JP2759266B2 - Oxide superconductor coating - Google Patents

Oxide superconductor coating

Info

Publication number
JP2759266B2
JP2759266B2 JP62304132A JP30413287A JP2759266B2 JP 2759266 B2 JP2759266 B2 JP 2759266B2 JP 62304132 A JP62304132 A JP 62304132A JP 30413287 A JP30413287 A JP 30413287A JP 2759266 B2 JP2759266 B2 JP 2759266B2
Authority
JP
Japan
Prior art keywords
substrate
oxide
temperature
superconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62304132A
Other languages
Japanese (ja)
Other versions
JPH01144519A (en
Inventor
慎一 郡山
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62304132A priority Critical patent/JP2759266B2/en
Publication of JPH01144519A publication Critical patent/JPH01144519A/en
Application granted granted Critical
Publication of JP2759266B2 publication Critical patent/JP2759266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエレクトロニクス分野等で使用される酸化物
系超電導体被覆部材に関するものである。 〔従来技術〕 近年、90Kの高臨界温度を有する酸化物系超電導体が
発見され、従来の金属又は金属間化合物系超電導体に代
わり液体窒素温度で使用可能な材料として注目され、各
分野での応用研究が進められている。 その中でも、超電導体のその特異的性質からエレクト
ロニクス分野への応用が盛んに行われ、例えば配線基板
等への応用が進められている。 一般に配線基板等に適用する場合は基板に対してスパ
ッタ法やスクリーン印刷法あるいはディッピング法によ
り酸化物系超電導薄膜を形成したものが研究され、中に
は電流密度が105〜106A/cm2という値が報告されてい
る。 スパッタ法によれば、成膜したままの酸化物は超電導
現象を示さず、超電導体とするには酸化雰囲気中で900
℃程度の温度で熱処理することが必要である。また、印
刷法やディッピング法による成膜においても900℃程度
の温度で熱処理を必要とする。 〔発明が解決しようとする問題点〕 しかし乍ら、上述した従来技術によれば、製造工程中
に基板との接触状態での高温熱処理を必須とすることか
ら、基板からの基板を構成する元素の超電導膜への拡散
が生じ、超電導体特性の劣化、例えばオフセット温度の
低下等が生じる傾向にある。 このような傾向を回避するために熱処理温度を低くす
るための改良や、基板材料として高価なサファイアや、
MgO,PSZ(部分安定化ジルコニア)あるいはSrTiO3の基
板を用いることが検討されているが、熱処理温度低下に
よる改良では不十分であり、基板材料の改良では価格的
問題、あるいは基板材料が限定されるため、広汎な分野
への応用ができない等の不都合があった。 〔発明の目的〕 本発明は叙上の問題点を解決することを主たる目的と
するもので具体的には、アルミナ質セラミックスからな
る基板に対して、基板からの超電導膜への拡散を防止
し、膜の超電導特性を安定化させることを目的とする。
それによって超電導膜の用途を広げるとともに安価な超
電導体被覆部材を提供することを目的とするものであ
る。 〔問題点を解決するための手段〕 本発明者等は上記問題点に対し、研究を重ねた結果、
酸化物系超電導体、特にペロブスカイト型構造のものに
対して、CrあるいはMnの金属元素はほとんど置換されず
に、超電導体特性に対してもほとんど影響を及ぼさない
さとに着目し、これらの金属化合物を基板と超電導体の
薄膜との間に介在させることにより基板からの元素の拡
散を中間層が阻止することから、アルミナ基板が採用で
きることを知見した。 即ち、本発明は、アルミナ基板上に酸化物系超電導体
の薄膜を形成した酸化物系超電導体被覆部材において、
前記基板と前記薄膜との間にCr、Mnのうちの少なくとも
1種の金属あるいはその化合物から成る中間層を介在さ
せたことを特徴とする酸化物系超電導体被覆部材を提供
するにある。 以下、本発明をさらに詳述する。 従来の構成において例えばAl23を基板として用い、
その基板上にREBa2Cu37−δ膜を設ける場合、基板中
のAl23が膜中に拡散し、膜組成のREイオンと置換する
ため、超電導体である斜方晶結晶の格子長が変わり、超
電導特性は劣化する。同様にMg2+イオンはBaイオンと置
換して特性が劣化する。 上記の元素に対し、Cr、Mnのイオンは元素置換は殆ど
行われず、異生成物となり、超電導特性に何ら影響を及
ぼさないものである。 本発明において基板と薄膜との間に介在される中間層
はCr、Mnの金属単体あるいは酸化物などの化合物の形で
設けることができる。 また、基板材料としては中間層の介在によりあらゆる
ものが採用されるが、被覆部材の製造にあたり、600〜9
50℃の熱処理を必要とすることから、熱処理温度に耐え
得るものが要求される。よって、本発明では、あらゆる
セラミック基板が採用されるが、特に、アルミナ基板に
対して特に有効であり、いずれも公知の方法で製造され
た焼結体からなる。 さらに、中間層上に形成される超電導体は具体的には
ペロブスカイト型構造を有するもので、例えばREBa2Cu3
7−δ系(REは希土類元素)が挙げられ、これらはい
ずれもその一部を他の元素で置換されたものであっても
問題はない。 本発明の酸化物系超電導体被覆部材の製造に際して
は、まず、前述した基板に対し、公知の薄膜形成手段、
例えばプラズマCVD、熱CVD等のCVD法や、蒸着、スパッ
タリング等のPVD法等を用いて、金属単体、或いは金属
化合物として設ける。 酸化物系超電導体の薄膜の形成に当たっては超電導体
粉末を溶剤中に分散したペーストを用い、前述した中間
層が形成された規範上に印刷塗布或いはディッピング塗
布して乾燥後、800〜950℃で熱処理を行う。また、他の
方法としては超電導体をターゲットとして、スパッタリ
ングするかまたは超電導粉体のプラズマ溶射などによっ
て形成することができる。 なお、本発明において設けられる中間層の厚みは1μ
m以上が好ましく、1μmを下回ると、基板から元素の
拡散を有効的に抑制できなくなる傾向にある。 以下、本発明を次の例で説明する。 〔比較例〕 Dy231/2モル,BaCO32モル,CuO3モルの各粉末を秤量
してメノー乳鉢で充分に混合した粉末をアルミナ製磁製
ボートに充填して空気中で880℃で10時間加熱した。そ
の後、100℃hrで冷却後、550℃で3時間保持した後、室
温まで除冷した。 この仮焼粉末をメノー乳鉢を用いて1μm程度にまで
微粉化し、約10gの粉末を得た。 粉末10gに対しバインダーとしてエチルセルロース0.9
g、および溶剤としてヘプチルアルコールを1.5g添加
し、メノー乳鉢で混練し、印刷用ペーストを作成した。
Al23(純度99.6%)の基板の上に300メッシュのステ
