JPS628453A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS628453A
JPS628453A JP60146031A JP14603185A JPS628453A JP S628453 A JPS628453 A JP S628453A JP 60146031 A JP60146031 A JP 60146031A JP 14603185 A JP14603185 A JP 14603185A JP S628453 A JPS628453 A JP S628453A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrolyte
porous carbon
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60146031A
Other languages
Japanese (ja)
Inventor
Katsunori Sakai
勝則 酒井
Takeshi Kuwabara
武 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60146031A priority Critical patent/JPS628453A/en
Publication of JPS628453A publication Critical patent/JPS628453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To lengthen the service life by laminating a first laminating element composed of a porous carbon substrate having grooves in one face and a second laminating element composed of a planar carbon plate while impregnating electrolyte in the void sections of the first laminating element. CONSTITUTION:It is comprising a first laminating element 6 composed of a porous carbon substrate having grooves in one face for forming flow path of negative electrode active material or fuel gas while impregnating electrolyte in the void sections and a second laminating element 7 composed of a conductive smooth carbon plate which is gas impermeable to block mixing of negative electrode active material and positive electrode active material while grooves for passing positive electrode active material or oxidizing agent gas are made in the surface contacting with the positive electrode. The unit cell to be held by said elements 6, 7 has integrated negative electrode 1 composed of porous carbon substrate having one face bearing catalyst layer for promoting electrode reaction and positive electrode 2 where catalyst layer is born on one face of planar porous carbon substrate previously applied with water-proofing.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は燃料電池に係り、特に積層化素子を多孔性炭素
材と緻密炭素との分離構造とし、多孔性炭素材の空孔部
に電解質を含浸させて構成した燃料電池に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel cell, and in particular, a stacked element has a structure in which a porous carbon material and a dense carbon are separated, and an electrolyte is provided in the pores of the porous carbon material. The present invention relates to a fuel cell constructed by impregnation.

[発明の技術的背姶とその問題点] 水素の如き酸化され易いガスと酸素の如き酸化力のある
ガスとを電気化学反応プロセスを経て反応させ、ギブス
の自由エネルギーの放出弁を直流の電力として発電させ
る燃料電池は、通常単位セルを複数個積層して構成され
ている。このような燃料電池にあっては、各単位セルを
積層化するに際しては、各単位セルの電気的接続を確保
すると同時に各単位セルに反応ガスを供給し、また反応
生成物を除去するガス通路を確保する必要がある。
[Technical background of the invention and its problems] A gas that is easily oxidized such as hydrogen and a gas that has oxidizing power such as oxygen are reacted through an electrochemical reaction process, and a Gibbs free energy release valve is activated by direct current electric power. A fuel cell that generates electricity as a fuel cell is usually constructed by stacking a plurality of unit cells. In such a fuel cell, when stacking each unit cell, it is necessary to ensure electrical connection of each unit cell, and at the same time, to supply a reaction gas to each unit cell and to remove reaction products. It is necessary to ensure that

この一つの方法として、第2図に示す如く高密度でガス
不透過性の溝付導電性炭素板を、いわゆる積層化素子と
して使用する例が知られている。すなわち、導電性炭素
板4の上面と下面とに夫々異なる方向のガス流通用溝を
設け、上面を一つの単位セルの正極2(又は負極1)を
形成している多孔性炭素板に接触させ、下面を次の単位
セルの負極1(又は正極2)を形成している多孔性炭素
板に接触させて、次々に複数の単位セルの積層化を行な
うとともに、各積層化素子4の溝を経由して夫々の単位
セルへ反応ガスを供給し、また反応生成物の除去を行な
うようにしている。かかる単位セルは、濃厚リン酸溶液
などからなる電解液を含有する耐薬品性、耐熱性、耐酸
化性に優れた含浸材からなる電解質層3を中間にして正
極2となる多孔性炭素板と負極1となる多孔性炭素板と
を相対して密着して一体化したものとなっている。また
、上述した各電極には反応を円滑に進めるために、白金
などの触媒が付与されるとともに、ポリテトラフルオロ
エチレンなどによる防水処理がなされている。このよう
な単位セルは、単位セルの起電力が高くても、1v程度
であり、実用燃料電池を構成するには多数の単位セルを
WJ層化することが必要である。
One known method is to use a high-density, gas-impermeable, grooved conductive carbon plate as a so-called laminated element, as shown in FIG. That is, grooves for gas flow in different directions are provided on the upper and lower surfaces of the conductive carbon plate 4, and the upper surface is brought into contact with the porous carbon plate forming the positive electrode 2 (or negative electrode 1) of one unit cell. , the lower surface is brought into contact with the porous carbon plate forming the negative electrode 1 (or positive electrode 2) of the next unit cell, and a plurality of unit cells are laminated one after another, and the grooves of each laminated element 4 are Reaction gas is supplied to each unit cell via the auxiliary unit, and reaction products are removed. Such a unit cell consists of a porous carbon plate serving as a positive electrode 2 and an electrolyte layer 3 made of an impregnated material with excellent chemical resistance, heat resistance, and oxidation resistance, which contains an electrolyte such as a concentrated phosphoric acid solution. A porous carbon plate serving as the negative electrode 1 is integrated with the electrode in close contact with each other. In addition, each of the above-mentioned electrodes is provided with a catalyst such as platinum in order to smoothly proceed with the reaction, and is also waterproofed with polytetrafluoroethylene or the like. Even if the electromotive force of such a unit cell is high, it is about 1 V, and it is necessary to form a WJ layer from a large number of unit cells to construct a practical fuel cell.

