JPH02206147A - Manufacture of electrostatic chuck - Google Patents

Manufacture of electrostatic chuck

Info

Publication number
JPH02206147A
JPH02206147A JP1027101A JP2710189A JPH02206147A JP H02206147 A JPH02206147 A JP H02206147A JP 1027101 A JP1027101 A JP 1027101A JP 2710189 A JP2710189 A JP 2710189A JP H02206147 A JPH02206147 A JP H02206147A
Authority
JP
Japan
Prior art keywords
ceramic molded
tio2
electrostatic chuck
molded body
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1027101A
Other languages
Japanese (ja)
Inventor
Tetsuo Kitabayashi
徹夫 北林
Toshiya Watabe
俊也 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP1027101A priority Critical patent/JPH02206147A/en
Publication of JPH02206147A publication Critical patent/JPH02206147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an attraction force excellent as an electrostatic chuck for low-temperature use by a method wherein TiO2 is diffused thermally into a ceramic molded body to be used as a dielectric layer in order to eliminate a swell and the like in the dielectric layer whose TiO2 concentration is high. CONSTITUTION:A plurality of ceramic molded bodies whose content ratio of TiO2 is 2.0wt.% or lower are prepared; the surface of a ceramic molded body 1a in an uppermost layer is coated with a TiO2 paste 2 by a screen-printing method; after that, the surface of a second ceramic molded body 1b as counted from the uppermost layer is coated with a tungsten paste 31 the individual ceramic molded bodies 1,... are laminated, put into a furnace and heated. Then, a diffusion layer 12 into which the TiO2 has been diffused thermally is formed on a surface part of a ceramic sintered body 11a of the uppermost layer. When the TiO2 is diffused thermally in this manner, the sintered body is not swollen; it is possible to obtain a dielectric layer whose TiO2 concentration is high.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導体或いは半導体材料からなる試料を電気的に
吸着・固定する静電チャックの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an electrostatic chuck that electrically attracts and fixes a sample made of a conductor or semiconductor material.

(従来の技術) シリコンウェハ了等の半導体ウェハーにパターンニング
、エツチング或いはCVD処理等を施してLSI等の大
集積回路チップを製造するにあ7jっでは、該ウェハー
を平坦な面に確実に固定して前記の各処理を行う必要が
あり、このための装置として減圧下でも有効な静電チャ
ックが特開昭59−1.5263j号等として知られて
いる。
(Prior art) When manufacturing large integrated circuit chips such as LSI by patterning, etching, or CVD processing on a semiconductor wafer such as a silicon wafer, the wafer is securely fixed on a flat surface. It is necessary to perform each of the above-mentioned processes, and an electrostatic chuck that is effective even under reduced pressure is known as a device for this purpose, such as Japanese Patent Application Laid-Open No. 59-1.5263j.

静電チャックの構造は、一般に、セラミックス製基板上
に内部電極を形成し、この内部電極を誘電層にて覆うよ
うにしている。
Generally, the structure of an electrostatic chuck is such that internal electrodes are formed on a ceramic substrate, and these internal electrodes are covered with a dielectric layer.

そして本出願人は誘電層の材料として、A12CL+(
アルミナ)にTi02(チタニア)を添加したものを使
用することを提案している(特開昭62−94953号
)。
The applicant has selected A12CL+(
It has been proposed to use Ti02 (titania) added to alumina (Japanese Patent Application Laid-Open No. 62-94953).

(発明が解決しようとする課題) 第5図は電圧印加時間と静電チャックの吸着力との関係
を示すグラフであり、誘電層の体積抵抗率(ρ)が吸着
力の印加電圧に対する応答性に密接な関連があることが
分る。つまり体積抵抗率(ρ)は(1o゛llΩ・cm
)程度が適当である。
(Problems to be Solved by the Invention) Figure 5 is a graph showing the relationship between the voltage application time and the adsorption force of an electrostatic chuck, and the volume resistivity (ρ) of the dielectric layer shows the response of the adsorption force to the applied voltage. It turns out that there is a close relationship between In other words, the volume resistivity (ρ) is (1o゛llΩ・cm
) is appropriate.

