JPH0220591Y2 - - Google Patents

Info

Publication number
JPH0220591Y2
JPH0220591Y2 JP1986178553U JP17855386U JPH0220591Y2 JP H0220591 Y2 JPH0220591 Y2 JP H0220591Y2 JP 1986178553 U JP1986178553 U JP 1986178553U JP 17855386 U JP17855386 U JP 17855386U JP H0220591 Y2 JPH0220591 Y2 JP H0220591Y2
Authority
JP
Japan
Prior art keywords
combustion
heat recovery
recovery machine
combustion gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986178553U
Other languages
Japanese (ja)
Other versions
JPS6386527U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986178553U priority Critical patent/JPH0220591Y2/ja
Publication of JPS6386527U publication Critical patent/JPS6386527U/ja
Application granted granted Critical
Publication of JPH0220591Y2 publication Critical patent/JPH0220591Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Solid-Fuel Combustion (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、たとえばプラスチツク等の難燃性の
物質を効率良く燃焼させるために燃焼室を多段式
に複数設けた燃焼炉に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a combustion furnace in which a plurality of combustion chambers are provided in a multistage manner in order to efficiently burn flame-retardant materials such as plastics.

〔従来の技術〕[Conventional technology]

従来から、各種の産業廃棄物等を炉に入れて焼
却又はボイラのように熱回収を行う燃焼炉が使用
されている。この燃焼炉では、被燃物の主体が難
燃性の廃棄物であるために、完全燃焼させるため
の空気を燃焼過程に合わせて供給する多段式のも
のが最も一般的である。この多段式の燃焼炉は、
燃焼室を炉内に連続して複数設け、それぞれの燃
焼室に燃焼用空気を吹き込むと共に、熱回収を目
的としている場合にはバーナによつて発熱量を増
加させている。
BACKGROUND ART Combustion furnaces have conventionally been used in which various industrial wastes are placed in a furnace and incinerated or heat is recovered like a boiler. In this combustion furnace, since the substance to be burned is mainly flame-retardant waste, the most common type is a multi-stage type in which air is supplied in accordance with the combustion process for complete combustion. This multi-stage combustion furnace is
A plurality of combustion chambers are provided in succession in the furnace, and combustion air is blown into each combustion chamber, and when the purpose is heat recovery, the amount of heat generated is increased by a burner.

このような多段式の燃焼炉としては、たとえば
特公昭51−38189号公報に記載されたものがある。
これは、被燃物を投入してバーナによつて着火燃
焼させる一次燃焼室に続いて二次及び三次燃焼室
を接続したもので、一次燃焼室と二次燃焼室との
燃焼ガス流路にスロートを設けた構造となつてい
る。そして、スロートには外部から空気が高速流
で供給され、この高速流動空気とスロートの形状
によつてエジエクタ効果を引き起こし、一次燃焼
室側の燃焼ガスを二次燃焼室方向へ吸引可能とし
ている。
An example of such a multi-stage combustion furnace is the one described in Japanese Patent Publication No. 38189/1989.
This is a primary combustion chamber in which combustible materials are charged and ignited and combusted by a burner, followed by secondary and tertiary combustion chambers, and the combustion gas flow path between the primary combustion chamber and the secondary combustion chamber is It has a structure with a throat. Air is supplied to the throat from the outside in a high-speed flow, and this high-speed flowing air and the shape of the throat create an ejector effect, making it possible to suck combustion gas from the primary combustion chamber toward the secondary combustion chamber.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

このような構造の燃焼炉では、燃焼ガス流路の
中にスロートを設け且つこの部分に高速流の空気
を給気することによつて、燃焼ガスの流動が促進
され、結果的に燃焼効率が向上することが期待さ
れる。また、スロートによる燃焼ガスの流速が大
きくなり、熱回収する場合には伝熱効率が上昇し
て熱回収効率の向上も可能となる。
In a combustion furnace with such a structure, the flow of combustion gas is promoted by providing a throat in the combustion gas flow path and supplying high-speed air to this part, resulting in improved combustion efficiency. It is expected that this will improve. Furthermore, the flow rate of the combustion gas through the throat increases, and when heat is recovered, the heat transfer efficiency increases, making it possible to improve the heat recovery efficiency.

