JPH02207457A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPH02207457A JPH02207457A JP1025920A JP2592089A JPH02207457A JP H02207457 A JPH02207457 A JP H02207457A JP 1025920 A JP1025920 A JP 1025920A JP 2592089 A JP2592089 A JP 2592089A JP H02207457 A JPH02207457 A JP H02207457A
- Authority
- JP
- Japan
- Prior art keywords
- grooves
- gas flow
- matrix layer
- fuel cell
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000003792 electrolyte Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims description 31
- 230000001590 oxidative effect Effects 0.000 claims description 11
- 239000002737 fuel gas Substances 0.000 claims description 10
- 239000007800 oxidant agent Substances 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 40
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract description 20
- 238000006243 chemical reaction Methods 0.000 abstract description 12
- 230000000717 retained effect Effects 0.000 abstract 1
- 239000003054 catalyst Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000007610 electrostatic coating method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、リブ付き多孔質基体から成るガス拡散電極を
有し、電解質としてリン酸を用いた燃料電池に関するも
のである。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell having a gas diffusion electrode made of a ribbed porous substrate and using phosphoric acid as an electrolyte. .
(従来の技術)
従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換する装置として燃料電池が知られてい
る。この燃料電池は通常、電解質を含浸したマトリック
スを挟んで一対の多孔質電極を配置するとともに、一方
の電極の背面に水素等の燃料ガスを接触させ、また他方
の電極の背面に酸素等の酸化剤ガスを接触させ、このと
き起こる電気化学的反応を利用して、上記電極間から電
気エネルギーを取り出すようにしたものであり、前記燃
料ガスと酸化剤ガスが供給されている限り高い変換効率
で電気エネルギーを取り出すことができるものである。(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually consists of a pair of porous electrodes placed with an electrolyte-impregnated matrix in between, and a fuel gas such as hydrogen is brought into contact with the back surface of one electrode, and an oxidizing gas such as oxygen is brought into contact with the back surface of the other electrode. This system extracts electrical energy from between the electrodes by bringing the oxidant gas into contact and utilizing the electrochemical reaction that occurs at this time.As long as the fuel gas and oxidant gas are supplied, the conversion efficiency is high. It is something that can extract electrical energy.
ところで、特にリン酸を電解質とした燃料電池の単位セ
ルは、第3図に示した様に構成されており、この単位セ
ルを複数個積層することによって燃料電池積層体が構成
されている。即ち、第3図において、単位セルは、電解
質であるリン酸を含浸したマトリックス層1を挟んで、
その両側に、炭素材から成る多孔質体で形成され、また
、その一面(マトリックス側)に触媒層2,3が付加さ
れた一対のリブ付き電極4.5を配置して構成されてい
る。また、この一対のリブ付き電極4,5は、前記触媒
層2,3の付加面とは反対側に、それぞれ燃料ガス流通
路6及び酸化剤ガス流通路7が形成されている。そして
、この単位セルをガス分離板8を介して交互に複数個積
層して、燃料電池積層体が構成されている。Incidentally, a unit cell of a fuel cell using phosphoric acid as an electrolyte is constructed as shown in FIG. 3, and a fuel cell stack is constructed by stacking a plurality of these unit cells. That is, in FIG. 3, the unit cell includes a matrix layer 1 impregnated with phosphoric acid as an electrolyte, and
On both sides thereof, a pair of ribbed electrodes 4.5 made of a porous body made of carbon material and having catalyst layers 2 and 3 added to one surface (matrix side) are arranged. Further, in the pair of ribbed electrodes 4 and 5, a fuel gas flow passage 6 and an oxidant gas flow passage 7 are formed, respectively, on the side opposite to the added surfaces of the catalyst layers 2 and 3. A fuel cell stack is constructed by alternately stacking a plurality of these unit cells with gas separation plates 8 in between.
