN printed sheets were three-dimensionally arranged and fired in an air atmosphere at a temperature of 50°C for 10 minutes to produce an AlN multilayer substrate. Measure the conductivity and bending strength of one substrate and the result t-fi
It is shown in Table 1.

一方、比較のために、平均粒径二3μ戊のAl2O3粉
末と上記ホウケイ酸ガラス(コーニング社製)120.
軟化点:155℃)粉末を1重量比で50:50となる
ように混合し、さらに有機バインダーを混合してドクタ
ーブレード法により厚さ:0.31mのグリーンシート
を10枚作製した。そのグリーンシート表面にそれぞれ
通常のAg−Pd系導体ペーストおよびRu O2系低
抵抗ペーストヲ印刷して印刷グリーンシートとし、これ
ら印刷グリーンシートを10枚重ね合せて大気雰囲気中
、温度=850℃、60分間保持の条件で焼成し、現在
開発されつつある複合セラミックス多層基板を作製し、
この基板の熱伝導度および曲げ強度を測定して比較例と
して第1表に示した。
On the other hand, for comparison, Al2O3 powder with an average particle size of 23 μm and the above borosilicate glass (manufactured by Corning Corporation) 120.
Softening point: 155° C.) powders were mixed at a weight ratio of 50:50, and an organic binder was further mixed thereto to produce 10 green sheets each having a thickness of 0.31 m using a doctor blade method. A normal Ag-Pd based conductor paste and RuO2 based low resistance paste were printed on the surface of each of the green sheets to obtain a printed green sheet, and 10 of these printed green sheets were stacked on top of each other in an air atmosphere at a temperature of 850°C for 60 minutes. The composite ceramic multilayer substrate, which is currently being developed, is produced by firing under the conditions of holding.
The thermal conductivity and bending strength of this substrate were measured and shown in Table 1 as a comparative example.

は4倍も昼いことがわかる。It turns out that it is four times more daytime.

〔発明の効果〕〔Effect of the invention〕

この発明のAlN多層基板は、焼成されたしつかりした
INシー)K導体ペーストおよび抵抗体ペーストを印刷
するために、印刷ミスがなく、シたがって導体1.+は
抵抗体の断線等による不良品発生も少なく、また、この
発明の製造方法で得られた多層基板は、熱伝導度が極め
て高いので導体および抵抗体から発生する熱を効率よく
放散させる仁とができ、したがって導体および抵抗体を
多層基板内部に高密度で配線することができ、さらに強
度も極めて優れているので過酷な条件でも十分に耐える
ことができる等のすぐれ九効果を奏するものである。
The AlN multilayer substrate of the present invention is free from printing errors because it prints the fired and firm IN conductor paste and resistor paste, and therefore the conductor 1. + means that there are fewer defective products due to disconnection of resistors, etc. Furthermore, the multilayer board obtained by the manufacturing method of this invention has extremely high thermal conductivity, so it is highly effective for efficiently dissipating heat generated from conductors and resistors. Therefore, conductors and resistors can be wired at high density inside a multilayer board, and it has excellent strength, so it can withstand even harsh conditions. be.

第1表 第1表の結果から、この発明によシ得られた基板は、現
在開発されつつある複合セラミックス多層基板よりも熱
伝導度は14倍も高く1曲は強度
From the results shown in Table 1, the substrate obtained by this invention has a thermal conductivity 14 times higher than that of the composite ceramic multilayer substrate currently being developed, and has a high strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明のAlN多層基板を作製するための
1枚のAlN印刷シートの断面図。 第2図は、この発明のAlN多層基板の断面図。 第3図は、従来の複合セラミックス多層基板を炸裂する
ための1枚の印刷グリーンシートの断面図。 第4図は、従来の複合セラミックス多層基板の断面図で
ある。 1・・・^IN基板、    2・・・導体は−スト。 3・・・抵抗体イースト、 4・・・ガラスは−スト。 5・・・酸化物層、    6・・・8102層。 2′・・・導体、3′・・・抵抗体。 C・・・ガラス。
FIG. 1 is a cross-sectional view of one AlN printed sheet for producing the AlN multilayer substrate of the present invention. FIG. 2 is a cross-sectional view of the AlN multilayer substrate of the present invention. FIG. 3 is a cross-sectional view of one printed green sheet for exploding a conventional composite ceramic multilayer substrate. FIG. 4 is a cross-sectional view of a conventional composite ceramic multilayer substrate. 1...^IN board, 2...The conductor is -st. 3... Resistor yeast, 4... Glass is -st. 5... Oxide layer, 6... 8102 layer. 2'...Conductor, 3'...Resistor. C...Glass.

