JPH02208919A - Irradiation light quantity controller - Google Patents

Irradiation light quantity controller

Info

Publication number
JPH02208919A
JPH02208919A JP1028962A JP2896289A JPH02208919A JP H02208919 A JPH02208919 A JP H02208919A JP 1028962 A JP1028962 A JP 1028962A JP 2896289 A JP2896289 A JP 2896289A JP H02208919 A JPH02208919 A JP H02208919A
Authority
JP
Japan
Prior art keywords
light
optical member
irradiation
amount
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028962A
Other languages
Japanese (ja)
Inventor
Yoshinori Miwa
三輸 良則
Masao Kosugi
小杉 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1028962A priority Critical patent/JPH02208919A/en
Publication of JPH02208919A publication Critical patent/JPH02208919A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To control the quantity of light projected on the irradiation surface of a method wherein a part of the flux of light, emitted rom an illuminator, is picked out, it is made to irradiate on an optical material, the change of optical property of the optical material is detected, and the quantity of irradiation light is controlled. CONSTITUTION:A light source 15 is pulse-oscillated, the irradiation on the surface of a reticle 2 is started by an optical system of illumination 1, the surface of a wafer 4 is exposed to light, and at the same time, a part of the luminous flux emitted from the light source 15 is made to irradiate on a photoresist 7a. Then, the quantity of light projected on the photoresist 7a is detected by a photodetector 11, the output signal sent from the photodetector 11 is detected by a luminous energy controller 22, and when the prescribed value is attained, a shutter means 23 is closed by the luminous energy controller 22, or the irradiation to the reticle surface 2 is discontinued by stopping the pulse oscillation from the light source 15, and the luminous energy per one light exposure to the surface of the wafer 4 is properly set.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は照射光量制御装置に関し、特にパルス発光する
比較的発光時間の短い例えばエキシマレーザ−等の光源
を用いて被照射面、例えば、半導体素子製造用の露光装
置における電子回路パターンが形成されているマスクや
レチクル(以下「レチクル」という、)面等を照射する
際に被照射面上の照射光量が一定となるように制御する
ことができる照射光量制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an irradiation light amount control device, and particularly to an irradiation light amount control device that uses a light source such as an excimer laser that emit pulsed light and has a relatively short light emission time to control a surface to be irradiated, such as a semiconductor. When irradiating a mask or reticle (hereinafter referred to as "reticle") surface on which an electronic circuit pattern is formed in an exposure apparatus for manufacturing elements, it is possible to control the amount of irradiation light on the irradiated surface to be constant. The present invention relates to an irradiation light amount control device that can be used.

(従来の技術) 最近の半導体製造技術には電子回路パターンの高集積化
に伴い、高密度の電子回路パターンが形成可能な露光装
置が要求されている。
(Prior Art) In recent semiconductor manufacturing technology, as electronic circuit patterns become highly integrated, an exposure apparatus that can form high-density electronic circuit patterns is required.

一般にレチクル面上の電子回路パターンをウェハ面上に
転写する場合、ウェハ面上に転写される電子回路パター
ンの解像線幅を良好に維持する為にはレチクル面上を照
射する照明手段からの照射光量を適切に設定する必要が
ある。
Generally, when transferring an electronic circuit pattern on a reticle surface onto a wafer surface, in order to maintain a good resolution line width of the electronic circuit pattern transferred onto the wafer surface, it is necessary to It is necessary to set the irradiation light amount appropriately.

一般にはレチクル面上を照射する照射光量の最適値は用
いるレジストにより予め求められており、照射光量がこ
のときの最適値になるように種々の方法により制御して
いる。
Generally, the optimal value of the amount of irradiation light irradiated onto the reticle surface is determined in advance depending on the resist used, and is controlled by various methods so that the amount of irradiation light is the optimal value at this time.

一方最近高解像力化を目的としてディープUv領域に発
振波長を有するエキシマレーザを用いた露光装置が種々
と提案されている。
On the other hand, various exposure apparatuses using excimer lasers having an oscillation wavelength in the deep UV region have recently been proposed for the purpose of increasing resolution.