ところが、スロート及びこの部分への空気の給
気によつて生じるエジエクタ効果は、一次燃焼室
も負圧状態にする。したがつて、煙道の高さ又は
吸引ブロワーの吸引力によつて主として決定され
るドラフトの条件が燃焼状態と不適合な場合に
は、燃焼ガスの量が不均一となり二次燃焼空気が
一次燃焼室側に逆流する現象が発生する。
However, the ejector effect caused by the throat and the supply of air to this portion also brings the primary combustion chamber into a negative pressure state. Therefore, if the draft conditions, which are mainly determined by the height of the flue or the suction force of the suction blower, are incompatible with the combustion conditions, the amount of combustion gas will be uneven and the secondary combustion air will be used for primary combustion. A phenomenon of backflow to the room side occurs.

この場合、一次燃焼室に代え被燃物を乾留する
槽を備えて乾留ガスを燃焼させるような構造であ
ると、火炎及び高温燃焼ガスによつてスロート内
で二次燃焼空気が逆引火を繰り返し、大きな振動
を起こす。したがつて、燃焼効率を向上させるス
ロート及びこの部分への給気を行う構造は、乾留
槽を燃焼過程前に持つシステムには採用できない
という問題がある。
In this case, if the structure is such that the primary combustion chamber is equipped with a tank for carbonizing the combustibles and the carbonized gas is combusted, the secondary combustion air will repeatedly back-ignite in the throat due to the flame and high-temperature combustion gas. , causing large vibrations. Therefore, there is a problem in that the throat that improves combustion efficiency and the structure that supplies air to this part cannot be adopted in a system that has a carbonization tank before the combustion process.

そこで、本考案は、乾留槽を前段に備え、乾留
ガスを利用して熱回収する燃焼炉において、火炎
及び燃焼ガスの逆流等をうことなく燃焼可能とす
ることを目的とする。
Therefore, an object of the present invention is to enable combustion without backflow of flame and combustion gas in a combustion furnace that is equipped with a carbonization tank at the front stage and uses carbonization gas to recover heat.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、以上の目的を達成するために、被燃
物を一次燃焼によつて乾留ガス化する乾留塔と、
該乾留塔からの燃焼ガスが流入する熱回収機と、
前記乾留塔の下部を該熱回収機に連通させる燃焼
筒とを備え、該燃焼筒内の燃焼ガス流路をほぼ一
様断面形状とし且つその中途において複数の給気
用のノズルを流路壁に沿つて環状に配列すると共
に予熱用の補助バーナを設け、更に前記熱回収機
に接続した煙道の中途から該煙道を通過する燃焼
ガスを熱回収機に還流するダンパ付きのバイパス
管を接続したことを特徴とする。
In order to achieve the above objectives, the present invention includes a carbonization tower that carbonizes the combustible material through primary combustion,
a heat recovery machine into which combustion gas from the carbonization tower flows;
a combustion tube that communicates the lower part of the carbonization column with the heat recovery machine, the combustion gas flow path in the combustion tube has a substantially uniform cross-sectional shape, and a plurality of air supply nozzles are connected to the flow path wall in the middle thereof. A bypass pipe with a damper is provided in the middle of the flue connected to the heat recovery machine to return the combustion gas passing through the flue to the heat recovery machine. It is characterized by being connected.

〔実施例〕〔Example〕

以下、図面に示す実施例により本考案の特徴を
具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained with reference to embodiments shown in the drawings.

第1図は本考案に係る燃焼炉の縦断面図、第2
図は同第1図の−線矢視による断面図であ
る。
Figure 1 is a longitudinal sectional view of the combustion furnace according to the present invention, Figure 2
The figure is a sectional view taken along the - line arrow in FIG. 1.