上記の様なリン酸等の酸性電解質を用いる燃料電池にお
いては、電極反応は、触媒を担持させた炭素基材から成
る固相、リン酸溶液の様な電解質から成る液相、また、
燃料ガス及び酸化剤ガスの様な反応ガスから成る気相の
3つの相が共存する状態で起こる。この様に3つの相が
共存する場所は一般に三相帯と呼ばれるが、この三相帯
の面積によって、燃料電池の電極反応、即ち、電池特性
が大きく影響される。即ち、三相帯の面積が小さい程、
電池特性は低下し、反対に面積が大きい程、起電反応は
活性化し、高性能の燃料電池を得ることができる。In a fuel cell using an acidic electrolyte such as phosphoric acid as described above, the electrode reaction occurs in a solid phase consisting of a carbon base material supporting a catalyst, a liquid phase consisting of an electrolyte such as a phosphoric acid solution, or
This occurs in the coexistence of three gaseous phases consisting of a fuel gas and a reactant gas such as an oxidant gas. A place where three phases coexist in this way is generally called a three-phase zone, and the area of this three-phase zone greatly influences the electrode reaction of the fuel cell, that is, the cell characteristics. In other words, the smaller the area of the three-phase zone,
The cell characteristics deteriorate, and on the contrary, the larger the area, the more active the electromotive reaction becomes, making it possible to obtain a high-performance fuel cell.
この様に、燃料電池の特性に影響を及ぼす三相帯の面積
を考える上において、液相っまり反応界面へのリン酸の
供給は、燃料電池における起電反応を活性化し、また、
その活性化した起電反応を長期にわたり安定した状態に
保つ上で不可欠な要素である。また、電解質はセルの内
部抵抗を最小に保つ面でも重要な要素である。つまり、
マトリックス中の電解質の枯渇は、マトリックス中の導
電種である陽イオンの減少につながり、セルの電気抵抗
を増大させ、セル特性を低下させるものである。In this way, when considering the area of the three-phase zone that affects the characteristics of the fuel cell, the supply of phosphoric acid to the liquid phase reaction interface activates the electromotive reaction in the fuel cell, and
It is an essential element in keeping the activated electromotive reaction stable for a long period of time. The electrolyte is also an important element in keeping the internal resistance of the cell to a minimum. In other words,
Depletion of electrolytes in the matrix leads to a decrease in cations, which are conductive species, in the matrix, increasing the electrical resistance of the cell and degrading the cell properties.
(発明が解決しようとする課題)
しかしながら、上述した様な従来の燃料電池においては
、以下に述べる様な解決すべき課題があった。即ち、リ
ン酸電解質型燃料電池において、長期にわたり起電反応
を継続すると、電池内のリン酸電解質がセル外へ搬出さ
れる現象が観察される。このため、反応界面及びマトリ
ックス層から搬出されたリン酸を補うため、電極を構成
する多孔質体にリン酸を保持させ、リン酸を供給するシ
ステムが多く提案されている。しかし、多孔質電極基体
に保持されたリン酸を十分効率良くリン酸枯渇部に供給
する技術は未だ確立されていない。(Problems to be Solved by the Invention) However, in the conventional fuel cell as described above, there were problems to be solved as described below. That is, in a phosphoric acid electrolyte fuel cell, when an electromotive reaction is continued for a long period of time, a phenomenon is observed in which the phosphoric acid electrolyte inside the cell is carried out to the outside of the cell. Therefore, in order to supplement the phosphoric acid carried out from the reaction interface and the matrix layer, many systems have been proposed in which phosphoric acid is supplied by holding phosphoric acid in a porous body constituting the electrode. However, a technique for supplying phosphoric acid held in a porous electrode substrate to a phosphoric acid depleted area with sufficient efficiency has not yet been established.
本発明は以上の欠点を解決するために提案されたもので
、その目的は、反応界面及びマトリックス層へのリン酸
電解質の供給を容易にした、信頼性の高い燃料電池を提
供することにある。The present invention was proposed to solve the above-mentioned drawbacks, and its purpose is to provide a highly reliable fuel cell that facilitates the supply of phosphoric acid electrolyte to the reaction interface and matrix layer. .
[発明の構成コ
(課題を解決するための手段)
本発明は、電解質を含浸したマトリックス層を挟んで、
その背面に燃料ガス及び酸化剤ガスが流通するガス流通
路が形成された、多孔質基体より成る一対のリブ付き電
極を配置し、前記ガス流通路にそれぞれ燃料ガス及び酸
化剤ガスを供給して電気エネルギーを得る燃料電池にお
いて、前記−対の多孔質電極基体の少なくとも一方に、
その一面に形成された前記ガス流通路と反対の面に、ガ
ス流通路と同一方向に複数個の溝を形成し、この溝内に
前記マトリックス層よりも親水性の高い物質を充填した
ことを特徴とするものである。[Configuration of the Invention (Means for Solving the Problems)] The present invention comprises a matrix layer impregnated with an electrolyte,
A pair of ribbed electrodes made of a porous substrate having gas flow passages through which fuel gas and oxidizing gas flow are arranged on the back surface thereof, and the fuel gas and oxidizing gas are supplied to the gas flow passages, respectively. In a fuel cell for obtaining electrical energy, at least one of the pair of porous electrode substrates,
A plurality of grooves are formed in the same direction as the gas flow passages on a surface opposite to the gas flow passage formed on one side, and a substance having higher hydrophilicity than the matrix layer is filled in the grooves. This is a characteristic feature.