かかるセル構造では、負極1.正極2共に、通常0.3
〜0.5#II+程度の薄い多孔質のカーボンベーパー
より構成されていることから、電気導電性が良好でかつ
反応ガスの拡散が良好であるので、高いセル性能を得る
ことが出来る。しかしながら、起電反応を長期にわたっ
て継続すると、電解質溶液(リン酸)が排出ガスと共に
外部に搬出されて電解質層中のリン酸濃度および吊が変
化するので、単位セルのオーム損に起因する効率の低下
が生ずる。また更には、電解質層に孔が生じ、反応カス
の異通リークが生じて性能の低下をもたらすことになる
。従って、かかるセル構造では、負極1゜正極2の薄い
電極の多孔質部に反応ガスの触媒層への拡散を阻害しな
い程度に電解質を保有させることは可能であるが、多孔
質部が薄いために十分な量の電解質を保有することが出
来ないことから、そのセル寿命はせいぜい数千時間であ
る。
In such a cell structure, the negative electrode 1. For both positive electrodes, usually 0.3
Since it is made of porous carbon vapor with a thickness of about 0.5 #II+, it has good electrical conductivity and good diffusion of reaction gas, so high cell performance can be obtained. However, if the electromotive reaction continues for a long period of time, the electrolyte solution (phosphoric acid) will be carried out with the exhaust gas and the phosphoric acid concentration and tension in the electrolyte layer will change, resulting in a decrease in efficiency due to the ohmic loss of the unit cell. A decrease occurs. Furthermore, pores are formed in the electrolyte layer, causing leakage of reaction scum, resulting in a decrease in performance. Therefore, in such a cell structure, it is possible to have the electrolyte held in the porous part of the thin electrode of the negative electrode 1 and the positive electrode 2 to the extent that it does not inhibit the diffusion of the reaction gas to the catalyst layer, but since the porous part is thin, Because the cells cannot hold sufficient amounts of electrolyte, their cell lifespan is at most several thousand hours.

そこで、上記のようなセル構造の欠点を改良した構造と
して第3図に示すようなセル構造のものが提案されてい
る。即ち、負極21.正極22共2〜3#I#I程度の
多孔性のカーボンシートの片面に、炭素微粉上に白金を
分散しポリテトラフルオロエチレンなどのフッ素樹脂を
結合剤として触媒層を形成し、かつその反対面に反応ガ
ス流通用の溝加工を施したりブ付M極を、電解質を含有
する電解質層3を介して、ガス流通溝を直交させると共
に各々の触媒層面が相対向するようにして密着一体化し
た単位セルを、気密性、導電性の平滑な積層化素子5を
介在させながら複数個の単位セルの積層を行なう。
Therefore, a cell structure as shown in FIG. 3 has been proposed as a structure that improves the drawbacks of the cell structure as described above. That is, the negative electrode 21. For the positive electrode 22, a catalyst layer is formed on one side of a porous carbon sheet of about 2 to 3 #I #I by dispersing platinum on fine carbon powder and using a fluororesin such as polytetrafluoroethylene as a binder, and vice versa. Grooves for reactive gas distribution are applied to the surfaces, and M poles with grooves are closely integrated through the electrolyte layer 3 containing electrolyte, with the gas distribution grooves orthogonal to each other and the surfaces of each catalyst layer facing each other. A plurality of unit cells are stacked with an airtight, electrically conductive and smooth stacked element 5 interposed therebetween.

かかるセル構造では、電解質をリブ付電極のリブ部12
に電解質層3の数倍保有させることができるため(リザ
ーバー)、長時間運転に伴なう電解質層3中の電解質の
蒸発および飛散による減少が生じても、リブ部12より
電解質を補給することにより、電解質層3中の電解質の
体積減少を防止できるので、セル特性低下を防止でき、
長時間の運転が期待できる。しかし、我々の検討結果に
よれば、リブ付電極を正極22に用いると、厚い多孔質
シートを使用したことによる酸化剤ガス(空気)の触媒
層への拡散不足を生じ、多孔質のカーボンペーパーに比
べ拡散不良が生ずることが判明した。また、正極22の
リブ付電極に電解質を保有させると、ガスのブロッキン
グが促進されさらに酸化剤ガス(空気)の拡散不良が生
ずるので、正極用リブ付電極22は電解質のりザーバー
機能を事実上保有し得ないことも判明した。
In such a cell structure, the electrolyte is transferred to the rib portion 12 of the ribbed electrode.
Since the electrolyte layer 3 can be held several times as much as the electrolyte layer 3 (reservoir), even if the electrolyte in the electrolyte layer 3 decreases due to evaporation and scattering due to long-term operation, the electrolyte can be replenished from the rib portion 12. As a result, it is possible to prevent a decrease in the volume of the electrolyte in the electrolyte layer 3, thereby preventing a decrease in cell characteristics.
You can expect to drive for a long time. However, according to our study results, when a ribbed electrode is used for the positive electrode 22, the use of a thick porous sheet causes insufficient diffusion of oxidant gas (air) into the catalyst layer, and the porous carbon paper It was found that poor diffusion occurred compared to the conventional method. Furthermore, if the ribbed electrode of the positive electrode 22 contains an electrolyte, gas blocking will be promoted and oxidant gas (air) will not be diffused properly, so the ribbed positive electrode 22 will effectively have an electrolyte reservoir function. It turned out that it wasn't possible.