被燃物を装入する乾留塔1及びこれに接続され
て温水を加熱する熱回収機2によつて、燃焼炉の
全体が構成されている。
The entire combustion furnace is composed of a carbonization tower 1 into which materials to be burned are charged and a heat recovery machine 2 connected thereto to heat hot water.

乾留塔1は、上部に被燃物の装入口3及び下部
に掃除口4を有し、乾留を行うための点火用バー
ナ5を外部に配置している。また、下面には乾留
ガス化後の一次燃焼を行うための一次空気を吹き
込む一次空気供給部6を設ける。この一次空気供
給部6は、たとえば複数のL型アングルの断面角
部が上になる姿勢に配列し、該アングルの内部に
空気を供給すると共に角部に開設した複数の給気
孔から空気を吹き込む構造とすればよい。
The carbonization tower 1 has a charging port 3 for combustible materials at the top and a cleaning port 4 at the bottom, and an ignition burner 5 for carbonization is arranged outside. Further, a primary air supply section 6 is provided on the lower surface to blow primary air for performing primary combustion after carbonization and gasification. This primary air supply unit 6 is arranged, for example, in a posture in which the cross-sectional corners of a plurality of L-shaped angles are upward, and supplies air to the inside of the angles, and also blows air through a plurality of air supply holes opened in the corners. It may be a structure.

乾留塔1と熱回収機2との間は、燃焼筒7によ
つて連通連結され、該燃焼筒7の内部を一次燃焼
室8及び一次燃焼ガスに外気を給気する混合室9
として機能させる。燃焼筒7は混合室9側が大き
い断面形状を持ち、一次燃焼室8と混合室9との
間の段部には複数のノズル10を環状に配置して
いる。これらのノズル10は、燃焼筒7の外周に
設けられた給気チヤンバ11に連通し、フアン又
はコンプレツサ等の給気装置11aによつて空気
がこの給気チヤンバ11に圧縮状態に封入され
る。また、ノズル10は、その給気軸線が燃焼筒
7の軸線とほぼ平行となる姿勢を持ち、燃焼筒7
内を流れる燃焼ガスを熱回収機2方向に並流状態
に送りながら空気をこの燃焼ガスに混合させるこ
とができる。
The carbonization tower 1 and the heat recovery machine 2 are connected to each other by a combustion tube 7, and the inside of the combustion tube 7 is connected to a primary combustion chamber 8 and a mixing chamber 9 that supplies outside air to the primary combustion gas.
function as The combustion tube 7 has a larger cross-sectional shape on the mixing chamber 9 side, and a plurality of nozzles 10 are arranged in an annular manner at a step between the primary combustion chamber 8 and the mixing chamber 9. These nozzles 10 communicate with an air supply chamber 11 provided on the outer periphery of the combustion tube 7, and air is sealed in the air supply chamber 11 in a compressed state by an air supply device 11a such as a fan or compressor. Further, the nozzle 10 has an attitude in which its air supply axis is substantially parallel to the axis of the combustion tube 7, and
Air can be mixed with the combustion gas while the combustion gas flowing therein is sent in parallel flow to the two directions of the heat recovery machine.

また、一次燃焼室8には、その周壁を貫通して
補助バーナ12が配置され、外部の燃料及び燃焼
用空気の供給配管13がこの補助バーナ12に接
続されている。補助バーナ12は、その先端から
噴出される火炎が混合室9の下部側の壁面方向を
向く姿勢に取付けられ、一次燃焼ガスを加熱して
ノズル10からの空気によつて二次燃焼させる。
Further, an auxiliary burner 12 is disposed in the primary combustion chamber 8 so as to pass through its peripheral wall, and an external fuel and combustion air supply pipe 13 is connected to the auxiliary burner 12 . The auxiliary burner 12 is installed in such a manner that the flame ejected from its tip faces toward the lower wall of the mixing chamber 9, heats the primary combustion gas, and causes secondary combustion with the air from the nozzle 10.