(作用)
本発明の燃料電池によれば、一対のリブ付き多孔質電極
基体の少なくとも一方のマトリックス層と接合する面に
、複数個の溝を形成し、この部分の触媒層を除去し、さ
らに、溝内に親水性の物質を充填したことにより、マト
リックス層とリン酸を保持した多孔質電極基体とが直接
接合することができ、保持されたリン酸の反応界面及び
マトリックス層への移動が非常に容易なものとなる。(Function) According to the fuel cell of the present invention, a plurality of grooves are formed on the surface of at least one of the pair of ribbed porous electrode substrates to be bonded to the matrix layer, and the catalyst layer in this portion is removed. By filling the groove with a hydrophilic substance, the matrix layer and the porous electrode substrate holding phosphoric acid can be directly bonded, and the movement of the held phosphoric acid to the reaction interface and matrix layer is prevented. It becomes very easy.
(実施例)
以下、本発明の一実施例を第1図及び第2図に基づいて
具体的に説明する。なお、第3図に示した従来型と同一
の部材には同一の符号を付して、説明は省略する。(Example) Hereinafter, an example of the present invention will be specifically described based on FIGS. 1 and 2. Incidentally, the same members as those of the conventional type shown in FIG. 3 are given the same reference numerals, and the description thereof will be omitted.
本実施例においては、第1図に示した様に、マトリック
ス層1を挟んで対向配置された一対のリブ付き多孔質電
極基体10.11の少なくとも一方に、その一面に形成
されたガス流通路6,7とは反対側の面に、ガス流通路
6,7と同一の方向に複数個の溝12が形成されている
。なお、この溝12が形成された部分においては、触媒
層2゜3は配設されていない。また、前記溝12内には
、マトリックス層よりもさらに親水性の高い物質(例え
ば、炭化珪素)が充填されている。In this embodiment, as shown in FIG. 1, gas flow channels are formed on at least one surface of a pair of ribbed porous electrode substrates 10 and 11 that are placed opposite each other with a matrix layer 1 in between. A plurality of grooves 12 are formed on the surface opposite to the gas flow passages 6 and 7 in the same direction as the gas flow passages 6 and 7. Note that the catalyst layer 2.3 is not provided in the portion where the groove 12 is formed. Furthermore, the grooves 12 are filled with a substance (for example, silicon carbide) that is more hydrophilic than the matrix layer.
次に、本発明に基づく多孔質電極基体の製造方法の一例
を示す。即ち、気孔率が約50〜70%の炭素繊維から
成る多孔質基体(約3mm厚)を厚さ2mmに整形した
。次にガス流通路として深さ1.0mm、幅1.5mm
の溝を形成した。また、ガス流通路と反対の面に、本発
明による溝を深さ0.8mm、幅2mmで形成した。こ
のとき、ガス流通路と本発明による溝との間隔は1mm
とした。また、上記の様にして多孔質電極基体を形成し
た後、本発明による溝部分をシールして触媒層を塗布し
た。この塗布方法としては粉体静電塗装法を用いたが、
その方法は特に限定されない。Next, an example of a method for manufacturing a porous electrode substrate according to the present invention will be described. That is, a porous substrate (about 3 mm thick) made of carbon fiber with a porosity of about 50 to 70% was shaped to a thickness of 2 mm. Next, a depth of 1.0 mm and a width of 1.5 mm will be used as a gas flow path.
A groove was formed. In addition, a groove according to the present invention with a depth of 0.8 mm and a width of 2 mm was formed on the opposite surface from the gas flow passage. At this time, the interval between the gas flow passage and the groove according to the present invention is 1 mm.
And so. Further, after forming the porous electrode substrate as described above, the groove portion according to the present invention was sealed and a catalyst layer was applied. The powder electrostatic coating method was used as the coating method, but
The method is not particularly limited.
また、マトリックス層の形成方法としても、粉体静電塗
装法を用いたが、多孔質電極基体との接着が密であり、
空隙等が存在しないものであれば、その方法は特に限定
されない。In addition, the powder electrostatic coating method was used as a method for forming the matrix layer, but the adhesion to the porous electrode substrate is tight;
The method is not particularly limited as long as there are no voids or the like.
