JPH02207414A - Oxide superconducting wire - Google Patents
Oxide superconducting wireInfo
- Publication number
- JPH02207414A JPH02207414A JP1026094A JP2609489A JPH02207414A JP H02207414 A JPH02207414 A JP H02207414A JP 1026094 A JP1026094 A JP 1026094A JP 2609489 A JP2609489 A JP 2609489A JP H02207414 A JPH02207414 A JP H02207414A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconducting
- stabilized zirconia
- superconducting wire
- base material
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 16
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 238000009792 diffusion process Methods 0.000 abstract description 7
- 239000002887 superconductor Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、超電導コイル、超電導ケーブル等に使用さ
れ得る酸化物超電導線に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an oxide superconducting wire that can be used for superconducting coils, superconducting cables, and the like.
[従来の技術]
従来から超電導体として、金属系のもの、化合物系のも
のおよびセラミックス系のものが知られており、種々の
用途への適用が研究されている。[Prior Art] Metal-based, compound-based, and ceramic-based superconductors have been known as superconductors, and their applications to various uses are being studied.
すなわち、超電導体は、臨界温度以下の温度に保持され
ることにより電気抵抗が零の状態になるのであるが、こ
の特性を利用して高磁界の発生、大容量の電流の高密度
伝送等が試みられている。In other words, when a superconductor is kept at a temperature below its critical temperature, its electrical resistance becomes zero, and this property can be used to generate high magnetic fields, transmit large amounts of current at high density, etc. is being attempted.
最近、超電導材料として、セラミックス系のものが超電
導現象を示す臨界温度を高くできる点で脚光を浴びつつ
ある。このような超電導材料は、たとえば長尺の線状体
とすることによって、送配電、各種機器または素子間の
電気的接続、交流用巻線等の用途に用いることができる
。Recently, ceramic-based materials have been attracting attention as superconducting materials because they can raise the critical temperature at which superconductivity occurs. Such superconducting materials can be used for power transmission and distribution, electrical connections between various devices or elements, alternating current windings, and the like by forming elongated linear bodies, for example.
セラミックス系の超電導材料、すなわち酸化物系の超電
導材料を線材化する方法としては、従来より金属バイブ
内に酸化物超電導体の粉末を充填しこれを減面加工する
方法や、あるいは長尺の基材の上に酸化物超電導材料の
層を形成し線材化する方法などが知られている。酸化物
単結晶ファイバ上に、酸化物超電導体の層を形成した超
電導線は、たとえば特開昭63−271816号公報に
開示されている。酸化物超電導層を形成する方法として
は、蒸着、スパッタリング、CVD等の気相薄膜形成方
法が適用し得る。Conventional methods for turning ceramic-based superconducting materials, that is, oxide-based superconducting materials, into wire rods include filling a metal vibrator with oxide superconductor powder and processing it to reduce its area, or using a long base material. A method is known in which a layer of oxide superconducting material is formed on a material to form a wire. A superconducting wire in which an oxide superconductor layer is formed on an oxide single crystal fiber is disclosed in, for example, Japanese Patent Laid-Open No. 63-271816. As a method for forming the oxide superconducting layer, vapor phase thin film forming methods such as vapor deposition, sputtering, and CVD can be applied.
[発明が解決しようとする課題]
しかしながら、このような超電導線において高い臨界電
流密度を得るためには、通常高い熱処理を施す必要があ
る。結晶性の優れた膜が得られるMgOおよびS r
T i Os等の単結晶上に酸化物超電導体の層を形成
させた場合にも、成膜中の基板温度を600〜700℃
とし、成膜後にさらに900℃以上の温度で熱処理を行
なう必要がある。[Problems to be Solved by the Invention] However, in order to obtain a high critical current density in such a superconducting wire, it is usually necessary to perform high heat treatment. MgO and S r that provide a film with excellent crystallinity
Even when forming an oxide superconductor layer on a single crystal such as TiOs, the substrate temperature during film formation must be kept at 600 to 700°C.
Therefore, it is necessary to further perform heat treatment at a temperature of 900° C. or higher after film formation.
可撓性を有する金属、セラミックスおよびガラス等の基
板の上に酸化物超電導体の層を形成した場合には、結晶
性が劣るため、さらに高温でしかも長時間の熱処理が必
要となる。しかしながらこのような高温かつ長時間の熱
処理を行なうと、基板との間での拡散反応が生じ、形成
した酸化物超電導体の層の超電導特性が劣化してしまう
。このような拡散反応を防止するため、基板と酸化物超
電導体層との間に中間層を形成することが考えられるが
、高温で長時間の熱処理に耐えるようにするためには、
1μm以上の厚い中間層が必要となり、中間層形成のた
めのコストが大きくなる。When an oxide superconductor layer is formed on a flexible substrate of metal, ceramic, glass, etc., the crystallinity is poor and heat treatment at a higher temperature and for a longer time is required. However, when such a high temperature and long time heat treatment is performed, a diffusion reaction occurs with the substrate, and the superconducting properties of the formed oxide superconductor layer deteriorate. In order to prevent such a diffusion reaction, it is possible to form an intermediate layer between the substrate and the oxide superconductor layer, but in order to withstand long-term heat treatment at high temperatures,
A thick intermediate layer of 1 μm or more is required, which increases the cost for forming the intermediate layer.