Claims (3)

【特許請求の範囲】[Claims] (1)表面に導体および抵抗体を配線した複数枚の焼成
Alシートの積層体であつて、上記積層体は互いに無機
バインダーで接合されていることを特徴とする内部に導
体および抵抗体を配線したAlN多層基板。
(1) A laminate of a plurality of fired Al sheets with conductors and resistors wired on the surface, the laminate being bonded to each other with an inorganic binder.The conductor and resistor are wired inside. AlN multilayer substrate.
(2)焼成したAlNシートの表面に導体ペースト,抵
抗体ペーストおよび無機バインダーペーストを印刷また
は塗布して配線し、ついで3次元的に積み重ねて焼成す
ることを特徴とする内部に導体および抵抗体を配線した
MN多層基板の製造方法。
(2) Conductor paste, resistor paste, and inorganic binder paste are printed or applied on the surface of the fired AlN sheet for wiring, and then the conductor and resistor are stacked three-dimensionally and fired. A method for manufacturing a wired MN multilayer board.
(3)上記焼成したAlシートの表面は表面処理されて
いることを特徴とする請求項2記載の内部に導体および
抵抗体を配線したAlN多層基板の製造法。
(3) The method for manufacturing an AlN multilayer substrate with conductors and resistors wired inside it according to claim 2, wherein the surface of the fired Al sheet is surface-treated.
JP1031912A 1989-02-10 1989-02-10 Method for manufacturing an ANN multilayer substrate in which conductors and resistors are wired inside Expired - Lifetime JP2615970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031912A JP2615970B2 (en) 1989-02-10 1989-02-10 Method for manufacturing an ANN multilayer substrate in which conductors and resistors are wired inside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031912A JP2615970B2 (en) 1989-02-10 1989-02-10 Method for manufacturing an ANN multilayer substrate in which conductors and resistors are wired inside

Publications (2)

Publication Number Publication Date
JPH02210894A true JPH02210894A (en) 1990-08-22
JP2615970B2 JP2615970B2 (en) 1997-06-04

Family

ID=12344191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031912A Expired - Lifetime JP2615970B2 (en) 1989-02-10 1989-02-10 Method for manufacturing an ANN multilayer substrate in which conductors and resistors are wired inside

Country Status (1)

Country Link
JP (1) JP2615970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062522A (en) * 2008-09-05 2010-03-18 Samsung Electro-Mechanics Co Ltd Multilayer ceramic circuit substrate and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119094A (en) * 1984-11-15 1986-06-06 株式会社東芝 High thermoconductive circuit board
JPS63181399A (en) * 1987-01-22 1988-07-26 日本特殊陶業株式会社 High heat conductivity film multilayer interconnection board
JPS63220598A (en) * 1987-03-10 1988-09-13 三菱鉱業セメント株式会社 Ceramic multilayer interconnection board and manufacture of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119094A (en) * 1984-11-15 1986-06-06 株式会社東芝 High thermoconductive circuit board
JPS63181399A (en) * 1987-01-22 1988-07-26 日本特殊陶業株式会社 High heat conductivity film multilayer interconnection board
JPS63220598A (en) * 1987-03-10 1988-09-13 三菱鉱業セメント株式会社 Ceramic multilayer interconnection board and manufacture of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062522A (en) * 2008-09-05 2010-03-18 Samsung Electro-Mechanics Co Ltd Multilayer ceramic circuit substrate and method of manufacturing the same
US8106306B2 (en) 2008-09-05 2012-01-31 Samsung Electro-Mechanics Co., Ltd. Ceramic multi-layer circuit substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2615970B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPS63358A (en) Low permittivity material for manufacture of subminiature electronic device
JPH0992983A (en) Manufacture of ceramic multilayer board
KR20020070483A (en) Method of manufacturing ceramic multi-layer substrate, and unbaked composite laminated body
WO2000060613A1 (en) Conductive paste, ceramic multilayer substrate, and method for manufacturing ceramic multilayer substrate
JPH08139230A (en) Ceramic circuit board and its manufacture
JPH10308584A (en) Ceramic multilayered board and its manufacture
JP4610114B2 (en) Manufacturing method of ceramic wiring board
JPH02210894A (en) Aln multilayer board with internal wiring including conductor and resistor and manufacture thereof
JPH0613755A (en) Ceramic multilayer wiring board and manufacture thereof
US5955938A (en) RuO2 resistor paste, substrate and overcoat system
JP2001085839A (en) Method for manufacturing multi-ceramic substrate
JPH09172258A (en) Glass ceramics multilayered wiring board and its manufacture
JPH06334282A (en) Green sheet for ceramic multilayer substrate
JP3091378B2 (en) Ceramic multilayer substrate
JP3909189B2 (en) Manufacturing method of glass ceramic substrate
JP2964725B2 (en) Composition for ceramic substrate
JP2003002751A (en) Method for manufacturing ceramic part
JP2681328B2 (en) Circuit board manufacturing method
JP2004146701A (en) Method for manufacturing glass ceramic substrate
JP3850243B2 (en) Manufacturing method of glass ceramic substrate
JPH1154886A (en) High sectional density printed circuit board and its manufacture
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JP3850245B2 (en) Manufacturing method of glass ceramic substrate
JPH09198919A (en) Conductive paste and ceramic component using it
JPH09249460A (en) Production of ceramic multilayer board