このエキシマレーザ−の発振はパルス発光であり、lパ
ルスの発光時間はlO〜30n  secと非常に短い
、又このときの発振パルス波形は常に変化している。こ
の為パルス発振するエキシマレーザを露光装置に光源と
して用いる場合には被照射面を一定の照射光量で照明す
るように構成することが重要となってくる。
The oscillation of this excimer laser is pulsed light emission, and the light emission time of 1 pulse is very short, 10~30 nsec, and the oscillation pulse waveform at this time is constantly changing. For this reason, when a pulsed excimer laser is used as a light source in an exposure apparatus, it is important to configure the exposure apparatus so that the surface to be irradiated is illuminated with a constant amount of light.

(発明が解決しようとする問題点) 発光時間が短くパルス発振するエキシマレーザを光源と
して用い被照射面への照射光量が所定値となるように高
精度に制御するにはディープUv領域(波長250nm
近傍)の光に対して十分な感度を有し、かつ高速なパル
ス発振に追従できる程度の高速応答性を有した積算光量
型の検出手段が必要となってくる。
(Problem to be solved by the invention) In order to control the amount of light irradiated onto the irradiated surface with high precision so that it reaches a predetermined value using an excimer laser that emits pulses with a short light emission time as a light source, it is necessary to use a deep UV region (wavelength 250 nm).
There is a need for an integrated light amount type detection means that has sufficient sensitivity to light (nearby) and has high-speed response that can follow high-speed pulse oscillations.

本発明はパルス発振するエキシマレーザ等の光源を用い
てレチクル面等の被照射面を照射する際照射光量によっ
て光学的性質が変化するレジストやフォトクロミック材
料等の光学部材を用いることにより被照射面への照射光
量が常に最適値となるように良好に制御することのでき
る例えば半導体素子製造用の露光装置に好適な照射光量
制置装置の提供を目的とする。
The present invention uses an optical member such as a resist or photochromic material whose optical properties change depending on the amount of irradiation light when irradiating the irradiated surface such as a reticle surface using a light source such as a pulsed excimer laser. An object of the present invention is to provide an irradiation light amount control device suitable for, for example, an exposure apparatus for manufacturing semiconductor devices, which can satisfactorily control the irradiation light amount so that it always has an optimum value.

(問題点を解決するための手段) 本発明は照明手段により被照射面上を照明する際、誤照
明手段からの光束の一部を取り出し照射光量に応じて光
学的性質が変化する光学部材に入射させ、該光学部材の
光学的性質の変化を光学的検出手段により検出すること
により該被照射面上への照射光量を制御したことを特徴
としている。
(Means for Solving the Problems) The present invention extracts a part of the luminous flux from the erroneous illumination means when illuminating the surface to be illuminated by the illumination means, and uses it as an optical member whose optical properties change according to the amount of irradiation light. The invention is characterized in that the amount of light irradiated onto the surface to be irradiated is controlled by detecting a change in the optical properties of the optical member using an optical detection means.

特に本発明では前記照明手段はパルス発光する光源を有
しており、前記光学部材は照射光量に応じて透過率が変
化する材料を有しており、前記検出手段は該光学部材に
光束を入射させる為の発光素子と該光学部材を透過した
光束を受光する受光素子を有していることを特徴として
いる。
In particular, in the present invention, the illumination means has a light source that emits pulsed light, the optical member has a material whose transmittance changes depending on the amount of irradiated light, and the detection means makes the light beam incident on the optical member. It is characterized by having a light-emitting element for transmitting the light and a light-receiving element for receiving the light beam transmitted through the optical member.

(実施例) 第1図は本発明を半導体製造用の縮少投影型の露光装置
に適用したときの一実施例のfI部概略図である。
(Embodiment) FIG. 1 is a schematic diagram of the fI section of an embodiment in which the present invention is applied to a reduced projection type exposure apparatus for semiconductor manufacturing.