なお、負極側の負極用リブ付電極21では、水素の拡散
は空気の拡散に比べて拡散性が良好であるので、リブ付
電極の多孔質シートの空孔体積の60%以下の範囲で電
解質を保有させた場合でも、はとんど水素の拡散性不良
に伴うセル特性の低下は生じない。故に、実質上負極側
のりブ付電極21だけが電解質保有が可能であるが、負
極21もリブ付電極多孔質シートの空孔体積の60%以
上の電解質の保有は、水素の拡散不良に伴なう特性低下
をもたらすため実現することができない。
In addition, in the negative electrode ribbed electrode 21 on the negative electrode side, the diffusion of hydrogen is better than that of air. Even when hydrogen is contained, deterioration in cell characteristics due to poor hydrogen diffusivity hardly occurs. Therefore, substantially only the ribbed electrode 21 on the negative electrode side is capable of retaining electrolyte, but the ribbed electrode porous sheet for the negative electrode 21 also has electrolyte retention of 60% or more of the pore volume due to poor hydrogen diffusion. This cannot be realized because it would result in a deterioration of the characteristics.

上述したように、従来形セル構造では長寿命。As mentioned above, conventional cell structures have a long lifespan.

高性能を達成する上で、 (a)電解質を電解質層へ補給するための電解質の保有
量の増加、およびハンドリング性と歩止りを上げるため
の機械的強度向上−ガス拡散層(残肉)を厚くする (b)負極および正極反応を円滑に進めるためのガス拡
散性の確保−残肉を薄くする。
In order to achieve high performance, (a) increasing the amount of electrolyte retained to replenish the electrolyte layer, and improving mechanical strength to improve handling and yield - reducing the gas diffusion layer (residue); (b) Ensuring gas diffusivity for smooth negative electrode and positive electrode reactions - thinning the remaining thickness.

という、2つの相別する事項を同時に満たすことができ
ないという問題がある。
There is a problem in that it is not possible to satisfy two distinct requirements at the same time.

本発明者らの検討結果によれば、第4図(a)(b)に
示す如く電極反応ガスの流通用溝を通過する反応ガスの
実流速が大きい程、ガスの拡散性が良好となってセル特
性が向上することが確認されている。
According to the study results of the present inventors, as shown in FIGS. 4(a) and 4(b), the higher the actual flow rate of the reaction gas passing through the electrode reaction gas distribution groove, the better the gas diffusivity. It has been confirmed that cell characteristics are improved.

そこで、上述したセル構造においてガスの実流速を増加
させるには、第5図に示すリブ付電極溝部残肉dを厚く
するが、もしくはリブ付電極リブ部a (すなわちリブ
付電極厚さに対応)を小さくすることにより達成できる
。しかしこの場合、下記のような併害が生じる問題があ
る。
Therefore, in order to increase the actual flow rate of gas in the cell structure described above, the remaining thickness d of the ribbed electrode groove shown in FIG. ) can be achieved by reducing . However, in this case, the following problems arise:

(a)dを厚くすると、多孔性炭素材の残肉部のガス拡
散抵抗が生じ、ガス拡散不良になりセル特性が低下する
(a) If d is made thicker, gas diffusion resistance occurs in the remaining thickness of the porous carbon material, resulting in poor gas diffusion and deterioration of cell characteristics.

(b)dを薄くすると、機械的強度が小さくなり、ハン
ドリングが困難となって歩止りが低下する。
(b) When d is made thinner, the mechanical strength becomes smaller, making handling difficult and reducing the yield.

(C)aを小さくすると、リン酸のりザーバ一部が少な
くなって電解質保有量が減少し寿命が短縮される。
(C) When a is decreased, a portion of the phosphoric acid reservoir becomes smaller, the amount of electrolyte retained decreases, and the life span is shortened.

(d)aを大きくする(2.5s+以上)と、積層体の
高さが大きくなって燃料電池単基当りの発電容量が小さ
くなる(なぜならば、燃料電池の高さは輸送制限で制約
される)。
(d) When a is increased (2.5s+ or more), the height of the stack increases and the power generation capacity per single fuel cell decreases (because the height of the fuel cell is restricted by transportation restrictions). ).

一方、上記のようなセル構造の問題の一部を解消するも
のとして、特願昭56−18805号公報、特開昭58
−89780号公報のような構成の燃料電池が提案され
ている。しかし、この方式のものは、多孔性積層化素子
におけるリン酸のリザーブ用が少なく、また単位セルの
厚さと溝深さとの係わりについては規定されていない。
On the other hand, Japanese Patent Application No. 56-18805 and Japanese Unexamined Patent Application Publication No. 58-1981 have been proposed to solve some of the problems of the cell structure as described above.
A fuel cell having a configuration as disclosed in Japanese Patent No.-89780 has been proposed. However, in this method, the amount of phosphoric acid reserved in the porous laminated element is small, and the relationship between the thickness of the unit cell and the groove depth is not specified.