熱回収機2は、通常の温水ボイラと同様に燃焼
ガスと熱交換する水管14を複数内蔵したもの
で、上端に煙道15を連結している。煙道15に
は、媒塵を回収するためのサイクロン16が接続
され、且つ該サイクロン16に至る流路の中途に
は熱回収機2に還流するバイパス管17を連結し
ている。このバイパス管17は、乾留塔1から熱
回収機2へ流れる燃焼ガスに対して流路内圧力の
変動を与えないように操作するために、ダンパ1
8を設けている。すなわち、乾留塔1から熱回収
機2内の燃焼系に対して、ドラフト等の条件によ
つて燃焼系が負圧になるようなとき、ダンパ18
を開くことによつて熱回収後のガスを熱回収機2
内に送る操作を行う。この操作によつて、燃焼系
の負圧現象を防止し、乾留塔1内への逆引火等を
防ぐと共に安定燃焼を維持することができる。
The heat recovery machine 2 includes a plurality of built-in water pipes 14 for exchanging heat with combustion gas, like a normal hot water boiler, and has a flue 15 connected to its upper end. A cyclone 16 for collecting dust is connected to the flue 15, and a bypass pipe 17 for returning to the heat recovery machine 2 is connected to the middle of the flow path leading to the cyclone 16. This bypass pipe 17 is provided with a damper 1 in order to operate the combustion gas flowing from the carbonization tower 1 to the heat recovery machine 2 so as not to cause fluctuations in the pressure inside the flow path.
There are 8. That is, when the combustion system from the carbonization tower 1 to the heat recovery machine 2 becomes under negative pressure due to conditions such as draft, the damper 18
The gas after heat recovery by opening the heat recovery machine 2
Perform the operation to send it within. This operation prevents a negative pressure phenomenon in the combustion system, prevents back ignition into the carbonization tower 1, and maintains stable combustion.

上記構成において、乾留塔1内の被燃物は、点
火用バーナ5によつて着火され、一次空気供給部
6からの給気により燃焼を開始する。この燃焼に
より、被燃物は乾留されて高温の乾留化ガスとな
り、燃焼筒7内に流入する。このとき、入側の一
次燃焼室8内で乾留化ガスは、燃焼している被燃
物の放射熱によつて加熱されて高温となる。
In the above configuration, the combustible material in the carbonization tower 1 is ignited by the ignition burner 5 and starts combustion by air supplied from the primary air supply section 6. By this combustion, the combustible material is carbonized and becomes a high-temperature carbonized gas, which flows into the combustion tube 7. At this time, the carbonized gas in the primary combustion chamber 8 on the inlet side is heated to a high temperature by the radiant heat of the burning material.

この一次燃焼によつて高温となつた燃焼ガスは
混合室9方向へ流れ、ノズル10から給気される
空気と混合する。この空気との混合により、燃焼
ガスは助燃効果を受けて燃焼し、更に高温の二次
燃焼ガスとなつて熱回収機2内に流入する。この
とき、補助バーナ12は、燃焼の開始時点から或
る一定の期間火炎を放射し、二次燃焼ガスを更に
高温に加熱する。すなわち、流動してくる二次燃
焼ガスを完全燃焼させるために、混合室9の内壁
を含めて流路内の温度雰囲気を高めることによ
り、焼玉を混合室9内に形成する。この焼玉によ
つて、二次燃焼ガスのの再加熱が行われ、燃焼ガ
スの温度がほぼ700〜750℃に達した時点で、補助
バーナ12を消火する。
Combustion gas heated to high temperature by this primary combustion flows toward the mixing chamber 9 and mixes with air supplied from the nozzle 10. By mixing with this air, the combustion gas is combusted with an auxiliary combustion effect, and flows into the heat recovery machine 2 as a higher temperature secondary combustion gas. At this time, the auxiliary burner 12 emits flame for a certain period of time from the start of combustion to further heat the secondary combustion gas to a high temperature. That is, in order to completely burn the flowing secondary combustion gas, a baked ball is formed in the mixing chamber 9 by increasing the temperature atmosphere in the flow path including the inner wall of the mixing chamber 9. The secondary combustion gas is reheated by this baked ball, and when the temperature of the combustion gas reaches approximately 700 to 750°C, the auxiliary burner 12 is extinguished.