同図において15は光源であり、例えばインジェクショ
ンロッキングタイプのエキシマレーザより成りている。
In the figure, reference numeral 15 denotes a light source, which is, for example, an injection locking type excimer laser.

lは照明光学系であり、光jllからのパルス発振され
た光束のうち一部の光束を不図示のハーフミラ−で取り
出して後述する積算光量計測手段21に導光し、他の光
束を被照射面であるレチクル2面上に導光している。3
は投影光学系であり、レチクル2面上の電子回路パター
ンをウェハ4面上に所定の倍率で投影している。5はウ
ェハーチャックであり、不図示の可動ステージ上に載置
されており、ウェハ4を吸着固定している。
1 is an illumination optical system, which takes out a part of the pulsed light flux from the light jll with a half mirror (not shown) and guides it to an integrated light amount measuring means 21, which will be described later, and other light fluxes to be irradiated. The light is guided onto two surfaces of the reticle. 3
is a projection optical system, which projects the electronic circuit pattern on the two surfaces of the reticle onto the fourth surface of the wafer at a predetermined magnification. A wafer chuck 5 is placed on a movable stage (not shown) and fixes the wafer 4 by suction.

6は集光レンズであり、照明光学系lで分割された光源
15からの光束の一部を集光し、後述する光学部材7に
入射させている。光学部材7は照射光量に応じて透過率
や偏光条件等の光学的性質が変化する積算光量検出手段
としての機能を有する材料7a、例えばフォトレジスト
材料、フォトクロミック材料、光磁気記録材料等をガラ
ス基板7b面上に設けて構成している。同図はフォトレ
ジストを用いた場合を示している。
6 is a condenser lens that condenses a part of the luminous flux from the light source 15 divided by the illumination optical system 1, and makes it enter an optical member 7, which will be described later. The optical member 7 is made of a material 7a having a function as an integrated light amount detection means whose optical properties such as transmittance and polarization conditions change depending on the amount of irradiated light, such as a photoresist material, a photochromic material, a magneto-optical recording material, etc., on a glass substrate. 7b. The figure shows a case where photoresist is used.

7bは透明なガラス基板であり、その面上にはフォトレ
ジスト7aが塗布されている。9はモータ等の駆動手段
であり、光学部材7を回動制御している。10は発光素
子であり、光源!5からの光束の波長とは異なる波長を
有した光束を発する半導体レーザ、LED等から成って
おり、発光素子lOからの光に対してガラス基板7bは
透明である。
7b is a transparent glass substrate, and a photoresist 7a is coated on the surface thereof. Reference numeral 9 denotes a driving means such as a motor, which controls the rotation of the optical member 7. 10 is a light emitting element, a light source! The glass substrate 7b is transparent to the light from the light emitting element 1O.

又、発光素子lOからの光束がフォトレジスト7a面上
の集光レンズ6からの光束で照明されている領域に入射
するように設定されている。11は受光素子でありフォ
トレジスト7aを通過した発光素子10からの光束を受
光している。
Further, it is set so that the light beam from the light emitting element 1O is incident on the area on the surface of the photoresist 7a that is illuminated by the light beam from the condenser lens 6. A light receiving element 11 receives the light beam from the light emitting element 10 that has passed through the photoresist 7a.

22は光量制御手段であり、受光素子11からの出力信
号に基づいて、レチクル2面上への照射光量が予め設定
された値となるように例えばシャッター手段23や光源
15を0N−OFFさせて制御している。
Reference numeral 22 denotes a light amount control means, which turns off, for example, the shutter means 23 and the light source 15, based on the output signal from the light receiving element 11, so that the amount of light irradiated onto the two surfaces of the reticle becomes a preset value. It's in control.

次に本実施例においてレチクル2面上を照射する照射光
量の制御方法を示す。
Next, a method of controlling the amount of light irradiated onto the two surfaces of the reticle in this embodiment will be described.

まず駆動手段9は停止されており光学部材7は所定位置
に設定されている。
First, the driving means 9 is stopped and the optical member 7 is set at a predetermined position.

光源15をパルス発振させ照明光学系lによりレチクル
2面上への照射を開始し、ウェハ4面を露光すると同時
に光源15からの光束の一部な用いてフォトレジスト7
aを照射する。フォトレジスト7aは照射光量の大小に
応じて、照射領域の透過率が変化してくる性質を有して
いる。この為発光素子lOからの光束の該フォトレジス
ト7aの照射領域を通過する光量が変化してくる。この
ときのフォトレジスト7aの照射領域の透過率の変化を
受光素子itで検出している。即ち受光素子11により
レチクル2面上に光源15からの照射光量がどの程度入
射したかを検出している。
The light source 15 is pulse-oscillated and the illumination optical system 1 starts irradiating the 2 surfaces of the reticle, exposing the 4 surfaces of the wafer and at the same time using part of the light beam from the light source 15 to illuminate the photoresist 7.
Irradiate a. The photoresist 7a has a property that the transmittance of the irradiated area changes depending on the amount of irradiated light. Therefore, the amount of light that passes through the irradiation area of the photoresist 7a of the light beam from the light emitting element 10 changes. At this time, the change in transmittance of the irradiated area of the photoresist 7a is detected by the light receiving element it. That is, the light receiving element 11 detects how much of the irradiation light from the light source 15 is incident on the reticle 2 surface.