第6図は体積抵抗率(ρ)、温度(1/T:Tは絶対温
度)及び誘電層中のTiO2濃度(含有割合)との関係
を示すグラフであり、このグラフから明らかなように体
積抵抗率(ρ)は温度が上昇すると低下し、またTiO
2濃度が増すと低下することが分る。そして、例えば−
50℃程度で行う低温エツチングに使用する静電チャッ
クの誘電層の当該使用温度における体積抵抗率(ρ)を
1o11(Ω・cm)程度とするにはお電層中のTiO
2濃度が少なくとも3.Owt!に以上でなければなら
ない。
Figure 6 is a graph showing the relationship between volume resistivity (ρ), temperature (1/T: T is absolute temperature), and TiO2 concentration (content ratio) in the dielectric layer. The resistivity (ρ) decreases as the temperature increases, and TiO
It can be seen that as the concentration of 2 increases, it decreases. And for example -
To make the volume resistivity (ρ) of the dielectric layer of an electrostatic chuck used for low-temperature etching at about 50°C at the operating temperature to about 1011 (Ω cm), TiO in the dielectric layer is used.
2 concentration is at least 3. Owt! must be greater than or equal to .

一方、アルミナを主成分とするセラミックスを焼結させ
る場合、セラミックス中のTiO2の濃度が高くなると
液相生成温度が低下し、焼結が早く始まり、セラミック
ス中のバインダーがガス化して抜けきる前に液相が増し
、焼結が完了しガス化したバインダーが焼結体中に閉じ
込められて膨れとなる。したがってセラミックス中のT
iO2濃度は2、Owt!kが限度とされている。
On the other hand, when sintering ceramics whose main component is alumina, when the concentration of TiO2 in the ceramics increases, the liquid phase formation temperature decreases, and sintering starts earlier, before the binder in the ceramics gasifies and escapes completely. The liquid phase increases, sintering is completed, and the gasified binder is trapped in the sintered body, forming a bulge. Therefore, T in ceramics
The iO2 concentration is 2, Owt! The limit is k.

このように誘電層中のTiO2濃度は嵩密度等を考慮す
ると2.0wt96が上限であり、特に低温エツチング
用の静電チャックについては誘電層中のTiO□濃度が
少なく、吸着力不足を招いている。
In this way, the upper limit of the TiO2 concentration in the dielectric layer is 2.0wt96 considering bulk density, etc., and especially for electrostatic chucks for low-temperature etching, the TiO2 concentration in the dielectric layer is low, leading to insufficient adsorption force. There is.

(課題を解決するための手段) 上記課題を解決すべく本発明は、TiO2濃度を低くし
たセラミックス成形体の表面にTiO2成分を含むペー
ストを塗布し、これを加熱することでセラミックス焼結
体内にTiO2を熱拡散せしめるようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention applies a paste containing a TiO2 component to the surface of a ceramic molded body with a low TiO2 concentration, and heats the paste to form a ceramic body inside the ceramic sintered body. The TiO2 was thermally diffused.

(作用) Ti02を熱拡散させることで、焼結体の膨れ(嵩密度
の低下)を招くことなく、TiO2濃度の高い誘電層を
得ることができる。
(Function) By thermally diffusing TiO2, a dielectric layer with a high TiO2 concentration can be obtained without causing swelling of the sintered body (reduction in bulk density).

(実施例) 以下に本発明の一実施例を添付図面に基づいて説明する
(Example) An example of the present invention will be described below based on the accompanying drawings.

本発明方法にあっては先ず第1図に示すように複数のセ
ラミックス成形体1・・・を用意する。ここでセラミッ
クス成形体1としては例えばA 42203を主成分と
するセラミックス粉末にTiO2を2.Owt!li以
下混合して作成したスラリーをドクターブレード法によ
りテープ成形した0、5mm厚のグリーンシートを用い
る。
In the method of the present invention, first, as shown in FIG. 1, a plurality of ceramic molded bodies 1 are prepared. Here, the ceramic molded body 1 is made of, for example, a ceramic powder containing A42203 as a main component and 2.0 mm of TiO2 added thereto. Owt! A green sheet with a thickness of 0.5 mm is used, which is formed by tape-forming a slurry prepared by mixing less than li by a doctor blade method.