[発明の目的] 本発明は上記のような事情を考慮して成されたもので、
その目的とするところはセル特性を低下させることなく
負極側の積層化素子に電解質を保有させて長寿命化を図
ることができ、しかも反応ガスの実流速を増加させて反
応ガスの拡散を良好にしセル特性を向上させることが可
能な燃料電池を提供することにある。
[Object of the invention] The present invention was made in consideration of the above circumstances, and
The purpose of this is to allow the stacked element on the negative electrode side to retain electrolyte to extend its life without degrading the cell characteristics, and to increase the actual flow rate of the reactant gas to improve diffusion of the reactant gas. The object of the present invention is to provide a fuel cell that can improve cell characteristics.

[発明の概要] 上記目的を達成するために本発明では、濃厚酸性溶液を
電解質として用い、水素を主成分とするガスを負極側活
物質とし、酸化性のガスを正極側活物質とする燃料電池
において、一方の面に電極反応を促進させるための触媒
層が担持された平板状態の多孔性炭素基板から成る負極
と、あらかじめ防水処理が施された平板状の多孔性炭素
基板の一方の面に触媒層が担持された正極とを、電解液
を含有する電解質層を介して上記各触媒層面が相対向す
るようにして密着一体化して構成された単位セルを、当
該単位セル間に電気的接続経路を確保すると共に、上記
負極活物質の流路を形成するための片面溝付の多孔性炭
素基板から成る第1の積層化素子、及び上記負極活物質
と正極活物質の混合を阻止するためのガス不透過性でか
つ上記正極に接する面に正極活物質の流通用溝が設けら
れた電気導電性の平板炭素板から成る第2の積層化素子
を介在させて複数個の積層構成し、かつ上記第1の積層
化素子の空孔部に電解質を含浸保持させて成ることを特
徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention provides a fuel using a concentrated acidic solution as an electrolyte, a gas mainly composed of hydrogen as a negative electrode active material, and an oxidizing gas as a positive electrode active material. In a battery, a negative electrode consists of a flat porous carbon substrate with a catalyst layer supported on one side to promote electrode reactions, and one side of the flat porous carbon substrate has been previously waterproofed. A unit cell is constructed by closely integrating a positive electrode on which a catalyst layer is supported, with the surfaces of each catalyst layer facing each other via an electrolyte layer containing an electrolytic solution, and an electrical connection is established between the unit cells. A first laminated element consisting of a porous carbon substrate with grooves on one side for securing a connection path and forming a flow path for the negative electrode active material, and preventing mixing of the negative electrode active material and the positive electrode active material. A second laminated element consisting of an electrically conductive flat carbon plate which is gas-impermeable and has grooves for circulation of the positive electrode active material on the surface in contact with the positive electrode is interposed to form a plurality of laminated elements. and an electrolyte is impregnated and held in the pores of the first laminated element.

[発明の実施例] 以下、本発明を図面に示す一実施例について説明する。[Embodiments of the invention] An embodiment of the present invention shown in the drawings will be described below.

第1図は、本発明による燃料電池におけるセル構成例を
縦断面斜視図にて示したものである。
FIG. 1 shows an example of a cell configuration in a fuel cell according to the present invention in a vertical cross-sectional perspective view.

本発明による燃料電池の特徴点は、単位セルの積層化に
用いる積層化素子にある。即ち、本発明の燃料電池に組
み込まれる積層化素子は第1図に示す如く、負極活物質
すなわち燃料カスの流路を形成するための片面溝付でか
つ空孔部に電解質を含浸保持した多孔性炭素基板からな
る第1の積層化素子6、及び負極活物質と正極活物質の
混合を阻止するためのガス不透過性でかつ正極に接する
而に正極活物質すなわち酸化剤ガスの流通用溝が設けら
れた電気導電性の平滑炭素板からなる第2の積層化素子
7より構成している。この場合、第1の積層化素子6に
設けられる負極活物質の流通用溝は、従来のものよりも
小さく形成している。
The fuel cell according to the present invention is characterized by a stacking element used for stacking unit cells. That is, as shown in FIG. 1, the laminated element incorporated in the fuel cell of the present invention has a porous structure with grooves on one side for forming a flow path for the negative electrode active material, that is, fuel residue, and with the pores impregnated and held with electrolyte. a first laminated element 6 made of a carbon substrate, and a gas-impermeable groove for preventing the mixing of the negative electrode active material and the positive electrode active material and in contact with the positive electrode for the passage of the positive electrode active material, that is, the oxidizing gas. It consists of a second laminated element 7 made of an electrically conductive smooth carbon plate provided with. In this case, the channel for flowing the negative electrode active material provided in the first stacked element 6 is formed smaller than that of the conventional one.

そして、これら積層化素子6.7に挟持される単位セル
は、一方の面に電極反応を促進させるための触媒層が担
持された多孔性炭素基板から成る負極1と、あらかじめ
防水処理が施された平板状の多孔性炭素基板の一方の面
に触媒層が担持された正極2とを、電解液を含有する電
解質層3を介して、上記各触媒層面が相対向するように
して密着一体化したものである。
The unit cell sandwiched between these laminated elements 6.7 has a negative electrode 1 made of a porous carbon substrate with a catalyst layer supported on one side for promoting electrode reactions, and a negative electrode 1 that has been waterproofed in advance. A cathode 2 having a catalyst layer supported on one surface of a flat porous carbon substrate is closely integrated with the cathode 2 through an electrolyte layer 3 containing an electrolytic solution so that the surfaces of each catalyst layer face each other. This is what I did.