一般にウェハ4への適正露光量は既知であり、又その適
正露光量に達したときのフォトレジスト7aの透過率も
既知である。
Generally, the appropriate exposure amount to the wafer 4 is known, and the transmittance of the photoresist 7a when the appropriate exposure amount is reached is also known.

従って本実施例では受光素子Itからの出力信号が所定
値に達したか否かを光量制御手段22で検知し、所定値
に達したら光量制御手段22によりシャッター手段23
を閉じて又は光源15からのパルス発振を停めてレチク
ル2面上への照射を停止している。
Therefore, in this embodiment, the light amount control means 22 detects whether the output signal from the light receiving element It has reached a predetermined value, and when the output signal reaches the predetermined value, the light amount control means 22 causes the shutter means 23 to
The irradiation onto the reticle 2 surface is stopped by closing the light source 15 or by stopping the pulse oscillation from the light source 15.

このようにしてウェハ面上への1回の露光における照射
光量を適切に設定している。
In this way, the amount of irradiation light for one exposure onto the wafer surface is appropriately set.

次に不図示の可動ステージを駆動させてウェハ4を所定
量移動させ次の露光を行うが、このとき駆動手段9を所
定量回動させて光学部材7の位置を変える。そしてフォ
トレジスト7aの未照射領域に集光レンズ6からの光束
が入射するようにしている。
Next, a movable stage (not shown) is driven to move the wafer 4 by a predetermined amount for the next exposure. At this time, the driving means 9 is rotated by a predetermined amount to change the position of the optical member 7. The light beam from the condenser lens 6 is made to enter the unirradiated area of the photoresist 7a.

以後、順次このような動作を繰り返し、ウェハ4全面の
露光を行っている。
Thereafter, such operations are sequentially repeated to expose the entire surface of the wafer 4.

光学部材7はフォトレジスト7aの露光可能領域が全て
露光されたら、他のフォトレジストが塗布されている光
学部材と交換する。
When the entire exposed area of the photoresist 7a is exposed, the optical member 7 is replaced with an optical member coated with another photoresist.

尚、本実施例において照射光量により光学的性質が変化
する光学部材としてフォトレジストの代わりにフォトク
ロミック材料を用いても良い。
In this embodiment, a photochromic material may be used instead of a photoresist as an optical member whose optical properties change depending on the amount of irradiated light.

フォトクロミック材料は光(特に紫外光)で照射された
領域が光化学作用により着色し透過率が変化する。父兄
の照射が終了してから一定時間が経過すると元の姿に復
元する光学的性質を有している。この為第1図に示す実
施例と同様のシーケンスでレチクル面上への照射光量の
制御が可能となる。特に駆動手段で光学部材を所定量回
動しながらフォトクロミック材料が塗布された領域を順
次照射していけばフォトクロミック材料を塗布した領域
のうち、既に光が照射された領域が再び照射されるとき
には既に元の姿に復元しているので光学部材を交換する
必要がない専の特長がある。
In photochromic materials, areas irradiated with light (particularly ultraviolet light) are colored by photochemical action, and the transmittance changes. It has an optical property that restores it to its original appearance after a certain amount of time has passed after the parent's irradiation has finished. Therefore, the amount of light irradiated onto the reticle surface can be controlled in the same sequence as in the embodiment shown in FIG. In particular, if the drive means rotates the optical member by a predetermined amount and sequentially irradiates the areas coated with the photochromic material, by the time the area coated with the photochromic material that has already been irradiated with light is irradiated again, the area is already irradiated. Since it has been restored to its original appearance, it has the unique feature of eliminating the need to replace optical components.