一方、粒径1μ■程度のTi(h粉末をポリビニルブチ
ラール等の有機溶媒に混ぜてTiO2ペーストを調整し
、このTi(hペースト2を最上層のセラミックス成形
体1aの上面にスクリーン印刷法によって塗布する。塗
布回数は目的とするTiO2濃度に応じて選定する。上
記ペースト中のTiO2成分としては、上記Tie2の
他にA J220.4i02. Ca04i02゜Mg
O・TiO2等を使用できる。
On the other hand, a TiO2 paste is prepared by mixing Ti(h powder with a particle size of approximately 1 μι) with an organic solvent such as polyvinyl butyral, and this Ti(h paste 2 is applied to the top surface of the ceramic molded body 1a as the top layer by screen printing). The number of times of application is selected depending on the target TiO2 concentration.In addition to the Tie2 mentioned above, the TiO2 components in the paste include A J220.4i02.Ca04i02゜Mg.
O.TiO2 etc. can be used.

また上記のTiO□ペースト2とは別に調整したタング
ステンペースト3を上から2番目のセラミックス成形体
1bの上面にスクリーン印刷法によって塗布する。
Further, a tungsten paste 3 prepared separately from the TiO□ paste 2 described above is applied to the upper surface of the second ceramic molded body 1b from the top by a screen printing method.

次いで各セラミックス成形体1・・・を積層し炉内に投
入して1500℃〜1600℃程度で加熱する。すると
セラミックス成形体1は第2図に示すようにセラミック
ス焼結体11となり、最上層のセラミックス焼結体11
aの表面部にはTiChが熱拡散した拡散層12が形成
され、タングステンペースト3は内部電極13となる。
Next, the ceramic molded bodies 1 are stacked and put into a furnace and heated at about 1500°C to 1600°C. Then, the ceramic molded body 1 becomes a ceramic sintered body 11 as shown in FIG. 2, and the ceramic sintered body 11 of the uppermost layer
A diffusion layer 12 in which TiCh is thermally diffused is formed on the surface part a, and the tungsten paste 3 becomes an internal electrode 13.

さらに、表面を研削して、誘電層の厚さを300μmと
し、静電チャックとする。
Furthermore, the surface is ground to give a dielectric layer thickness of 300 μm to form an electrostatic chuck.

第3図(A)乃至(G)は拡散層12及び内部電極13
を形成する部分を異ならせた別実施例を示すものである
FIGS. 3(A) to 3(G) show the diffusion layer 12 and the internal electrode 13.
This shows another embodiment in which the portions forming the .

上記積層法、ペーストの塗布回数、焼成温度と得られた
静電チャックの体積抵抗率とを表及び第4図に示す。
The above lamination method, number of paste applications, firing temperature, and volume resistivity of the obtained electrostatic chuck are shown in the table and FIG. 4.

尚、試料No、8のグリーンシートはTiO2を 1.
3wtk、試料No、12のグリーンシートはTiO2
を含まず、他はいずれもTiO2を0.8wt%i含む
In addition, the green sheet of sample No. 8 contained TiO2.
3wtk, sample No. 12 green sheet is TiO2
All the others contain 0.8wt%i of TiO2.

以上のことから明らかなように、本発明方法のようにグ
リーンシート積層法によって静電チャックを作成するよ
うにすれば、拡散層12及び内部電極13の位置を任意
に設定でき、体積抵抗率をコントロールするのが容易に
なる。
As is clear from the above, if an electrostatic chuck is manufactured by the green sheet lamination method as in the method of the present invention, the positions of the diffusion layer 12 and the internal electrode 13 can be set arbitrarily, and the volume resistivity can be reduced. easier to control.

尚、内部電極13については直接金属板を挿入するよう
にしてもよい。
Note that a metal plate may be directly inserted into the internal electrode 13.

(発明の効果) 以上に説明したように本発明によれば、Tie、を誘電
層となるセラミックス成形体中に熱拡散させるようにし
たので、 TiO2濃度の高い誘電層を膨れ等を生じる
ことなく得ることかでき、低温用の静電チャックとして
吸着力に優れたものを製造することができる。
(Effects of the Invention) As explained above, according to the present invention, since the Tie is thermally diffused into the ceramic molded body that will become the dielectric layer, the dielectric layer with a high TiO2 concentration can be formed without causing blisters or the like. As a result, it is possible to manufacture an electrostatic chuck with excellent suction power for low temperatures.