次に、その具体的な一例について述べる。本例では、ま
ず厚さが0.4mm、大きさが600+mX700ra
mの炭素m維をシート状に成形け、結着剤としてフェノ
ール樹脂を含浸して黒鉛化焼成処理を施した多孔性カー
ボンペーパーに、Ill比で7%の白金黒をカーボン微
粉末上に化学的に還元析出させた触媒粉末と共に濃度8
重量%のポリテトラフルオロエチレン懸濁液に添加、混
練した触媒を塗着して負極1を作製する。また、厚さが
約0、4mtn、大きさが600s++X700MRの
黒鉛化焼成処理を施した多孔性カーボンペーパーを、濃
度30%のポリテトラフルオロエチレン懸濁液に含浸、
乾燥し、330℃で10分間焼結したものを電極基体に
用い、これにカーボン微粉末上に10%の白金黒を化学
的に還元析出させた触媒粉末と井に濃度8重量%のポリ
テトラフル40エチレン懸濁液番番量肴に添加、混練し
た触媒を塗着して正極2を作製する。そして、平均粒径
0.4μのシリコンカーバイド粉末に5重量%のポリテ
トラフルオロエチレンを混合、混練したマトリックスに
、105%のリン酸電解質を含浸させて形成した電解質
層3を中間に介在させて、上記各触媒層面が電解質層3
に接するようにして負極1と正極2とを対向させて配設
し単位セルを形成した。
Next, a specific example will be described. In this example, the thickness is 0.4mm and the size is 600+m x 700ra.
Porous carbon paper is formed by molding carbon m fibers into a sheet shape, impregnating it with phenol resin as a binder, and subjecting it to graphitization firing treatment.Platinum black with an Ill ratio of 7% is chemically applied onto the carbon fine powder. concentration of 8 along with catalyst powder reduced and precipitated.
A negative electrode 1 is prepared by applying a catalyst added and kneaded to a polytetrafluoroethylene suspension of % by weight. In addition, porous carbon paper with a thickness of about 0.4 mtn and a size of 600 s++ x 700 MR subjected to graphitization firing treatment was impregnated in a polytetrafluoroethylene suspension with a concentration of 30%.
The material dried and sintered at 330°C for 10 minutes was used as an electrode base, and catalyst powder prepared by chemically reducing and precipitating 10% platinum black on carbon fine powder and polytetraflu 40 at a concentration of 8% by weight were added to the catalyst powder. A positive electrode 2 is prepared by applying a catalyst added to and kneaded with an ethylene suspension. Then, an electrolyte layer 3 formed by impregnating 105% phosphoric acid electrolyte into a matrix obtained by mixing and kneading 5% by weight of polytetrafluoroethylene with silicon carbide powder having an average particle size of 0.4μ is interposed in the middle. , each catalyst layer surface is the electrolyte layer 3
A unit cell was formed by disposing a negative electrode 1 and a positive electrode 2 facing each other so as to be in contact with each other.

次に、厚さが2.561#l以下、大きさが6001n
MX700s+のフェルト状の多孔性黒鉛$11ff板
の片面に溝幅1.6s+、溝深さ0.81RIR,ピッ
チ3mの燃料ガス流通溝8を設けてなるものを第1の積
層化素子6として、及び大きさが6001NRX700
順で、ガス不透過性炭素板や、炭素(主として黒鉛)と
フェノール樹脂などの結合剤とを混練した結合剤をホッ
トプレス等により加圧成形した樹脂結合炭素板の片面に
溝幅2M、溝深さ1.5m、ピッチ4履の酸化剤ガス流
通用溝を設けてなるものを第2の積層化素子7として上
記単位セルを第1図に示した如く順次積層する。
Next, the thickness is 2.561#l or less and the size is 6001n
As the first laminated element 6, a fuel gas distribution groove 8 having a groove width of 1.6s+, a groove depth of 0.81RIR, and a pitch of 3m is provided on one side of a felt-like porous graphite $11ff plate of MX700s+. and the size is 6001NRX700
Grooves with a groove width of 2M are formed on one side of a gas-impermeable carbon plate or a resin-bonded carbon plate made of a binder made by kneading carbon (mainly graphite) and a binder such as a phenolic resin and press-formed by hot pressing or the like. A second laminated element 7 having oxidizing gas circulation grooves with a depth of 1.5 m and a pitch of 4 was used as the second laminated element 7, and the above unit cells were sequentially laminated as shown in FIG.

この場合、第1の積層化素子6には積層前にその空孔部
の90%にリン酸電解質を含浸保持しておく。また、燃
料ガス流通用溝8と酸化剤ガス流通用溝とは、互いに9
0°異なる方向つまり直交する方向としている。
In this case, 90% of the pores of the first laminated element 6 are impregnated with phosphoric acid electrolyte before lamination. Further, the fuel gas distribution groove 8 and the oxidant gas distribution groove are 99 degrees apart from each other.
The directions are different by 0°, that is, the directions are orthogonal.