本実施例において発光素子として例えば赤外光を放射す
る半導体レーザを用いればフォトクロミック材料に照射
しても光学的性質が変化することがないので組立構成上
自由度が増す等の特長がある。
In this embodiment, if a semiconductor laser that emits infrared light is used as the light emitting element, the optical properties will not change even if the photochromic material is irradiated, so there is an advantage in that the degree of freedom in assembly is increased.

又フォトクロミック材料は着色した領域を加熱すると脱
色、復元する速度が速くなる性質がある。従ってフォト
クロミック材料が塗布された光?部材の近傍に加熱器を
設けて加熱させる方法をとれば露光装置としてのスルー
ブツトを向上させることができる。もちろん、加熱手段
はこのような構成に限定されない。
Furthermore, photochromic materials have the property that when a colored region is heated, the speed of decolorization and restoration becomes faster. Therefore the light coated with photochromic material? By providing a heater near the member to heat it, the throughput of the exposure apparatus can be improved. Of course, the heating means is not limited to this configuration.

この他本實施例においては光学部材として光磁気記録材
料を用い照射光量の大小により変化する偏光特性を偏光
顕微鏡等を利用して検出するようにしても良い。
In addition, in this embodiment, a magneto-optical recording material may be used as the optical member, and the polarization characteristics that change depending on the amount of irradiated light may be detected using a polarization microscope or the like.

そしてこのときの磁気の消去方法として磁気消去器を付
加して行えば光学部材を交換しなくても良く、構成が簡
素化されるので好ましい。
It is preferable to add a magnetic eraser as a method for erasing the magnetism at this time, since there is no need to replace the optical member and the configuration is simplified.

(発明の効果) 本発明によれば直接受光素子で良好に受光することので
きない感度領域の例えば紫外領域において短時間のパル
ス発振するエキシマレーザ等を光源として用いて被照射
面を照明する際、照射光量により光学的性質が変化する
積算光量検出機能を有する光学部材を利用し、照明系か
らの光束の一部を分割して該光学部材に照射し、このと
きの光学部材の光学的性質の変化を光学的に検出するこ
とにより、被照射面上に照射される光量を高精度に制御
することのできる照射光量制御装置を達成することがで
きる。
(Effects of the Invention) According to the present invention, when illuminating an irradiated surface using an excimer laser or the like that emits short-time pulses in the ultraviolet region, which is a sensitive region that cannot be directly received by a light-receiving element, Using an optical member that has an integrated light amount detection function whose optical properties change depending on the amount of irradiated light, a part of the light flux from the illumination system is divided and irradiated to the optical member, and the optical properties of the optical member at this time are measured. By optically detecting the change, it is possible to achieve an irradiation light amount control device that can control the amount of light irradiated onto the irradiated surface with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を半導体素子製造用の露光装置に適用し
たときの−′X施例の要部概略図である。 図中lは照明光学系、2はレチクル、3は投影光学系、
4はウェハ、5はウェハチャック、6は集光レンズ、7
は光学部材、7aはフォトレジスト、7bはガラス基板
、9は駆動手段、lOは発光素子、11は受光素子、1
5は光源、21は積算光量計測手段、22は光量制御手
段、23はシャッター、である。
FIG. 1 is a schematic diagram of the main parts of a -'X embodiment when the present invention is applied to an exposure apparatus for manufacturing semiconductor devices. In the figure, l is the illumination optical system, 2 is the reticle, 3 is the projection optical system,
4 is a wafer, 5 is a wafer chuck, 6 is a condenser lens, 7
7a is an optical member, 7a is a photoresist, 7b is a glass substrate, 9 is a driving means, IO is a light emitting element, 11 is a light receiving element, 1
5 is a light source, 21 is an integrated light amount measuring means, 22 is a light amount control means, and 23 is a shutter.