また、本発明によれば塗布するTie2ペーストの厚み
(量)及び積層方法を変えるだけで体積抵抗率を108
〜10′4Ω・cm程度の広い範囲でコントロールする
ことができ、巾広い用途に対応することかでき、しかも
用意するセラミックス成形体の種類は少なくて済む。
In addition, according to the present invention, the volume resistivity can be increased to 108 by simply changing the thickness (amount) of the Tie2 paste applied and the lamination method.
It can be controlled over a wide range of about 10'4 Ω·cm and can be used in a wide range of applications, and the number of types of ceramic molded bodies to be prepared can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結前のセラミックス成形体の分解斜視図、第
2図はセラミックス成形体を焼結することで得られる静
電チャックの断面図、第3図(A)乃至(E)は別実施
例を示す第2図と同様の図、第4図は各試料の体積抵抗
率を示すグラフ、第5図は電圧印加時間、吸着力及び体
積抵抗率の関係を示すグラフ、第6図は温度、体積抵抗
率及びTiO2濃度の関係を示すグラフである。 尚、図面中1.Ia、Ibはセラミックス成形体、2は
Tie、ペースト、3はタングステンペースト、11は
セラミックス焼結体、12はTiO2拡散層、13は内
部電極である。
Figure 1 is an exploded perspective view of a ceramic molded body before sintering, Figure 2 is a sectional view of an electrostatic chuck obtained by sintering the ceramic molded body, and Figures 3 (A) to (E) are separate. Figure 4 is a graph showing the volume resistivity of each sample; Figure 5 is a graph showing the relationship between voltage application time, adsorption force, and volume resistivity; Figure 6 is a graph showing the relationship between voltage application time, adsorption force, and volume resistivity. It is a graph showing the relationship between temperature, volume resistivity, and TiO2 concentration. In addition, in the drawing 1. Ia and Ib are ceramic molded bodies, 2 is a tie and paste, 3 is a tungsten paste, 11 is a ceramic sintered body, 12 is a TiO2 diffusion layer, and 13 is an internal electrode.

Claims (4)

【特許請求の範囲】[Claims] (1)TiO_2の含有割合が2.0wt%以下のセラ
ミックス成形体を複数用意し、これらセラミックス成形
体のうち誘電層となるセラミックス成形体の表面にTi
O_2成分を含むペーストを塗布し、次いで各セラミッ
クス成形体を積層して加熱することで塗布したペースト
中のTiO_2をセラミックス成形体中に拡散せしめる
ようにしたことを特徴とする静電チャックの製造方法。
(1) Prepare a plurality of ceramic molded bodies with a TiO_2 content of 2.0 wt% or less, and apply Ti to the surface of the ceramic molded body that will become the dielectric layer among these ceramic molded bodies.
A method for manufacturing an electrostatic chuck, characterized in that a paste containing an O_2 component is applied, and then each ceramic molded body is laminated and heated to diffuse TiO_2 in the applied paste into the ceramic molded body. .
(2)前記セラミックス成形体は未焼結のセラミックス
シートであり、このセラミックスシートの焼結と前記ペ
ースト中のTiO_2の熱拡散とを同時に行うようにし
たことを特徴とする請求項(1)に記載の静電チャック
の製造方法。
(2) The ceramic molded body is an unsintered ceramic sheet, and the sintering of the ceramic sheet and the thermal diffusion of TiO_2 in the paste are performed at the same time. A method of manufacturing the electrostatic chuck described.
(3)前記積層したセラミックス成形体のうち所定のセ
ラミックス成形体の表面又は裏面には内部電極となる金
属ペーストが塗布されていることを特徴とする請求項(
1)に記載の静電チャックの製造方法。
(3) A metal paste serving as an internal electrode is coated on the front or back surface of a predetermined ceramic molded body among the laminated ceramic molded bodies.
1) The method for manufacturing an electrostatic chuck according to item 1).
(4)前記積層したセラミックス成形体のうち所定のセ
ラミックス成形体間には内部電極となる金属板が挟持さ
れていることを特徴とすることを特徴とする請求項(1
)に記載の静電チャックの製造方法。
(4) Claim (1) characterized in that a metal plate serving as an internal electrode is sandwiched between predetermined ceramic molded bodies among the laminated ceramic molded bodies.
) The method for manufacturing an electrostatic chuck described in
JP1027101A 1989-02-06 1989-02-06 Manufacture of electrostatic chuck Pending JPH02206147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1027101A JPH02206147A (en) 1989-02-06 1989-02-06 Manufacture of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027101A JPH02206147A (en) 1989-02-06 1989-02-06 Manufacture of electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH02206147A true JPH02206147A (en) 1990-08-15

