JPH02205079A - Light receiving element with a built-in circuit - Google Patents

Light receiving element with a built-in circuit

Info

Publication number
JPH02205079A
JPH02205079A JP1025471A JP2547189A JPH02205079A JP H02205079 A JPH02205079 A JP H02205079A JP 1025471 A JP1025471 A JP 1025471A JP 2547189 A JP2547189 A JP 2547189A JP H02205079 A JPH02205079 A JP H02205079A
Authority
JP
Japan
Prior art keywords
epitaxial layer
type
layer
diffusion layer
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1025471A
Other languages
Japanese (ja)
Inventor
Takuya Ito
卓也 伊藤
Yoshiaki Nozaki
義明 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1025471A priority Critical patent/JPH02205079A/en
Publication of JPH02205079A publication Critical patent/JPH02205079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a high-speed and high-sensitive light receiving element with a built-in circuit easily by forming a light receiving element at high resistivity in a thick epitaxial layer which is grown at the surface of a semiconductor substrate, and forming a circuit element at low resistivity in a thin epitaxial layer which is grown in the recess of the epitaxial layer. CONSTITUTION:P<+>-type diffusion layer 8 is formed at one part of the surface of a thick I-type epitaxial layer 21 of high resistivity and P<+>-type diffusion layer 9 is formed at one part of the surface of a thin N-type epitaxial layer 14 of low resistivity, and next an N-type diffusion layer 10 is formed at one part of the P<+>-type diffusion layer 9, and an N<+>-type diffusion layer 11, which reaches an N<+>-type buried diffusion layer 13 from the surface, is formed at one part of the N-type epitaxial layer 14. This way, a light receiving element 16 consisting of a PIN photo diode is formed at the part of a thick epitaxial layer 21 of high resistivity, and a circuit element 17 consisting of an NPN transistor is formed at the part of the thin epitaxial layer of low resistivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高速かつ高感度の回路内蔵受光素子に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-speed and highly sensitive light-receiving element with a built-in circuit.

(従来の技術) 第8図は従来の回路内蔵受光素子の略断面図である。同
図の左方のホトダイオードのような受光素子6と右方の
NPN)ランリスタのような回路素子7が、例えば、P
型半導体基板1の表面に形成されている。これらは以下
のようKして製造される。
(Prior Art) FIG. 8 is a schematic cross-sectional view of a conventional light receiving element with a built-in circuit. A light-receiving element 6 such as a photodiode on the left side of the figure and a circuit element 7 such as an NPN) run lister on the right side are, for example, P
The semiconductor substrate 1 is formed on the surface of the semiconductor substrate 1. These are manufactured as follows.

P型半導体基板10表面の受光素子6及び回路素子7の
予定領域のそれぞれにN++埋込拡散層2.2を形成し
、その上にN型エピタキシャル層8を成長させ、受光素
子6と回路素子7の予定領域の境界に素子分離用の戸型
拡散44を形成し、その後受光素?6の予定領域の表面
の一部にP+型拡散層8を形成し、回路素子7の予定領
域の表面の一部にもP+型拡散層9を形成し、P+型拡
散層9の表面の一部と回路素子7の予定領域のN型エピ
タキシャル層8の表面の一部にN+型型数散層11形成
される。これらは、通常のバイポーラICの製造工程と
同様である。
An N++ buried diffusion layer 2.2 is formed in each of the regions where the light receiving element 6 and the circuit element 7 are to be formed on the surface of the P type semiconductor substrate 10, and an N type epitaxial layer 8 is grown thereon. A door-shaped diffusion 44 for element isolation is formed at the boundary of the planned area No. 7, and then a light-receiving element 44 is formed. A P+ type diffusion layer 8 is formed on a part of the surface of the planned area of the circuit element 7, a P+ type diffusion layer 9 is also formed on a part of the surface of the planned area of the circuit element 7, and a part of the surface of the P+ type diffusion layer 9 is formed. An N+ type scattered layer 11 is formed on a part of the surface of the N type epitaxial layer 8 in the area where the circuit element 7 is to be formed. These steps are similar to normal bipolar IC manufacturing processes.