上記の様に構成した本実施例の燃料電池においては、第
1の積層化素子6の空孔部に含浸保持されたリン酸電解
質は、燃料電池の長時間運転に伴なう電解質層3中のリ
ン?i!電解質の蒸発および飛散によって減少した場合
、重力および電解質濃度勾配毛管現象により、第1の積
層化素子6のリブ部9を介して負極1へ補給されること
になり、電解質層3のリン酸電解質の体積減少を抑制し
てセル特性の低下を防止することができる。この場合、
従来のリブ付電極と異なり、燃料ガス流通面10自体に
はリン酸電解質が含浸されていないので、ガス拡散に対
するブロッキングによるガス拡散不良が生じることなく
、第1の積層化素子6の空孔部の90%にリン酸電解質
を含浸すること力(可能となり、従来のり゛ブ付電極の
約2倍のリザーブ効果をもたらすことができる。
In the fuel cell of this embodiment configured as described above, the phosphoric acid electrolyte impregnated and held in the pores of the first stacked element 6 is absorbed into the electrolyte layer 3 during long-term operation of the fuel cell. Lin? i! When the electrolyte decreases due to evaporation and scattering, it is replenished to the negative electrode 1 via the rib portion 9 of the first laminated element 6 due to gravity and electrolyte concentration gradient capillarity, and the phosphoric acid electrolyte in the electrolyte layer 3 It is possible to suppress the volume reduction and prevent the deterioration of cell characteristics. in this case,
Unlike conventional ribbed electrodes, the fuel gas flow surface 10 itself is not impregnated with phosphoric acid electrolyte. By impregnating 90% of the electrode with phosphoric acid electrolyte, it is possible to achieve a reserve effect that is approximately twice that of conventional ribbed electrodes.

また、従来のりブ付電極では先述したように、ガス拡散
不良およびリザーバー機能の減少等が生じるため達成で
きなかった、反応ガス流通断面積を小さくすることによ
る反応ガスの実流速の増大化を、本実施例においては第
1の積層化素子6のガス流通用溝8の溝深さをより浅く
する事で、セルにガス拡散不良等の悪影響を及ぼすこと
なく実現することができる。さらにその二次的効果とし
て、第4図(a)(b)に示す如く反応ガスの実流速を
増加させること、で、セル特性の向上を達成できるのみ
でなく、同時に第1の積層化素子6の体積も増加するの
で、より多くの電解質を保有させることが可能となる。
In addition, as mentioned earlier, the actual flow velocity of the reactant gas can be increased by reducing the cross-sectional area of the reactant gas flow, which could not be achieved with conventional ribbed electrodes due to poor gas diffusion and reduced reservoir function. In this embodiment, by making the groove depth of the gas flow groove 8 of the first laminated element 6 shallower, this can be realized without adverse effects such as poor gas diffusion on the cell. Furthermore, as a secondary effect, by increasing the actual flow rate of the reactant gas as shown in FIG. Since the volume of 6 also increases, it becomes possible to hold more electrolyte.

これにより、セル特性の向上と長寿命化を同時に達成す
ることができる。
This makes it possible to simultaneously improve cell characteristics and extend life.

さらにまた、従来よりも反応ガス流通用溝の断面積を小
さくしたので、多数の単位セルを積層した場合、反応ガ
スが流通用溝を通過する時の圧力が増加するため、積層
セルのガス配流が均一化でき、積層方向の電池特性の均
一化が図れるという利点も得られる。また、従来よりも
反応ガスの流通断面積を小さくしたので、同じ厚さの積
層化素子でも、燃料ガス流通用溝残肉11も厚くなり強
度も増加するため、ハンドリング中の破損も減少すると
いう利点も得られる。
Furthermore, the cross-sectional area of the reaction gas distribution grooves has been made smaller than before, so when a large number of unit cells are stacked, the pressure when the reaction gas passes through the distribution grooves increases, so the gas distribution of the stacked cells is reduced. There is also an advantage that the battery characteristics can be made uniform in the stacking direction. In addition, since the flow cross-sectional area of the reactant gas has been made smaller than before, even with a laminated element of the same thickness, the remaining thickness of the fuel gas flow groove 11 is thicker and the strength is increased, which reduces breakage during handling. You also get benefits.

尚、本発明は上記実施例に限定されるものではなく、次
のようにしても実施することができるものである。
It should be noted that the present invention is not limited to the above embodiments, but can also be implemented as follows.

(a)上記実施例において、第1の積層化素子6の溝深
さを1.4m、第2の積層化素子7の溝深さを1.5#
とじても、同様の効果が得られた。
(a) In the above embodiment, the groove depth of the first laminated element 6 is 1.4 m, and the groove depth of the second laminated element 7 is 1.5 m.
A similar effect was obtained even when the paper was closed.

(b)上記実施例において、第1の積層化素子6の溝深
さを2.0s+または0.7姻とした時、積層数が50
セル以上に達した場合、高さ方向の特に上、下端の電池
特性の低下が認められた。また、溝深さ0.7mmの時
特に加工精度または閉塞の影響が求められた。
(b) In the above embodiment, when the groove depth of the first laminated element 6 is 2.0s+ or 0.7mm, the number of laminated layers is 50
When it reached the cell height or higher, it was observed that the battery characteristics deteriorated in the height direction, especially at the upper and lower ends. Further, when the groove depth was 0.7 mm, the influence of machining accuracy or blockage was particularly investigated.

(C)上記実施例において、第1の積層化素子6に多孔
性炭素材(従来のりブ付電極材)を用いても、同様の効
果が得られた。
(C) In the above embodiment, similar effects were obtained even when a porous carbon material (conventional electrode material with electrodes) was used for the first laminated element 6.

(d)上記実施例において、第1の積層化素子6として
はその空孔率が40〜70%望ましくは55〜65%程
度のものを用いることが可能である。
(d) In the above embodiment, the first laminated element 6 may have a porosity of about 40 to 70%, preferably about 55 to 65%.