ンレス製スクリーンを通して5×20mmの帯状パターンを
10μm厚みで印刷した。 室温で2時間、その後乾燥機にて50℃〜100℃まで1
℃/minで昇温し、最終的に100℃で2時間乾燥した。こ
のパターン印刷した基板を大気中,900℃で2時間加熱
し、500℃まで200℃/hrで冷却し、500℃で5時間保持し
た後、室温まで炉却した。 得られた、被覆部材に対し温度による電気抵抗の変化
を4端子法で測定した。パターン上にAgペーストを用い
て4電極を作成し、φ0.2mmの銅線をリード線とした。 測定の結果、室温から冷却していくと抵抗値は高くな
るいわゆる半導体的挙動を示し、液体窒素温度(77K)
以上では抵抗が0にならなかった。 実施例1 アルミナ基板(99.8%)上にマグネトロンスパッタリ
ング法によりCr,Mnの各金属をターゲットとしてAr圧3
〜6×10-3Torr以下、基板温度200〜250℃の条件で成膜
速度約1000Å/分で厚さ2μmの金属膜を個々に形成し
た。 得られた基板に比較例と同様にしてペーストをパター
ン印刷し、焼き付けた。 同様にオフセット温度(K)、負の磁化率(%)を測
定したところCrが80K,52%、Mnが83K,60%であり、いず
れも高い温度で超電導を示した。 因みに比較のために、アルミナ基板上にFe金属膜を設
け、同様に被覆部材を作製し、特性を測定したところ、
液体窒素下(77K)では超電導は示さなかった。 〔発明の効果〕 以上詳述した通り、本発明によれば超電導薄膜と基板
の間にCr、Mnの金属単体或いは金属化合物からなる中間
層を設けることによって基板からの薄膜への元素の拡散
を阻止することができ、しかも中間層自体超電導薄膜に
対し特性上何ら悪影響を及ぼすことがない。よって従来
のSrTiO3サファイヤ等の高価な基板を用いることなく安
価なアルミナ基板を採用することができ、被覆部材とし
ての価格を下げ、しかも用途を広げることが可能とな
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an oxide-based superconductor covering member used in the electronics field and the like. [Prior art] In recent years, oxide-based superconductors having a high critical temperature of 90 K have been discovered, and have attracted attention as a material that can be used at liquid nitrogen temperature in place of conventional metal or intermetallic compound-based superconductors. Applied research is ongoing. Above all, superconductors have been actively applied to the electronics field due to their unique properties, and are being applied to, for example, wiring boards. Generally when applied to the wiring board or the like is studied that forms the oxide superconducting thin film by a sputtering method or a screen printing method or a dipping method with respect to the substrate, the current density in the 10 5 ~10 6 A / cm A value of 2 is reported. According to the sputtering method, the as-deposited oxide does not show a superconducting phenomenon.
It is necessary to heat-treat at a temperature of about ° C. Further, heat treatment is required at a temperature of about 900 ° C. even in film formation by a printing method or a dipping method. [Problems to be Solved by the Invention] However, according to the above-described prior art, since a high-temperature heat treatment in a state of contact with the substrate is required during the manufacturing process, the element constituting the substrate from the substrate is required. Is diffused into the superconducting film, and the superconductor characteristics tend to deteriorate, for example, the offset temperature decreases. Improvements to lower the heat treatment temperature to avoid this tendency, expensive sapphire as a substrate material,
Although the use of MgO, PSZ (partially stabilized zirconia) or SrTiO 3 substrates is being studied, improvement by lowering the heat treatment temperature is not sufficient, and the cost of improving the substrate material is limited, or the substrate material is limited. Therefore, there is a problem that the method cannot be applied to a wide range of fields. [Object of the Invention] The present invention has a main object of solving the above-mentioned problems, and specifically, for a substrate made of alumina ceramics, preventing diffusion from a substrate to a superconducting film. Another object of the present invention is to stabilize the superconducting characteristics of the film.