以上のような構造であるから、受光素子6の部分と回路
素子7の部分とのN型エピタキシャル層8の比抵抗及び
厚さは同一である。
Since the structure is as described above, the specific resistance and thickness of the N-type epitaxial layer 8 in the light receiving element 6 portion and the circuit element 7 portion are the same.

(発明が解決しようとする課題〕 回路内蔵受光素子を高速かつ高感度にするためには、受
光素子部処おいては、エピタキシャル層の比抵抗を高く
して容量を下げて高速化し、さらにエピタキシャル層の
厚さを厚くして高感度化できる。然しなから回路素子部
においては、エピタキシャル層の比抵抗が高く、かつ、
厚さが厚いとコレクタ抵抗が増大し、回路の応答速度が
低下する。
(Problems to be Solved by the Invention) In order to make the light receiving element with a built-in circuit high speed and high sensitivity, in the light receiving element part, the specific resistance of the epitaxial layer must be increased to lower the capacitance to increase the speed, and the epitaxial High sensitivity can be achieved by increasing the layer thickness.However, in the circuit element part, the epitaxial layer has a high resistivity and
If the thickness is large, the collector resistance increases and the response speed of the circuit decreases.

前記のように、受光素子部と回路素子部のそれぞれに要
求されるエピタキシャル層の条件が異なるため、回路内
蔵受光素子の実現は困難であった。
As described above, since the epitaxial layer conditions required for the light receiving element portion and the circuit element portion are different, it has been difficult to realize a light receiving element with a built-in circuit.

本発明は、この双方の条件を満足する回路内蔵受光素子
を構成することを目的とする。
An object of the present invention is to construct a light receiving element with a built-in circuit that satisfies both of these conditions.

(課題を解決するための手段) 本発明においては、受光素子部は牛導体基板の表面に成
長させた高比抵抗で厚いエピタキシャル層に形成し、回
路素子部は前記の高比抵抗で厚いエピタキシャル層に設
けた凹部に成長させた低比抵抗で薄いエピタキシャル層
に形成させた。
(Means for Solving the Problems) In the present invention, the light-receiving element portion is formed in the high-resistivity, thick epitaxial layer grown on the surface of the conductor substrate, and the circuit element portion is formed in the high-resistivity, thick epitaxial layer grown on the surface of the conductor substrate. A thin epitaxial layer with low resistivity was grown in a recess formed in the layer.

(作 用) 本発明によれば、受光素子部と回路素子部とは、それぞ
れがその用途に適した比抵抗及び厚さのエピタキシャル
層に形成されるから、高速かつ高感度の回路内蔵受光素
子を得ることができる。
(Function) According to the present invention, the light-receiving element portion and the circuit element portion are each formed in an epitaxial layer having a specific resistance and a thickness suitable for the application, so that a high-speed and highly sensitive light-receiving element with a built-in circuit can be realized. can be obtained.

(実施例) 第1図は本発明による一実施例の略断面図であり、第2
図(a)〜(f)はその一連の工程の略断面図・である
(Embodiment) FIG. 1 is a schematic cross-sectional view of an embodiment according to the present invention.
Figures (a) to (f) are schematic cross-sectional views of the series of steps.

第1図において、受光素子16は高比抵抗の厚IAI型
エピタキシャル層21の部分に形成され、回路素子17
は低比抵抗の薄いN型エピタキシャル層14の部分に形
成され、それぞれは、P型半導体基板1の表面にN++
埋込み層2及びN++埋込層18を介して形成されてい
る。その具体的な製法の一例を以下に説明する。
In FIG. 1, a light receiving element 16 is formed in a portion of a thick IAI type epitaxial layer 21 with high specific resistance, and a circuit element 17
are formed in the thin N-type epitaxial layer 14 having low resistivity, and each N++ layer is formed on the surface of the P-type semiconductor substrate 1.
It is formed via the buried layer 2 and the N++ buried layer 18. An example of a specific manufacturing method will be explained below.