このように、燃焼筒7の入口部分の一次燃焼室
8内でガスを高温にした後、ノズル10からの給
気によつて混合室9内で二次燃焼し、更に補助バ
ーナ12を利用した焼玉によつて完全燃焼させる
ことができる。
In this way, after the gas is heated to a high temperature in the primary combustion chamber 8 at the inlet of the combustion tube 7, secondary combustion is performed in the mixing chamber 9 by air supplied from the nozzle 10, and further, the auxiliary burner 12 is used. Complete combustion can be achieved using a grilled ball.

次いで、燃焼ガスは、煙道15へ流れる間に水
管14と熱交換し、結果的に被燃物からの熱回収
が行われる。
The combustion gas then exchanges heat with the water tube 14 while flowing into the flue 15, resulting in heat recovery from the combustible material.

以上の燃焼監程において、燃焼筒7に設けたノ
ズル10により二次燃焼ガスに給気するため、燃
焼度が向上して燃焼効率が増大する。すなわち、
燃焼ガスの流れに対して、その流れ方向へ給気す
るため熱回収機2への搬送促進が行われると同時
に混合撹拌効果によつて完全燃焼を達成できる。
したがつて、熱回収機2に至る燃焼ガスを高温化
でき且つ流速も煙道15によるドラフト効果に比
べて大きいために、水管14との間の伝導効率が
向上する。その結果、水管14による熱回収が効
率的に行われ、被燃物の発熱量を有効に回収でき
る。
In the above combustion process, the secondary combustion gas is supplied by the nozzle 10 provided in the combustion tube 7, so that the burnup is improved and the combustion efficiency is increased. That is,
Since air is supplied in the flow direction of the combustion gas, the transfer to the heat recovery machine 2 is promoted, and at the same time, complete combustion can be achieved by the mixing and stirring effect.
Therefore, the combustion gas reaching the heat recovery machine 2 can be heated to a high temperature, and the flow velocity is also greater than the draft effect by the flue 15, so that the conduction efficiency with the water pipe 14 is improved. As a result, heat recovery by the water pipe 14 is performed efficiently, and the calorific value of the combustible material can be effectively recovered.

また、煙道15によるドラフト量の変動や、系
全体の振動によつて燃焼ガスが乾留塔1へ逆流す
る状況となつても、これをバイパス管17のダン
パ18の操作によつて防止できる。
Further, even if the combustion gas flows back into the dry distillation tower 1 due to fluctuations in the draft amount due to the flue 15 or vibrations of the entire system, this can be prevented by operating the damper 18 of the bypass pipe 17.

すなわち、乾留塔1から熱回収機2へいたる燃
焼系においては、燃焼ガスによる流路内圧力の上
昇や、煙道15のドラフトによつて圧力の低下等
が生じる。このような圧力変動の中で、圧力が低
くなると燃焼空気の逆流を生じて逆引火を起こ
し、その結果大きな振動が発生する。このよう
な、燃焼系の圧力変動に対して、バイパス管17
から熱回収後の燃焼ガスを熱回収機2の排出口部
分に還流給気すれば、圧力低下を補償できる。
That is, in the combustion system from the carbonization tower 1 to the heat recovery machine 2, an increase in the pressure in the flow path due to the combustion gas and a decrease in pressure due to the draft of the flue 15 occur. Amid such pressure fluctuations, when the pressure decreases, a backflow of combustion air occurs, causing back ignition, and as a result, large vibrations occur. In response to such pressure fluctuations in the combustion system, the bypass pipe 17
The pressure drop can be compensated for by supplying the combustion gas after heat recovery from the exhaust gas to the exhaust port of the heat recovery device 2.