この発明の目的は、かかる従来の問題点を解消し、拡散
反応による影響が少なく、超電導特性に優れた酸化物超
電導線を提供することにある。An object of the present invention is to solve these conventional problems and provide an oxide superconducting wire that is less affected by diffusion reactions and has excellent superconducting properties.
[課題を解決するための手段]
この発明の酸化物超電導線は、可撓性を有し、かつAl
l不純物量が0.1重量%未満であるイツトリア安定化
ジルコニア基村上に、酸化物超電導層を形成したことを
特徴としている。[Means for Solving the Problems] The oxide superconducting wire of the present invention has flexibility and
The present invention is characterized in that an oxide superconducting layer is formed on an yttria-stabilized zirconia base layer containing less than 0.1% by weight of impurities.
この発明において、基材として用いられるイツトリア安
定化ジルコニアのAm不純物量は0.1重量%未満であ
るが、さらに好ましくは0.05重量%未満である。な
お、この明細書においてA之不純物量はA’120aと
しての不純物量をいう。In this invention, the amount of Am impurities in the yttria-stabilized zirconia used as the base material is less than 0.1% by weight, more preferably less than 0.05% by weight. In this specification, the amount of impurity A refers to the amount of impurity as A'120a.
[作用]
この発明において、基材として用いるイツトリア安定化
ジルコニアのAl不純物量を0.1重量%未満としてい
るのは、イツトリア安定化ジルコニア中に含まれる不純
物の内で、Afiが最も拡散しやすく、このAllの拡
散反応を少なくすることにより、超電導特性、特に臨界
温度(Tc)の低減を抑制することができるからである
。[Function] In this invention, the amount of Al impurities in the yttria-stabilized zirconia used as the base material is set to less than 0.1% by weight because Afi is the most easily diffused among the impurities contained in the yttria-stabilized zirconia. This is because by reducing this diffusion reaction of All, it is possible to suppress a reduction in superconducting properties, particularly in critical temperature (Tc).
Al不純物量が0.1重量%以上のイツトリア安定化ジ
ルコニア基材上にYBaCuO系酸化物超電導層を形成
した場合には、特にY2Ba、Cu10.の組成の酸化
物を形成しやすい。この組成の酸化物の存在により、臨
界温度(Tc)および臨界電流密度(J c)等の超電
導特性が低下する。この発明は、このようにAl不純物
量が0゜1重量%以上になると、Y2 BaI Cut
o、などの異相を形成しやすいという現象を見出すこ
とによって達成されたものである。In particular, when a YBaCuO-based oxide superconducting layer is formed on an yttria-stabilized zirconia base material containing 0.1% by weight or more of Al impurities, Y2Ba, Cu10. It is easy to form oxides with a composition of The presence of oxides of this composition reduces superconducting properties such as critical temperature (Tc) and critical current density (Jc). In this invention, when the amount of Al impurities is 0.1% by weight or more, Y2 BaI Cut
This was achieved by discovering the phenomenon of easy formation of different phases such as o.
[実施例]
表1に示すような異なるAn不純物濃度を有する厚さ0
.1mmのイツトリア安定化ジルコニア(Y含有量3重
量%)のテープ状体の上に、Y−Ba−Cu−0系酸化
物超電導層をRFマグネトロンスパッタリング法により
形成した。成膜条件は以下のとおりである。[Example] Thickness 0 with different An impurity concentrations as shown in Table 1
.. A Y-Ba-Cu-0 based oxide superconducting layer was formed on a 1 mm tape-like body of yttria-stabilized zirconia (Y content: 3% by weight) by RF magnetron sputtering. The film forming conditions are as follows.
ターゲット: Y、Ba2 Cu3,10xターゲット
直径:100mm
基板温度:680℃
RFパワー:100ワツト
ガス圧: 50mTor r
酸素分圧(02/ (02+Ar)): 50%ターゲ
ット−基板間距離:45mm
成膜時間=6時間
膜厚:0.8〜1,2μm
以上のようにして酸化物超電導層を形成した後、酸素中
で950℃、0.5時間熱処理を行なった。Target: Y, Ba2 Cu3,10x Target diameter: 100 mm Substrate temperature: 680°C RF power: 100 Watts Gas pressure: 50 mTorr Oxygen partial pressure (02/ (02+Ar)): 50% Target-substrate distance: 45 mm Film formation time = 6-hour film thickness: 0.8 to 1.2 μm After forming the oxide superconducting layer as described above, heat treatment was performed at 950° C. for 0.5 hours in oxygen.
各酸化物超電導層について、抵抗Rが0となる臨界電流
密度(Tc)を測定し、表1に示した。For each oxide superconducting layer, the critical current density (Tc) at which the resistance R becomes 0 was measured and shown in Table 1.
(以下余白) 表 の断面形状は特に限定されるものではない。(Margin below) table The cross-sectional shape of is not particularly limited.