Accordingly, it is an object of the present invention to expand the applications of the superconducting film and to provide an inexpensive superconductor covering member. [Means for Solving the Problems] The present inventors have conducted research on the above problems, and as a result,
Focusing on oxide superconductors, especially those with a perovskite structure, the metal element of Cr or Mn is hardly substituted and has little effect on superconductor properties. It has been found that an alumina substrate can be employed because the intermediate layer prevents the diffusion of elements from the substrate by interposing between the substrate and the thin film of the superconductor. That is, the present invention relates to an oxide-based superconductor coating member in which a thin film of an oxide-based superconductor is formed on an alumina substrate,
An object of the present invention is to provide an oxide-based superconductor covering member, characterized in that an intermediate layer made of at least one metal of Cr or Mn or a compound thereof is interposed between the substrate and the thin film. Hereinafter, the present invention will be described in more detail. In the conventional configuration, for example, Al 2 O 3 is used as a substrate,
When a REBa 2 Cu 3 O 7-δ film is provided on the substrate, Al 2 O 3 in the substrate diffuses into the film and substitutes for RE ions of the film composition. The lattice length changes, and the superconductivity deteriorates. Similarly, Mg 2+ ions are replaced with Ba ions to deteriorate the characteristics. The Cr and Mn ions hardly undergo element substitution for the above elements, become foreign products, and do not affect the superconductivity at all. In the present invention, the intermediate layer interposed between the substrate and the thin film can be provided in the form of a single metal of Cr or Mn or a compound such as an oxide. In addition, as the substrate material, any material can be adopted with an intermediate layer interposed therebetween.
Since a heat treatment at 50 ° C. is required, a material that can withstand the heat treatment temperature is required. Therefore, in the present invention, any ceramic substrate is employed, but it is particularly effective for an alumina substrate, and each is made of a sintered body manufactured by a known method. Further, the superconductor formed on the intermediate layer specifically has a perovskite structure, for example, REBa 2 Cu 3
O7 system (RE is a rare earth element) is mentioned, and there is no problem even if all of them are partially substituted by another element. In producing the oxide-based superconductor-coated member of the present invention, first, a known thin-film forming means,
For example, using a CVD method such as plasma CVD or thermal CVD, or a PVD method such as evaporation or sputtering, the metal is provided as a single metal or a metal compound. In forming a thin film of the oxide-based superconductor, using a paste obtained by dispersing a superconductor powder in a solvent, printing and dipping on the above-described intermediate layer is formed, and then dried at 800 to 950 ° C. Heat treatment is performed. In addition, as another method, it can be formed by sputtering using a superconductor as a target, or by plasma spraying a superconducting powder. The thickness of the intermediate layer provided in the present invention is 1 μm.