その他、本発明はその要旨を変更しないで、種々に変形
して実施することができるものである。
In addition, the present invention can be implemented with various modifications without changing the gist thereof.

[発明の効果] 以上説明したように本発明によれば、濃厚酸性溶液を電
解質として用い、水素を主成分とするガスを負極側活物
質とし、酸化性のガスを正極側活物質とする燃料電池に
おいて、一方の面に電極反応を促進させるための触媒層
が担持された平板状の多孔性炭素基板から成る負極と、
あらかじめ防水処理が施された平板状の多孔性炭素基板
の一方の面に触媒層が担持された正極とを、電解質を含
有する電解質層を介して上記各触媒層面が相対向するよ
うにして密着一体化して構成された単位セルを、当該単
位セル間に電気的接続経路を確保すると共に、上記負極
活物質の流路を形成するための片面満付の多孔性炭素基
板から成る第1の積層化素子、及び上記負極活物質とし
て正極活物質の混合を阻止するためのガス不透過性でか
つ上記正極に接する面に正極活物質の流通用溝が設けら
れた電気導電性の平板炭素板から成る第2の積層化素子
を介在させて複数個8%層構成し、かつ上記第1の積層
化素子の空孔部に電解質を含浸保持させるようにしたの
で、セル特性を低下させることなく負極側の積層化素子
に電解質を保有させて長寿命化を図ることができ、しか
も反応ガスの実流速を増加させて反応ガスの拡散を良好
にしセル特性を向上させることが可能な極めて信頼性の
高い燃料電池が提供できる。
[Effects of the Invention] As explained above, according to the present invention, a fuel is produced in which a concentrated acidic solution is used as an electrolyte, a gas mainly composed of hydrogen is used as an active material on the negative electrode side, and an oxidizing gas is used as an active material on the positive electrode side. In a battery, a negative electrode consisting of a flat porous carbon substrate with a catalyst layer supported on one surface for promoting electrode reaction;
A positive electrode having a catalyst layer supported on one side of a flat porous carbon substrate that has been waterproofed in advance is brought into close contact with the catalyst layer surfaces facing each other through an electrolyte layer containing an electrolyte. A first laminated layer consisting of a porous carbon substrate with one side full for ensuring an electrical connection path between the unit cells integrated and forming a flow path for the negative electrode active material. from an electrically conductive flat carbon plate that is gas-impermeable and has grooves for circulation of the positive electrode active material on the surface in contact with the positive electrode to prevent mixing of the positive electrode active material as the negative electrode active material. The second laminated element is interposed to form a plurality of 8% layers, and the pores of the first laminated element are impregnated and retained with the electrolyte, so that the negative electrode can be formed without deteriorating the cell characteristics. It is an extremely reliable product that can have an electrolyte in the side laminated element to extend its life, and also increases the actual flow rate of the reactant gas to improve the diffusion of the reactant gas and improve the cell characteristics. High-quality fuel cells can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面斜視図、第2図
および第3図は従来型の代表的なセル構成図、第4図(
a)(b)は本発明の作用効果を説明するための特性図
、第5図は従来の代表的なセル構成を示す拡大図である
。 1・・・負極、2・・・正極、3・・・電解質層、6・
・・第1の積層化素子、7・・・第2の積層化素子、8
・・・燃料ガス流通用溝、9・・・リブ部、1o・・・
燃料ガス流通面、11・・・燃料ガス流通用溝残肉。 出願人代理人 弁理士 鈴江武彦 第 2 図 第 3 囚
FIG. 1 is a vertical cross-sectional perspective view showing one embodiment of the present invention, FIGS. 2 and 3 are typical cell configuration diagrams of a conventional type, and FIG.
FIG. 5 is an enlarged view showing a typical conventional cell configuration. DESCRIPTION OF SYMBOLS 1... Negative electrode, 2... Positive electrode, 3... Electrolyte layer, 6...
...first laminated element, 7...second laminated element, 8
... Fuel gas distribution groove, 9... Rib portion, 1o...
Fuel gas distribution surface, 11...Fuel gas distribution groove remaining thickness. Applicant's agent Patent attorney Takehiko Suzue No. 2 Figure No. 3 Prisoner

Claims (3)