@2図(a)において、P型半導体基板10表面の受光
素子予定領域の部分にN++埋込拡散層2を形成し、回
路素子予定領域の部分にP型埋込拡散層20を形成し、
それらの表面に高比抵抗エピタキシヤル層21を厚く成
長させる。PINホトダイオード形成のためKは、この
エピタキシャル層21は夏型とされる。また、その厚さ
及び比抵抗は、受光素子の用途−よって要求される感度
及び応答速度等に応じて、最適となるように設定される
。図において点線はP型半導体基板20の最初の表面を
示す。
@2 In FIG. 2 (a), an N++ buried diffusion layer 2 is formed in a portion of the surface of the P-type semiconductor substrate 10 where the light-receiving element is planned, a P-type buried diffusion layer 20 is formed in the portion where the circuit element is planned,
A thick high resistivity epitaxial layer 21 is grown on those surfaces. In order to form a PIN photodiode, the epitaxial layer 21 is of a summer type. Further, its thickness and resistivity are optimally set depending on the application of the light-receiving element, such as sensitivity and response speed required. In the figure, the dotted line indicates the initial surface of the P-type semiconductor substrate 20.

次に第2図(b)に示すように、P散拡散層20のはい
上り拡散によりP型拡散層22を形成する。
Next, as shown in FIG. 2(b), a P-type diffusion layer 22 is formed by up-diffusion of the P diffusion layer 20.

このP型拡散層22は、回路素子の分離に利用される。This P-type diffusion layer 22 is used for separating circuit elements.

次にエピタキシャル層21の表面からN++埋込拡散層
2に達するN+型型数散層15形成する。これは受光素
子の陰極となる。
Next, an N+ type scattering layer 15 is formed extending from the surface of the epitaxial layer 21 to the N++ buried diffusion layer 2. This becomes the cathode of the light receiving element.

次に第2図(C)に示すように、表面に例えばS i0
2膜18及び5iBN4膜23を二重に被覆し、異方性
エツチングにより、例えば溝状の凹部19を形成する。
Next, as shown in FIG. 2(C), for example, S i0
The 2 film 18 and the 5iBN4 film 23 are coated twice, and a groove-shaped recess 19, for example, is formed by anisotropic etching.

この深さは回路素子に要求される低比抵抗エピタキシャ
ル層の最適の厚さと等しくされる。
This depth is made equal to the optimum thickness of the low resistivity epitaxial layer required for the circuit element.

次に第2図(d)に示すように、凹部19の底部KN+
型埋型埋散拡散層を形成し、凹部19の全面に5i02
膜18−1の被覆を施す。
Next, as shown in FIG. 2(d), the bottom KN+ of the recess 19 is
A buried diffusion layer is formed, and 5i02 is formed on the entire surface of the recess 19.
A coating of membrane 18-1 is applied.

次に第2図(e)に示すように1凹部19の全面をエツ
チングした後酸化を行い、凹部19の側壁の5i02膜
18−2と表面の5iBN4膜28の端部とが一直線と
なるようにする。これは5I9N4膜28をマスクとし
て、凹部19の側壁の5i02膜18−2を残すように
異方性エツチングを行って形成する。
Next, as shown in FIG. 2(e), the entire surface of the first recess 19 is etched and then oxidized so that the 5i02 film 18-2 on the side wall of the recess 19 and the edge of the 5iBN4 film 28 on the surface are in a straight line. Make it. This is formed by performing anisotropic etching using the 5I9N4 film 28 as a mask so as to leave the 5i02 film 18-2 on the side wall of the recess 19.

次に第2図(f)に示すように、5iBN4膜28を除
去後、選択エピタキシャルにより凹部19の部分のみに
、5i02膜18の厚さを減じた厚さの低比抵抗N型エ
ピタキシャル層14を形成する。凹部19以外の部分は
、5IO2膜18で覆われているためエピタキシャル層
は成長しない。その後、表面の5i02膜18を除去し
、必要なフォトリソグラフィと拡散層より、通常のバイ
ポーラtCの製造工程により完成させる。
Next, as shown in FIG. 2(f), after removing the 5iBN4 film 28, a low resistivity N-type epitaxial layer 14 with a thickness smaller than that of the 5i02 film 18 is formed only in the concave portion 19 by selective epitaxial coating. form. Since the portion other than the recess 19 is covered with the 5IO2 film 18, no epitaxial layer is grown. Thereafter, the 5i02 film 18 on the surface is removed, and the required photolithography and diffusion layer are completed using the normal bipolar tC manufacturing process.