この操作は、バイパス管17に設けたダンパ1
8の開閉によつて容易に行える。つまり、燃焼系
の圧力が低下してきたときには、ダンパ18を開
いて煙道15を通過してきた燃焼ガスを熱回収機
2へ通ずる排気口部分に還流する。この燃焼ガス
は、煙道15のドラフトによつて流速が大きく、
排気口部分に流入したときには燃焼筒7から流入
する二次燃焼ガスに対して抵抗となつて作用す
る。その結果、排気口部分の圧力が上昇し、この
圧力上昇が燃焼系全体に伝播することにより、圧
力低下を補償できる。したがつて、乾留塔1への
燃焼ガスの逆流を防止できる。
This operation is performed by the damper 1 installed in the bypass pipe 17.
This can be easily done by opening and closing 8. In other words, when the pressure of the combustion system decreases, the damper 18 is opened and the combustion gas that has passed through the flue 15 is recirculated to the exhaust port leading to the heat recovery machine 2. This combustion gas has a high flow velocity due to the draft of the flue 15,
When it flows into the exhaust port portion, it acts as a resistance against the secondary combustion gas flowing from the combustion tube 7. As a result, the pressure at the exhaust port increases, and this pressure increase propagates throughout the combustion system, thereby compensating for the pressure drop. Therefore, backflow of combustion gas to the carbonization tower 1 can be prevented.

なお、ノズル10からは常に外気が高い圧力で
給気されているため、燃焼ガスの逆流を防止する
ことにもなる。
Note that since outside air is always supplied from the nozzle 10 at a high pressure, backflow of combustion gas is also prevented.

〔考案の効果〕[Effect of idea]

以上に説明したように、本考案の燃焼炉におい
ては、乾留塔で生成し乾留化ガスを燃焼筒によつ
て熱回収機に送り込み、この燃焼筒内に設けた補
助バーナによつて二次燃焼させると同時に空気を
ノズルから給気して更に燃焼度を上げて発熱量が
大きくなるようにしている。したがつて、熱回収
機へ至る燃焼ガスを完全燃焼状態にすることがで
き、熱回収効率の向上が可能となる。
As explained above, in the combustion furnace of the present invention, the carbonized gas generated in the carbonization tower is sent to the heat recovery machine through the combustion tube, and the auxiliary burner installed in the combustion tube performs secondary combustion. At the same time, air is supplied from the nozzle to further increase the burnup and increase the amount of heat generated. Therefore, the combustion gas reaching the heat recovery machine can be brought into a complete combustion state, making it possible to improve heat recovery efficiency.