Claims (4)

【特許請求の範囲】[Claims] (1)照明手段により被照射面上を照明する際、該照明
手段からの光束の一部を取り出し、照射光量に応じて光
学的性質が変化する光学部材に入射させ、該光学部材の
光学的性質の変化を光学的検出手段により検出すること
により該被照射面上への照射光量を制御したことを特徴
とする照射光量制御装置。
(1) When illuminating a surface to be illuminated by an illumination means, a part of the luminous flux from the illumination means is taken out and incident on an optical member whose optical properties change depending on the amount of irradiated light, and the optical properties of the optical member are An irradiation light amount control device, characterized in that the amount of irradiation light onto the irradiated surface is controlled by detecting a change in properties using an optical detection means.
(2)前記照明手段はパルス発光する光源を有しており
、前記光学部材は照射光量に応じて透過率が変化する材
料を有しており、前記検出手段は該光学部材に光束を入
射させる為の発光素子と該光学部材を透過した光束を受
光する受光素子を有していることを特徴とする請求項1
記載の照射光量制御装置。
(2) The illumination means has a light source that emits pulsed light, the optical member has a material whose transmittance changes depending on the amount of irradiated light, and the detection means makes the light beam incident on the optical member. Claim 1 characterized in that it has a light emitting element for transmitting light and a light receiving element for receiving the light beam transmitted through the optical member.
The irradiation light amount control device described above.
(3)前記光学部材をフォトレジスト又はフォトクロミ
ック材料又は光磁気記録材料を有するように構成したこ
とを特徴とする請求項1記載の照射光量制御装置。
(3) The irradiation light amount control device according to claim 1, wherein the optical member is configured to include a photoresist, a photochromic material, or a magneto-optical recording material.
(4)前記光学部材をフォトクロミック材料より構成し
、該フォトクロミック材料を加熱する加熱器を設けたこ
とを特徴とする請求項1記載の照射光量制御装置。
(4) The irradiation light amount control device according to claim 1, wherein the optical member is made of a photochromic material, and a heater for heating the photochromic material is provided.
JP1028962A 1989-02-08 1989-02-08 Irradiation light quantity controller Pending JPH02208919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028962A JPH02208919A (en) 1989-02-08 1989-02-08 Irradiation light quantity controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028962A JPH02208919A (en) 1989-02-08 1989-02-08 Irradiation light quantity controller

Publications (1)

Publication Number Publication Date
JPH02208919A true JPH02208919A (en) 1990-08-20

Family

ID=12263042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028962A Pending JPH02208919A (en) 1989-02-08 1989-02-08 Irradiation light quantity controller

Country Status (1)

Country Link
JP (1) JPH02208919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614990A (en) * 1994-08-31 1997-03-25 International Business Machines Corporation Illumination tailoring system using photochromic filter
KR100317684B1 (en) * 1993-08-26 2002-04-06 시마무라 테루오 An exposure dose control device, a scanning type exposure device, and a device manufacturing method using these devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317684B1 (en) * 1993-08-26 2002-04-06 시마무라 테루오 An exposure dose control device, a scanning type exposure device, and a device manufacturing method using these devices
US5614990A (en) * 1994-08-31 1997-03-25 International Business Machines Corporation Illumination tailoring system using photochromic filter

Similar Documents

Publication Publication Date Title
US4711568A (en) Exposure apparatus
KR20030076238A (en) Euv-transparent interface structure
KR970028862A (en) Exposure apparatus and exposure control method
KR970005523B1 (en) Defect correcting method for display device
AU1510299A (en) Amplitude mask, and apparatus and method for manufacturing long period grating filter using the same
KR20210028650A (en) Laser processing device, laser processing method, and film forming mask manufacturing method
US5114223A (en) Exposure method and apparatus
JPH02208919A (en) Irradiation light quantity controller
JP2503495B2 (en) Exposure apparatus and exposure method
JP2725769B2 (en) Optical device
KR960015073A (en) Alignment method and device of mask and workpiece
KR100995392B1 (en) Marking apparatus having digital micromirror device
JP3842480B2 (en) Lithographic projection device
JP3459593B2 (en) Laser marking device and output control method thereof
WO2003010763A1 (en) Optical recording medium preheat bulk erase apparatus, optical recording medium preheat bulk erase method, and optical recording medium
JP4066083B2 (en) Optical element light cleaning method and projection exposure apparatus
JP3944615B2 (en) Laser-assisted processing equipment
JPH0332016A (en) Apparatus for controlling amount of projected light
JPH0715875B2 (en) Exposure apparatus and method
JPS62187815A (en) Light quantity controller
JPS63266821A (en) Ultraviolet ray aligner
JPH0546694B2 (en)
JPS6216526A (en) Projection exposure apparatus
KR100218348B1 (en) Detecting apparatus of shutter position
JPS62241330A (en) Position-alignment in exposure device