【特許請求の範囲】[Claims] (1)濃厚酸性溶液を電解質として用い、水素を主成分
とするガスを負極側活物質とし、酸化性のガスを正極側
活物質とする燃料電池において、一方の面に電極反応を
促進させるための触媒層が担持された平板状の多孔性炭
素基板から成る負極と、あらかじめ防水処理が施された
平板状の多孔性炭素基板の一方の面に触媒層が担持され
た正極とを、電解液を含有する電解質層を介して前記各
触媒層面が相対向するようにして密着一体化して構成さ
れた単位セルを、当該単位セル間に電気的接続経路を確
保すると共に、前記負極活物質の流路を形成するための
片面溝付の多孔性炭素基板から成る第1の積層化素子、
及び前記負極活物質と正極活物質の混合を阻止するため
のガス不透過性でかつ前記正極に接する面に正極活物質
の流通用溝が設けられた電気導電性の平板炭素板から成
る第2の積層化素子を介在させて複数個の積層構成し、
かつ前記第1の積層化素子の空孔部に電解質を含浸保持
させて成ることを特徴とする燃料電池。
(1) To promote electrode reactions on one side in a fuel cell that uses a concentrated acidic solution as an electrolyte, a gas mainly composed of hydrogen as an active material on the negative electrode side, and an oxidizing gas as an active material on the positive electrode side. A negative electrode consisting of a flat porous carbon substrate with a catalyst layer supported on it, and a positive electrode with a catalyst layer supported on one side of a flat porous carbon substrate that has been waterproofed in advance are connected to an electrolytic solution. The unit cells are formed by closely integrating the respective catalyst layer surfaces with each other facing each other via an electrolyte layer containing an electrolyte. a first laminated element consisting of a porous carbon substrate with grooves on one side for forming channels;
and a second plate made of an electrically conductive flat carbon plate, which is gas-impermeable and has grooves for the circulation of the positive electrode active material on its surface in contact with the positive electrode, to prevent mixing of the negative electrode active material and the positive electrode active material. A plurality of laminated layers are formed by interposing a laminated element of
A fuel cell characterized in that the pores of the first laminated element are impregnated and held with an electrolyte.
(2)特許請求の範囲第(1)項に記載のものにおいて
、多孔性炭素基板から成る第1の積層化素子に設けてあ
る溝形状が、溝深さ0.8〜1.4mmであることを特
徴とする燃料電池。
(2) In the product described in claim (1), the groove shape provided in the first laminated element made of a porous carbon substrate has a groove depth of 0.8 to 1.4 mm. A fuel cell characterized by:
(3)特許請求の範囲第(1)項に記載のものにおいて
、第1の積層化素子の空孔率が40〜70パーセント、
望ましくは55〜65パーセントであることを特徴とす
る燃料電池。
(3) In the device according to claim (1), the porosity of the first laminated element is 40 to 70%;
A fuel cell characterized in that it is preferably 55-65%.
JP60146031A 1985-07-03 1985-07-03 Fuel cell Pending JPS628453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146031A JPS628453A (en) 1985-07-03 1985-07-03 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146031A JPS628453A (en) 1985-07-03 1985-07-03 Fuel cell

Publications (1)

Publication Number Publication Date
JPS628453A true JPS628453A (en) 1987-01-16

Family

ID=15398540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146031A Pending JPS628453A (en) 1985-07-03 1985-07-03 Fuel cell

Country Status (1)

Country Link
JP (1) JPS628453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012309A2 (en) * 1994-10-07 1996-04-25 International Fuel Cells Corporation Cathode reactant flow field component for a fuel cell stack
JPH09266001A (en) * 1996-03-29 1997-10-07 Sanyo Electric Co Ltd Phosphoric acid fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889780A (en) * 1981-11-24 1983-05-28 Toshiba Corp Electrochemical power generating equipment
JPS5894768A (en) * 1981-11-24 1983-06-06 Toshiba Corp Electrochemical power generating device
JPS58100368A (en) * 1981-12-08 1983-06-15 Toshiba Corp Electrochemical power generating element of acidic electrolyte
JPS58150271A (en) * 1982-03-03 1983-09-06 Hitachi Ltd Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889780A (en) * 1981-11-24 1983-05-28 Toshiba Corp Electrochemical power generating equipment
JPS5894768A (en) * 1981-11-24 1983-06-06 Toshiba Corp Electrochemical power generating device
JPS58100368A (en) * 1981-12-08 1983-06-15 Toshiba Corp Electrochemical power generating element of acidic electrolyte
JPS58150271A (en) * 1982-03-03 1983-09-06 Hitachi Ltd Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012309A2 (en) * 1994-10-07 1996-04-25 International Fuel Cells Corporation Cathode reactant flow field component for a fuel cell stack
WO1996012309A3 (en) * 1994-10-07 1996-10-24 Int Fuel Cells Corp Cathode reactant flow field component for a fuel cell stack
JPH09266001A (en) * 1996-03-29 1997-10-07 Sanyo Electric Co Ltd Phosphoric acid fuel cell

Similar Documents

Publication Publication Date Title
US5869202A (en) Hydrophillic graphite fuel cell electrode for use with an ionomer membrane fuel cell
JPS6047702B2 (en) Fuel cell assembly and its manufacturing method
JPS6130385B2 (en)
CA2693522C (en) Fuel cell with non-uniform catalyst
JPH0756807B2 (en) Fuel cell
EP0080159B1 (en) Electrochemical power generator
JPS628453A (en) Fuel cell
EP0262961B1 (en) Fuel cell with electrolyte matrix assembly
JP2633522B2 (en) Fuel cell
JPH11204118A (en) Fuel cell separator and fuel cell
JPH0258741B2 (en)
JPS6255872A (en) Fuel cell
JPS5927466A (en) Fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
CA1202070A (en) Fuel cell with multiple porosity electrolyte matrix assembly
CN113889637B (en) Fuel cell bipolar plate with internal water diversion/internal humidification structure
JPH01154467A (en) Liquid fuel cell
EP0106605A1 (en) Fuel cell with multiple porosity electrolyte matrix assembly and electrolyte feed system
JPH0652873A (en) Fuel cell
JPS61116760A (en) Fuel cell
KR101065376B1 (en) Fuel sell system, stack and separator used thereto
JPH04296455A (en) Fuel cell
JPS61227367A (en) Fuel cell
JPS61126771A (en) Fuel cell
JPS59154774A (en) Fuel cell