また、この様にして形成された多孔質電極基体の溝内に
、親水性の物質を充填した。この親水性の物質としては
、マトリックス層よりも親水性の高い物質であり、親リ
ン酸性及び耐熱性(230℃)を有するものであればよ
い。ここでは、マトリックス層に使用した炭化珪素より
も粒子径の小さい炭化珪素を用いた。Furthermore, a hydrophilic substance was filled into the grooves of the porous electrode base formed in this manner. This hydrophilic substance may be any substance as long as it is more hydrophilic than the matrix layer, has phosphoric acid affinity, and is heat resistant (230°C). Here, silicon carbide having a smaller particle size than the silicon carbide used for the matrix layer was used.
この様な構成を有する本実施例の燃料電池においては、
対向して配置された一対の多孔質電極基体の少なくとも
一方に、親水性を有する物質を充填するための溝を形成
したことにより、マトリックス層とリン酸を保持した多
孔質電極基体とが直接接合できるので、多孔質電極基体
から反応界面及びマトリックス層へのリン酸電解質の供
給を容易にすることができる。In the fuel cell of this example having such a configuration,
By forming a groove for filling a hydrophilic substance in at least one of a pair of porous electrode substrates placed opposite each other, the matrix layer and the porous electrode substrate holding phosphoric acid are directly bonded. This facilitates the supply of phosphate electrolyte from the porous electrode substrate to the reaction interface and matrix layer.
また、この様な多孔質電極基体を用いて単位セルを形成
し、下記の条件下で起電試験を行った結果を第2図に示
した。なお、図中、実線は本発明による多孔質電極基体
を用いた場合、点線は従来の多孔質電極基体を用いた場
合を示している。また、第2図においては、縦軸にセル
電圧を、横軸に時間を目盛り、セル電圧の推移を示した
。Further, a unit cell was formed using such a porous electrode substrate, and an electromotive test was conducted under the following conditions. The results are shown in FIG. In addition, in the figure, the solid line shows the case where the porous electrode base according to the present invention is used, and the dotted line shows the case where the conventional porous electrode base is used. In addition, in FIG. 2, the vertical axis shows the cell voltage, and the horizontal axis shows the time scale, and the transition of the cell voltage is shown.
(試験条件)
常圧、205℃、220mA/am2
燃料ガス利用率 30%
酸化剤ガス利用率 30%
この様に、本発明の多孔質電極基体を用いて単位セルを
構成した場合は、長期にわたって安定したセル電圧を維
持することができる。(Test conditions) Normal pressure, 205°C, 220 mA/am2 Fuel gas utilization rate 30% Oxidizing gas utilization rate 30% As described above, when a unit cell is constructed using the porous electrode substrate of the present invention, it will last for a long time. A stable cell voltage can be maintained.
なお、本発明は上述した実施例に限定されるものではな
く、多孔質電極基体に形成される溝の数は、適宜設定す
ることができる。また、溝内に充填される親水性の物質
は、マトリックス層よりも親水性の高い物質であり、親
リン酸性及び耐熱性を有するものであればよい。Note that the present invention is not limited to the embodiments described above, and the number of grooves formed in the porous electrode base can be set as appropriate. Further, the hydrophilic substance filled in the grooves may be any substance as long as it is more hydrophilic than the matrix layer and has phosphoric acid affinity and heat resistance.
[発明の効果]
以上述べた様に、本発明によれば、一対の多孔質電極基
体の少なくとも一方に、その一面に形成されたガス流通
路と反対の面に4ガス流通路と同一方向に複数個の溝を
形成し、この溝内にマトリックス層よりも親水性の高い
物質を充填するという簡単な手段によって、反応界面及
びマトリックス層へのリン酸電解質の供給を容易にした
、信頼性の高い燃料電池を提供することができる。[Effects of the Invention] As described above, according to the present invention, at least one of a pair of porous electrode substrates has four gas flow passages formed on one surface thereof, and four gas flow passages formed on the opposite surface thereof in the same direction. A reliable method that facilitates the supply of phosphate electrolyte to the reaction interface and matrix layer by forming multiple grooves and filling the grooves with a substance that is more hydrophilic than the matrix layer. It is possible to provide high fuel cells.