また、燃焼系の圧力低下を抑えるために、燃焼
ガスを排気口に還流操作するためのダンパを熱回
収機の煙道に設けている。このダンパを開くこと
によつて燃焼ガスを給気すれば、燃焼系の圧力低
下を補償できる。その結果、燃焼空気の逆流を防
止できるほか、安定した燃焼を保持できる。
Additionally, in order to suppress the pressure drop in the combustion system, a damper is installed in the flue of the heat recovery machine to recirculate the combustion gas to the exhaust port. If combustion gas is supplied by opening this damper, the pressure drop in the combustion system can be compensated for. As a result, not only can backflow of combustion air be prevented, but also stable combustion can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る燃焼炉の縦断面図、第2
図は同第1図の−線矢視による断面図であ
る。 1:乾留塔、2:熱回収機、3:装入口、4:
掃除口、5:点火用バーナ、6:一次空気供給
部、7:燃焼筒、8:一次燃焼室、9:混合室、
10:ノズル、11:給気チヤンバ、11a:給
気装置、12:補助バーナ、13:供給配管、1
4:水管、15:煙道、16:サイクロン、1
7:バイパス管、18:ダンパ。
Figure 1 is a longitudinal sectional view of the combustion furnace according to the present invention, Figure 2
The figure is a sectional view taken along the - line arrow in FIG. 1. 1: Carbonization tower, 2: Heat recovery machine, 3: Charging port, 4:
Cleaning port, 5: Ignition burner, 6: Primary air supply section, 7: Combustion tube, 8: Primary combustion chamber, 9: Mixing chamber,
10: Nozzle, 11: Air supply chamber, 11a: Air supply device, 12: Auxiliary burner, 13: Supply piping, 1
4: Water pipe, 15: Flue, 16: Cyclone, 1
7: Bypass pipe, 18: Damper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被燃物を一次燃焼によつて乾留ガス化する乾留
塔と、該乾留塔からの燃焼ガスが流入する熱回収
機と、前記乾留塔の下部を該熱回収機に連通させ
る燃焼筒とを備え、該燃焼筒内の燃焼ガス流路を
ほぼ一様断面形状とし且つその中途において複数
の給気用のノズルを流路壁に沿つて環状に配列す
ると共に予熱用の補助バーナを設け、更に前記熱
回収機に接続した煙道の中途から該煙道を通過す
る燃焼ガスを熱回収機に還流するダンパ付きのバ
イパス管を接続したことを特徴とする燃焼炉。
A carbonization tower that converts materials to be burned into carbonization gas through primary combustion, a heat recovery machine into which combustion gas from the carbonization tower flows, and a combustion tube that communicates the lower part of the carbonization tower with the heat recovery machine. The combustion gas flow path in the combustion cylinder has a substantially uniform cross-sectional shape, and in the middle thereof, a plurality of air supply nozzles are arranged in an annular shape along the flow path wall, and an auxiliary burner for preheating is provided. A combustion furnace characterized in that a bypass pipe equipped with a damper is connected from the middle of a flue connected to a heat recovery machine to return combustion gas passing through the flue to the heat recovery machine.
JP1986178553U 1986-11-19 1986-11-19 Expired JPH0220591Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986178553U JPH0220591Y2 (en) 1986-11-19 1986-11-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986178553U JPH0220591Y2 (en) 1986-11-19 1986-11-19

Publications (2)

Publication Number Publication Date
JPS6386527U JPS6386527U (en) 1988-06-06
JPH0220591Y2 true JPH0220591Y2 (en) 1990-06-05

Family

ID=31120792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986178553U Expired JPH0220591Y2 (en) 1986-11-19 1986-11-19

Country Status (1)

Country Link
JP (1) JPH0220591Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694299B2 (en) * 2016-03-15 2020-05-13 太田 匡子 Incinerator

Also Published As

Publication number Publication date
JPS6386527U (en) 1988-06-06

Similar Documents

Publication Publication Date Title
CN104930537B (en) A kind of flue gas recirculation burner
CN206904985U (en) A kind of domestic garbage gasification CIU
CN100432532C (en) Combined incineration treatment method for refuse and special vertical oxygen-enriched continuous incinerator
CN1038446C (en) No-smoke burning coal method for control nitrogen oxide and stove and application
CN206504333U (en) Improved innoxious waste incinerator
CN218721507U (en) High-efficient domestic waste burns burning furnace air distribution system
JPH0220591Y2 (en)
CN105698182A (en) Combustion system for treating garbage
CN105698183A (en) Combustion furnace for treating garbage
CN215570554U (en) Device for eliminating smoke dust of high-smoke solid fuel by aid of plasma flame combustion supporting
CN105698184A (en) Combustion system capable of inhibiting generation of unburned objects during garbage combustion process
CN212339224U (en) High-temperature oxygen-deficient combustion device for solid fuel
CN2864469Y (en) Vertical three-room gas boiler for coal gasification
CN205535839U (en) A system of burning for refuse disposal
CN2323269Y (en) Vertical multipurpose incinerating and water heating furnace
CN205535840U (en) A burn burning furnace for refuse disposal
CN106594747B (en) Improved innoxious waste incinerator
CN104913312A (en) Jet type incinerator
CN2435640Y (en) Combustible refuse incinerator
CN220601503U (en) Cylinder combustion chamber
CN214275684U (en) Novel biomass-fired layer combustion boiler
CN213873861U (en) Heat source supply device
CN209558481U (en) A kind of coal-fired gasification furnace equipped with energy-gathering ring combustion-supporting
CN206919023U (en) A kind of waste incinerator of new structure
JPH03125808A (en) Fluidized-bed type refuse incinerator