第1図は完成された状態であって、高比抵抗の厚い夏型
エピタキシャル層21の表面の一部にP+型拡散層8と
、薄い低比抵抗N型エピタキシャル層140表面の一部
にP+型拡散層9を形成し、次にP+型拡散層9の一部
にN+型型数散層10、N型エピタキシャル層14の一
部に表面からN+型埋込拡散層13に達するN+型型数
散層11を形成する。このようにして高比抵抗で厚いエ
ピタキシャル層21の部分にはPINホトダイオードよ
りなる受光素子16が形成され、低比抵抗で薄いエピタ
キシャルN14の部分にはNPN)ランリスタよりなる
回路素子17が形成される。これらの表面は保護膜で覆
われ、電極を取出し配線が行われる。
FIG. 1 shows the completed state, with a P+ type diffusion layer 8 on a part of the surface of a thick summer-type epitaxial layer 21 with high resistivity, and a P+ type diffusion layer 8 on a part of the surface of a thin low resistivity N-type epitaxial layer 140. A type diffusion layer 9 is formed, and then an N+ type diffused layer 10 is formed in a part of the P+ type diffusion layer 9, and an N+ type diffused layer 10 is formed in a part of the N type epitaxial layer 14 from the surface to the N+ type buried diffusion layer 13. A dispersed layer 11 is formed. In this way, the light-receiving element 16 made of a PIN photodiode is formed in the portion of the thick epitaxial layer 21 with high resistivity, and the circuit element 17 made of an NPN) run lister is formed in the portion of the thin epitaxial layer 21 with low resistivity. . These surfaces are covered with a protective film, and electrodes are taken out and wiring is performed.

受光素子16の感度をより高感度化するためには、高比
抵抗エピタキシヤル層21を厚くすればよいが、N生型
拡散層15の形成が困難になるため、高比抵抗エピタキ
シヤル層21とN生型拡散層15を2回にわけて形成す
ることもできる。すなわち、高比抵抗エピタキシヤル層
21をまずある厚さに成長させて後N中型拡散層15を
N生型埋込拡散層2に達するか、あるいは次に形成する
高比抵抗エピタキシヤル層21の厚さより小さい間隔が
N生型埋込拡散層2との間に残るように形成し、その表
面に更に高比抵抗エピタキシヤル層21を所定の厚さ成
長させ、その表面から先に形成されたN生型拡散層15
に接続するよう忙再度N+型拡散層15を形成させる。
In order to increase the sensitivity of the light-receiving element 16, the high resistivity epitaxial layer 21 may be made thicker, but since it becomes difficult to form the N-type diffusion layer 15, the high resistivity epitaxial layer 21 It is also possible to form the N-type diffusion layer 15 in two steps. That is, the high resistivity epitaxial layer 21 is first grown to a certain thickness, and then the N medium-sized diffusion layer 15 is grown to reach the N-type buried diffusion layer 2, or the high resistivity epitaxial layer 21 to be formed next is grown. A gap smaller than the thickness of the N-type buried diffusion layer 2 is formed, and a high resistivity epitaxial layer 21 is further grown to a predetermined thickness on the surface of the N-type buried diffusion layer 2. N-type diffusion layer 15
Then, an N+ type diffusion layer 15 is formed again so as to be connected to the N+ type diffusion layer 15.

(発明の効果) 本発明によれば、簡単な工程を追加することにより受光
素子と回路素子とはそれぞれ最適の厚さのエピタキシャ
ル層に形成されるから、容易に高速かつ高感度の回路内
蔵受光素子を得ることができる。
(Effects of the Invention) According to the present invention, the light-receiving element and the circuit element are each formed in an epitaxial layer with an optimal thickness by adding a simple process. element can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の略断面図、第2図(a)乃
至(f)はその各工程の略断面図、第8図は従来の一例
の略断面図である。 1・・・半導体基板、2・・・N++埋込拡散層、9・
・・P+型拡散層、10・・・N+型型数散層11・・
・N+型型数散層18・・・N++埋込拡散層、14・
・・エピタキシャル層(低比抵抗)、15・・・N+搬
拡散層、16・・・受光素子、17・・・回路素子、1
8・・・S +o2膜、19・・・凹部、20・・・P
型埋込拡散層、21・・・エピタキシャル層(高比抵抗
)、22・・・P型拡散tり)
FIG. 1 is a schematic cross-sectional view of an embodiment of the present invention, FIGS. 2(a) to (f) are schematic cross-sectional views of each step thereof, and FIG. 8 is a schematic cross-sectional view of a conventional example. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... N++ buried diffusion layer, 9.
...P+ type diffused layer, 10...N+ type diffused layer 11...
・N+ type scattering layer 18...N++ buried diffusion layer, 14・
...Epitaxial layer (low specific resistance), 15...N+ transport diffusion layer, 16... Light receiving element, 17... Circuit element, 1
8...S+o2 film, 19...concavity, 20...P
Type buried diffusion layer, 21...Epitaxial layer (high specific resistance), 22...P type diffusion layer)