Family

ID=12211695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027101A Pending JPH02206147A (en) 1989-02-06 1989-02-06 Manufacture of electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH02206147A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133443U (en) * 1991-05-30 1992-12-11 京セラ株式会社 Ceramic electrostatic chuck
JPH08274150A (en) * 1995-03-31 1996-10-18 Nec Corp Electrostatic attracting stage
US5909354A (en) * 1995-08-31 1999-06-01 Tocalo Co., Ltd. Electrostatic chuck member having an alumina-titania spray coated layer and a method of producing the same
US6351367B1 (en) 1997-09-30 2002-02-26 Shin-Etsu Chemical Co., Ltd. Electrostatic holding apparatus having insulating layer with enables easy attachment and detachment of semiconductor object
KR100407708B1 (en) * 1996-02-01 2004-01-28 동경 엘렉트론 주식회사 A retractable structure in which the object to be processed is placed
WO2024004778A1 (en) * 2022-06-29 2024-01-04 住友大阪セメント株式会社 Semiconductor manufacturing device member and electrostatic chuck device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059104A (en) * 1983-09-03 1985-04-05 新宅 光男 Foot cover by sock knitting machine
JPS62264638A (en) * 1987-04-21 1987-11-17 Toto Ltd Manufacture of electrostatic chucking substrate
JPS62286248A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JPS6395644A (en) * 1986-10-13 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Electrostatic chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059104A (en) * 1983-09-03 1985-04-05 新宅 光男 Foot cover by sock knitting machine
JPS62286248A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JPS6395644A (en) * 1986-10-13 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Electrostatic chuck
JPS62264638A (en) * 1987-04-21 1987-11-17 Toto Ltd Manufacture of electrostatic chucking substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133443U (en) * 1991-05-30 1992-12-11 京セラ株式会社 Ceramic electrostatic chuck
JPH08274150A (en) * 1995-03-31 1996-10-18 Nec Corp Electrostatic attracting stage
US5909354A (en) * 1995-08-31 1999-06-01 Tocalo Co., Ltd. Electrostatic chuck member having an alumina-titania spray coated layer and a method of producing the same
KR100407708B1 (en) * 1996-02-01 2004-01-28 동경 엘렉트론 주식회사 A retractable structure in which the object to be processed is placed
US6351367B1 (en) 1997-09-30 2002-02-26 Shin-Etsu Chemical Co., Ltd. Electrostatic holding apparatus having insulating layer with enables easy attachment and detachment of semiconductor object
WO2024004778A1 (en) * 2022-06-29 2024-01-04 住友大阪セメント株式会社 Semiconductor manufacturing device member and electrostatic chuck device

Similar Documents

Publication Publication Date Title
CN104882276B (en) Multilayer ceramic capacitor and the plate with the multilayer ceramic capacitor
JP3323135B2 (en) Electrostatic chuck
JPH05235152A (en) Electrostatic chuck
JP7306915B2 (en) Ceramic substrate, electrostatic chuck, manufacturing method of electrostatic chuck
TW588384B (en) Electrical several-layer element and its manufacturing method
JPH02206147A (en) Manufacture of electrostatic chuck
JPH0356003B2 (en)
JP2006210924A (en) Multiple constituent element ltcc substrate having core of high dielectric constant ceramic material, and method of developing the same
TW202045456A (en) Ceramic member and method for manufacturing same
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPH0387055A (en) Thin film capacitor and manufacture thereof
JPH03147843A (en) Manufacture of electrostatic chuck
KR102659507B1 (en) Ceramics substrate and electrostatic chuck
JPH0819982A (en) Static electric chuck and manufacture thereof
JP4231653B2 (en) Manufacturing method of laminated piezoelectric actuator
KR102039802B1 (en) Ceramic body for electrostatic chuck
JP2004111728A (en) Laminated ceramic electronic part and inner electrode paste used for the same
JPH07122681A (en) Multilayer alumina wiring board and package for semiconductor element
US20210246071A1 (en) Ceramic substrate and electrostatic chuck
JPH02122511A (en) Manufacture of laminated ceramic capacitor
JP2000100919A (en) Electrostatic chuck and manufacture thereof
JPH0851283A (en) Multilayer wiring board and package for housing semiconductor element
JP3419285B2 (en) Manufacturing method of ceramic electronic components
JP6683555B2 (en) Sample holder
JP2002134600A (en) Electrostatic chuck