m is preferable, and when it is less than 1 μm, diffusion of elements from the substrate tends to be unable to be effectively suppressed. Hereinafter, the present invention will be described with reference to the following examples. [Comparative Example] Dy 2 O 3 1/2 mol, BaCO 3 2 mol, CuO 3 mol powder were weighed and mixed thoroughly in an agate mortar, and the powder was filled in an alumina porcelain boat and 880 ° C in air. For 10 hours. Thereafter, after cooling at 100 ° C. hr, the temperature was maintained at 550 ° C. for 3 hours, and then cooled to room temperature. The calcined powder was pulverized to about 1 μm using an agate mortar to obtain about 10 g of powder. Ethyl cellulose 0.9 as binder for 10 g of powder
g, and 1.5 g of heptyl alcohol as a solvent were added and kneaded in an agate mortar to prepare a printing paste.
A 5 × 20 mm strip pattern was passed through a 300-mesh stainless steel screen on an Al 2 O 3 (purity 99.6%) substrate.
Printing was performed at a thickness of 10 μm. 2 hours at room temperature, then in a dryer from 50 ° C to 100 ° C 1
The temperature was raised at a rate of 100 ° C./min, and finally dried at 100 ° C. for 2 hours. The substrate on which the pattern was printed was heated in air at 900 ° C. for 2 hours, cooled to 500 ° C. at 200 ° C./hr, kept at 500 ° C. for 5 hours, and then cooled to room temperature. The change in electric resistance of the obtained coated member with temperature was measured by a four-terminal method. Four electrodes were formed on the pattern using Ag paste, and copper wires of φ0.2 mm were used as lead wires. As a result of the measurement, the resistance value increases as it cools from room temperature, indicating a so-called semiconductor behavior, and the liquid nitrogen temperature (77K)
Above, the resistance did not become zero. Example 1 An Ar pressure of 3 was set on an alumina substrate (99.8%) by magnetron sputtering using each metal of Cr and Mn as targets.
Under conditions of up to 6 × 10 −3 Torr and a substrate temperature of 200 to 250 ° C., metal films having a thickness of 2 μm were individually formed at a film forming rate of about 1000 ° / min. The paste was pattern-printed and baked on the obtained substrate in the same manner as in the comparative example. Similarly, when the offset temperature (K) and the negative magnetic susceptibility (%) were measured, Cr was 80 K and 52%, and Mn was 83 K and 60%, all of which showed superconductivity at a high temperature. By the way, for comparison, a Fe metal film was provided on an alumina substrate, and a coating member was prepared in the same manner, and the characteristics were measured.
No superconductivity was shown under liquid nitrogen (77K). [Effect of the Invention] As described in detail above, according to the present invention, the diffusion of elements from the substrate to the thin film is provided by providing an intermediate layer made of a single metal or a metal compound of Cr and Mn between the superconducting thin film and the substrate. The intermediate layer itself does not adversely affect the superconducting thin film. Therefore, an inexpensive alumina substrate can be adopted without using a conventional expensive substrate such as SrTiO 3 sapphire, and the price as a covering member can be reduced, and the application can be expanded.