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板の上に成長させた高比抵抗のエピタキシ
ャル層と、そのエピタキシャル層に設けた凹部に成長さ
せた低比抵抗のエピタキシャル層とよりなり、高比抵抗
のエピタキシャル層の部分に受光素子を形成し、低比抵
抗のエピタキシャル層の部分に回路素子を形成したこと
を特徴とする回路内蔵受光素子。
1. Consists of a high resistivity epitaxial layer grown on a semiconductor substrate and a low resistivity epitaxial layer grown in a recess formed in the epitaxial layer, and a light-receiving element is placed in the high resistivity epitaxial layer. 1. A light-receiving element with a built-in circuit, characterized in that a circuit element is formed in a portion of an epitaxial layer having a low resistivity.
JP1025471A 1989-02-02 1989-02-02 Light receiving element with a built-in circuit Pending JPH02205079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025471A JPH02205079A (en) 1989-02-02 1989-02-02 Light receiving element with a built-in circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025471A JPH02205079A (en) 1989-02-02 1989-02-02 Light receiving element with a built-in circuit

Publications (1)

Publication Number Publication Date
JPH02205079A true JPH02205079A (en) 1990-08-14

Family

ID=12166953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025471A Pending JPH02205079A (en) 1989-02-02 1989-02-02 Light receiving element with a built-in circuit

Country Status (1)

Country Link
JP (1) JPH02205079A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513800A (en) * 1991-07-05 1993-01-22 Sharp Corp Semiconductor device
KR100223828B1 (en) * 1996-09-02 1999-10-15 구본준 Fabricating method of semiconductor device
KR100394212B1 (en) * 1999-07-27 2003-08-09 샤프 가부시키가이샤 Circuit-incorporating light receiving device and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513800A (en) * 1991-07-05 1993-01-22 Sharp Corp Semiconductor device
KR100223828B1 (en) * 1996-09-02 1999-10-15 구본준 Fabricating method of semiconductor device
KR100394212B1 (en) * 1999-07-27 2003-08-09 샤프 가부시키가이샤 Circuit-incorporating light receiving device and method of fabricating the same

Similar Documents

Publication Publication Date Title
JPH02205079A (en) Light receiving element with a built-in circuit
JPH05335618A (en) Optical position detecting semiconductor device
JP2700356B2 (en) Light receiving element
US3696274A (en) Air isolated integrated circuit and method
JPH02142181A (en) Photodetector incorporated in circuit
JPH02238664A (en) Photodetector with built-in circuit
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JPH02196463A (en) Photodetector with built-in circuit
JP3504114B2 (en) Photodetector with built-in circuit
JPH0422177A (en) Manufacture of photodetector with built-in circuit
JPH0242767A (en) Photodetector with built-in circuit
JPH0513800A (en) Semiconductor device
JPH02125664A (en) Manufacture of semiconductor device
JPH04146671A (en) Photodetective element incorporating circuit
JPH02170574A (en) Circuit built-in photodetector
JPH02260657A (en) Manufacture of circuit built-in photodetector
JPH0242768A (en) Photodetector with built-in circuit
JPS6134971A (en) Semiconductor device
JP2649862B2 (en) Manufacturing method of photodetector with built-in circuit
JPH0864794A (en) Circuit built-in photodetecting device
JP2511993B2 (en) Method for manufacturing semiconductor device
EP0434318A2 (en) Low sheet resistance diffused contacts to buried diffused resistors using isolation regions and buried layer
JPS6038889A (en) Semiconductor device and manufacture thereof
JPH0786631A (en) P-i-n photo-diode
JPS62198172A (en) Semiconductor device