第1図は本発明の燃料電池の一実施例を示す単位セルの
拡大斜視図、第2図は本発明の燃料電池の効果を示すセ
ル特性図、第3図は従来の燃料電池の単位セルの拡大斜
視図である。
1・・・マトリックス層、2.3・・・触媒層、4.5
・・・リブ付き電極、6・・・燃料ガス流通路、7・・
・酸化剤ガス流通路、8・・・ガス分離板、10.11
・・・多孔質電極基体、12・・・溝。
10o0
(晴間)。
第
図
ys
第
図FIG. 1 is an enlarged perspective view of a unit cell showing an embodiment of the fuel cell of the present invention, FIG. 2 is a cell characteristic diagram showing the effects of the fuel cell of the present invention, and FIG. 3 is a unit cell of a conventional fuel cell. FIG. 1... Matrix layer, 2.3... Catalyst layer, 4.5
... Ribbed electrode, 6... Fuel gas flow path, 7...
- Oxidizing gas flow path, 8... gas separation plate, 10.11
...Porous electrode base, 12...grooves. 10o0 (clear weather). Figure ys Figure
Claims (1)
燃料ガス及び酸化剤ガスが流通するガス流通路が形成さ
れた、多孔質基体より成る一対のリブ付き電極を配置し
、前記ガス流通路にそれぞれ燃料ガス及び酸化剤ガスを
供給して電気エネルギーを得る燃料電池において、 前記一対の多孔質電極基体の少なくとも一方に、その一
面に形成された前記ガス流通路と反対の面に、ガス流通
路と同一方向に複数個の溝を形成し、この溝内に前記マ
トリックス層よりも親水性の高い物質を充填したことを
特徴とする燃料電池。[Scope of Claims] A pair of ribbed electrodes made of a porous substrate are arranged with a matrix layer impregnated with an electrolyte sandwiched therebetween, and gas flow passages through which fuel gas and oxidizing gas flow are formed on the back surface of the electrodes. In a fuel cell that obtains electrical energy by supplying a fuel gas and an oxidant gas to the gas flow passages, respectively, a surface opposite to the gas flow passage formed on at least one surface of the pair of porous electrode substrates. A fuel cell characterized in that a plurality of grooves are formed in the same direction as the gas flow passage, and the grooves are filled with a substance having higher hydrophilicity than the matrix layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1025920A JPH02207457A (en) | 1989-02-06 | 1989-02-06 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1025920A JPH02207457A (en) | 1989-02-06 | 1989-02-06 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02207457A true JPH02207457A (en) | 1990-08-17 |
Family
ID=12179217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1025920A Pending JPH02207457A (en) | 1989-02-06 | 1989-02-06 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02207457A (en) |
-
1989
- 1989-02-06 JP JP1025920A patent/JPH02207457A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4248941A (en) | Solid electrolyte electrochemical cell | |
US7153602B2 (en) | Fuel cell assembly | |
US20030082425A1 (en) | PEM fuel cell | |
JPH06251780A (en) | Solid high polymer electrolyte type fuel cell | |
JPH04229960A (en) | Gas-recycle battery for electoro- chemical system | |
JP3146758B2 (en) | Solid polymer electrolyte fuel cell | |
JPH02207457A (en) | Fuel cell | |
JPH0684528A (en) | Solid high polymer electrolyte type fuel cell | |
JPS61121265A (en) | Fuel cell | |
CN113614962A (en) | Bipolar plate for a fuel cell, fuel cell stack having such a bipolar plate and vehicle having such a fuel cell stack | |
CA3026996C (en) | Fuel cell stack and separator for fuel cell stack | |
JPH07282835A (en) | Sealing material for solid electrolyte fuel cell, sealing method for solid electrolyte fuel cell using this material, and solid electrolyte fuel cell | |
JPH0218865A (en) | Electrode unitary cell of fuel cell | |
JPH04233163A (en) | Electrode structure | |
JPH0850911A (en) | Platelike solid electrolytic fuel cell | |
JPH0652873A (en) | Fuel cell | |
JP2633522B2 (en) | Fuel cell | |
JPH0258741B2 (en) | ||
JPS58150277A (en) | Fuel cell | |
JP2658082B2 (en) | Molten carbonate fuel cell | |
JP2000306590A (en) | Solid electrolyte fuel cell | |
JPS60232672A (en) | Manufacturing of fuel cell | |
JPH07123046B2 (en) | Molten carbonate fuel cell | |
JPS628453A (en) | Fuel cell | |
JPH01189867A (en) | Gas separation plate for fuel cell |