Claims (1)

(57)【特許請求の範囲】 1.アルミナ基板上に酸化物系超電導体の薄膜を形成し
た酸化物系超電導体被覆部材において、前記基板と前記
薄膜との間にCr、Mnのうちの少なくとも1種の金属ある
いはその化合物から成る中間層を介在させたことを特徴
とする酸化物系超電導体被覆部材。 2.前記酸化物系超電導体がペロブスカイト型構造を有
する特許請求の範囲第1項記載の酸化物系超電導体被覆
部材。
(57) [Claims] In an oxide-based superconductor covering member having an oxide-based superconductor thin film formed on an alumina substrate, an intermediate layer made of at least one metal of Cr or Mn or a compound thereof between the substrate and the thin film. An oxide-based superconductor-coated member characterized by interposing therein. 2. The oxide-based superconductor covering member according to claim 1, wherein the oxide-based superconductor has a perovskite structure.
JP62304132A 1987-11-30 1987-11-30 Oxide superconductor coating Expired - Lifetime JP2759266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304132A JP2759266B2 (en) 1987-11-30 1987-11-30 Oxide superconductor coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304132A JP2759266B2 (en) 1987-11-30 1987-11-30 Oxide superconductor coating

Publications (2)

Publication Number Publication Date
JPH01144519A JPH01144519A (en) 1989-06-06
JP2759266B2 true JP2759266B2 (en) 1998-05-28

Family

ID=17929424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304132A Expired - Lifetime JP2759266B2 (en) 1987-11-30 1987-11-30 Oxide superconductor coating

Country Status (1)

Country Link
JP (1) JP2759266B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244012A (en) * 1988-08-03 1990-02-14 Dowa Mining Co Ltd Method for forming superconducting thin film
KR100425254B1 (en) * 2001-05-16 2004-03-30 한국표준과학연구원 Nearly zero temperature coefficient of resistance in manganese nitride

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280488A (en) * 1987-05-12 1988-11-17 Toshiba Corp Circuit board
JP2583901B2 (en) * 1987-08-04 1997-02-19 株式会社フジクラ Superconducting electrical circuit
CA1303252C (en) * 1987-08-13 1992-06-09 John A. Agostinelli Circuit element with barrier layer for protecting crystalline oxide conductive layer
JPS6459722A (en) * 1987-08-28 1989-03-07 Furukawa Electric Co Ltd Manufacture of ceramic superconductive wire and thread body
JPH0199268A (en) * 1987-10-13 1989-04-18 Mitsubishi Electric Corp Manufacture of anisotropic oxide superconductor thin film

Also Published As

Publication number Publication date
JPH01144519A (en) 1989-06-06

Similar Documents

Publication Publication Date Title
US4921833A (en) Superconducting member
EP0312015B1 (en) Oxide superconductor shaped body and method of manufacturing the same
EP2717342B1 (en) Superconducting element for superconducting current limiter, method for manufacturing superconducting element for superconducting current limiter, and superconducting current limiter
US4908346A (en) Crystalline rare earth alkaline earth copper oxide thick film circuit element with superconducting onset transition temperature in excess of 77%
CN101268527B (en) Multilayer positive coefficient thermistor
JP2759266B2 (en) Oxide superconductor coating
JP3061634B2 (en) Oxide superconducting tape conductor
KR910004862B1 (en) Target material for forming superconductive film
Wu et al. Epitaxial growth of a-axis oriented YBa2Cu3O7− y/LaNiO3 heterostructures on (100) SrTiO3 by pulsed laser deposition
JPS63305574A (en) Substrate for superconductor
WO1989003126A1 (en) Structure of superconductor wiring and process for its production
JP2803123B2 (en) Superconducting wire
JP3228733B2 (en) Superconducting film formation method
JPH01125878A (en) Thin film multilayer superconductor
JPH0744323B2 (en) Superconducting ceramic substrate
JPH0288407A (en) Ceramic superconducting paste and its production and ceramic superconducting distributing board and its production
JP2870993B2 (en) Manufacturing method of superconducting wiring
JP3272349B2 (en) Manufacturing method of superconducting wiring
JP2721322B2 (en) Oxide superconducting compact
JP2703227B2 (en) Superconductor device
JP2734596B2 (en) Oxide superconducting wire
JPS63279521A (en) Superconductor device
JPH0292809A (en) Production of thin film of oxide superconductor
JPH0446098A (en) Superconducting member
JPH01179779A (en) Method for protecting multi-ply oxide superconductor