[発明の効果]
以上説明したように、この発明の酸化物超電導線では、
Ai不純物量が0.1重量%未満のイツトリア安定化ジ
ルコニアの基材の上に酸化物超電導層を形成している。[Effects of the Invention] As explained above, the oxide superconducting wire of the present invention has the following properties:
An oxide superconducting layer is formed on a base material of yttria-stabilized zirconia containing less than 0.1% by weight of Ai impurities.
このようにこの発明では、最も拡散しゃすいA!Lの含
有量が少ない基材を用いているため、熱処理における拡
散反応を抑制することができ、熱処理による超電導特性
の低下を少なくすることができる。In this way, with this invention, A! Since a base material with a low content of L is used, diffusion reactions during heat treatment can be suppressed, and deterioration in superconducting properties due to heat treatment can be reduced.
表1から明らかなように、この発明に従う実施例1〜5
の酸化物超電導層では、高いTcを示したが、この発明
の範囲よりもA【不純物量の多い比較例1〜3は、実施
例1〜5に比べ著しく低いTcとなった。As is clear from Table 1, Examples 1 to 5 according to the present invention
Although the oxide superconducting layer showed a high Tc, Comparative Examples 1 to 3, which had a larger amount of impurities than the range of the present invention, had a significantly lower Tc than Examples 1 to 5.
Claims (2)
未満であるイットリア安定化ジルコニアの基材上に、酸
化物超電導層を形成したことを特徴とする、酸化物超電
導線。(1) Flexibility and Al impurity content of 0.1% by weight
1. An oxide superconducting wire, characterized in that an oxide superconducting layer is formed on a base material of yttria-stabilized zirconia having a yttria-stabilized zirconia.
特徴とする、請求項1記載の酸化物超電導線。(2) The oxide superconducting wire according to claim 1, characterized in that the amount of Al impurities is less than 0.05% by weight.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1026094A JP2734596B2 (en) | 1989-02-04 | 1989-02-04 | Oxide superconducting wire |
CA002008310A CA2008310C (en) | 1989-02-04 | 1990-02-02 | Superconducting wire |
DE69019376T DE69019376T2 (en) | 1989-02-04 | 1990-02-05 | Superconducting wire. |
EP92113673A EP0528332B1 (en) | 1989-02-04 | 1990-02-05 | Superconducting wire |
US07/475,048 US5143898A (en) | 1989-02-04 | 1990-02-05 | Superconducting wire |
EP90102224A EP0385132A1 (en) | 1989-02-04 | 1990-02-05 | Superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1026094A JP2734596B2 (en) | 1989-02-04 | 1989-02-04 | Oxide superconducting wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02207414A true JPH02207414A (en) | 1990-08-17 |
JP2734596B2 JP2734596B2 (en) | 1998-03-30 |
Family
ID=12184011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1026094A Expired - Lifetime JP2734596B2 (en) | 1989-02-04 | 1989-02-04 | Oxide superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2734596B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63224270A (en) * | 1987-11-11 | 1988-09-19 | Semiconductor Energy Lab Co Ltd | Manufacture of superconductor device |
-
1989
- 1989-02-04 JP JP1026094A patent/JP2734596B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63224270A (en) * | 1987-11-11 | 1988-09-19 | Semiconductor Energy Lab Co Ltd | Manufacture of superconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2734596B2 (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2664066B2 (en) | Superconducting thin film and method for producing the same | |
JP2567460B2 (en) | Superconducting thin film and its manufacturing method | |
CA2008310C (en) | Superconducting wire | |
JPH0286014A (en) | Composite oxide superconducting thin film and film forming method | |
JP2664070B2 (en) | Preparation method of composite oxide superconducting thin film | |
JPH02167820A (en) | Method for forming tl-base multiple oxide superconducting thin film | |
JPH02207414A (en) | Oxide superconducting wire | |
US5049452A (en) | Target member used for formation of superconducting film | |
JPH01167221A (en) | Production of superconducting thin film | |
US5512542A (en) | Metallic oxide with boron and process for manufacturing the same | |
JP2544759B2 (en) | How to make a superconducting thin film | |
JPH01125878A (en) | Thin film multilayer superconductor | |
JP2501609B2 (en) | Method for producing complex oxide superconducting thin film | |
JP2759266B2 (en) | Oxide superconductor coating | |
JP2545422B2 (en) | Composite oxide superconducting thin film and method for producing the same | |
JPH02141568A (en) | Production of thin superconducting film of multiple oxide | |
JP2544761B2 (en) | Preparation method of superconducting thin film | |
JPH0446098A (en) | Superconducting member | |
JPH04179004A (en) | Oxide superconductive tape conductor | |
JP2913653B2 (en) | Oxide superconducting thin film structure | |
JP2544760B2 (en) | Preparation method of superconducting thin film | |
JP2525842B2 (en) | Superconducting wire and its manufacturing method | |
JPH01126206A (en) | Superconducting thin film | |
JPH0829938B2 (en) | Composite oxide superconducting thin film and method for producing the same | |
JPH0761867B2 (en) | Method for producing complex oxide superconducting thin film |