JPH0220416B2 - - Google Patents

Info

Publication number
JPH0220416B2
JPH0220416B2 JP56169186A JP16918681A JPH0220416B2 JP H0220416 B2 JPH0220416 B2 JP H0220416B2 JP 56169186 A JP56169186 A JP 56169186A JP 16918681 A JP16918681 A JP 16918681A JP H0220416 B2 JPH0220416 B2 JP H0220416B2
Authority
JP
Japan
Prior art keywords
elongation
polyvinylidene fluoride
fluoride resin
stretching
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56169186A
Other languages
Japanese (ja)
Other versions
JPS5869019A (en
Inventor
Yosha Mizuno
Naohiro Murakami
Takao Ichii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP16918681A priority Critical patent/JPS5869019A/en
Publication of JPS5869019A publication Critical patent/JPS5869019A/en
Publication of JPH0220416B2 publication Critical patent/JPH0220416B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 この発明はポリ弗化ビニリデン樹脂成形物の製
造法に関するものであり、更に詳細には、ポリ弗
化ビニリデン樹脂(以下、「PVDF」という)の
結晶構造がβ型構造を主とするものであり、しか
もその結晶の極性軸が特定の方向に配向している
構造物の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyvinylidene fluoride resin molded products, and more specifically, polyvinylidene fluoride resin (hereinafter referred to as "PVDF") has a crystal structure of β type It mainly relates to a method for manufacturing a structure in which the polar axis of the crystal is oriented in a specific direction.

PVDFには、周知の如く、α型、β型およびγ
型などの結晶構造が存在し、このうちβ型結晶の
場合、結晶内での分子鎖中の双極子が一定の方向
を向いており、極性軸が存在する。それによりβ
型結晶構造から成るPVDFフイルムでは大きな圧
電定数、焦電定数ならびに誘電率等を示すことが
知られている。このようなβ型結晶構造は例えば
低温―軸延伸によつて容易に得ることができる。
しかし、この低温―軸延伸フイルムの極性軸は通
常フイルム断面内でランダム配向である。さら
に、このように結晶融点以下で延伸したフイルム
はフイブリル構造を有しており、非常に裂け易い
という欠点がある。
As is well known, PVDF has α-type, β-type and γ-type.
In the case of β-type crystals, the dipoles in the molecular chains within the crystal are oriented in a certain direction, and there is a polar axis. Therefore, β
It is known that PVDF films with a type crystal structure exhibit large piezoelectric constants, pyroelectric constants, and dielectric constants. Such a β-type crystal structure can be easily obtained, for example, by low-temperature axial stretching.
However, the polar axes of this cold-axially stretched film are usually randomly oriented within the cross section of the film. Furthermore, the film stretched below the crystal melting point has a fibrillar structure and has the disadvantage of being extremely easily torn.

そのようなβ型結晶の極性軸をフイルム内で選
択的に特定の方向に配向させることはさらに優れ
た電気物性を有することが期待される。しかしな
がら、かかるフイルムを得ることは容易ではな
く、わずかに以下の方法で製造し得ることが知ら
れているに過ぎない。その一つの方法は特開昭55
−17957号に開示されており、急冷されたPVDF
フイルムを特定条件下で二軸延伸する方法であ
る。別な方法は、延伸中にコロナポーリングする
方法である(高分子学会予稿集30巻3号2J30第
677頁(1981)参照)。さらに別な方法は特開昭55
−166981号に開示されており、1軸延伸後、ロー
ルで冷間圧延する方法である。これらはいずれも
冷間延伸であり、これらの方法により得られた成
形物は、第1図においてその1例を示した倍率
10000倍の走査型電子顕微鏡写真より明らかな様
に、ミクロフイブリル構造をとるので、成形物内
ではミクロフイブリル間にミクロボイドを生ずる
傾向がある。
It is expected that selectively orienting the polar axis of such β-type crystals in a specific direction within the film will provide even better electrical properties. However, it is not easy to obtain such a film, and it is only known that it can be produced by the following method. One method is JP-A-55
- PVDF quenched as disclosed in No. 17957
This is a method of biaxially stretching a film under specific conditions. Another method is corona poling during stretching (Proceedings of the Society of Polymer Science, Vol. 30, No. 3, 2J30, No.
677 (1981)). Another method is JP-A-55
This method is disclosed in No. 166981, and involves cold rolling with rolls after uniaxial stretching. All of these methods are cold-stretched, and the molded products obtained by these methods have the magnification shown in Figure 1 as an example.
As is clear from the 10,000x scanning electron micrograph, since it has a microfibrillar structure, microvoids tend to occur between the microfibrils within the molded product.

この発明は、これら従来技術とは異なり、ミク
ロフイブリル構造を呈さず、結晶構造がβ型構造
を主とするものであり、しかも極性軸が選択配向
を呈するPVDFの成形方法を提供することを目的
とする。
The present invention differs from these prior art techniques in that it provides a method for molding PVDF that does not exhibit a microfibrillar structure, has a crystal structure mainly consisting of a β-type structure, and has a polar axis with a selective orientation. purpose.

PVDFにミクロフイブリル構造を呈さないよう
にするには非晶質な状態から延伸すれば良い。と
ころが、PVDFはポリエチレンテレフタレートや
ナイロン等とは異なり、ポリエチレンやポリオキ
シメチレン等と同様、ガラス転移点が室温よりも
はるかに低く、更に結晶化速度が極めて早いため
に急冷によつても結晶化温度以下の温度で非晶状
態が得られない。すなわち、一度冷却した成形物
では非晶状態を取り得ず、非晶状態からの冷延伸
は不可能である。
In order to prevent PVDF from exhibiting a microfibrillar structure, it is sufficient to stretch it from an amorphous state. However, unlike polyethylene terephthalate and nylon, PVDF, like polyethylene and polyoxymethylene, has a glass transition point much lower than room temperature, and its crystallization rate is extremely fast, so even if it is rapidly cooled, the crystallization temperature will still be low. An amorphous state cannot be obtained at temperatures below. That is, once cooled, the molded product cannot assume an amorphous state, and cold stretching from the amorphous state is impossible.

また、米国特許第3580829号あるいは特公昭51
−3498号公報によれば、架橋PVDFチユーブを融
点以上の温度で、その直径を2〜3倍程度に膨張
させ、その内圧を保持したまま冷却して固化させ
た後、チユーブ内に他の物を挿入して融点以上に
加熱すると、チユーブがほぼ延伸前の大きさに戻
ることを利用し、熱収縮チユーブの如き弾性記憶
材料を得ることが提案されている。かかる方法に
より得られた成形物にはミクロフイブリルがない
けれども、その結晶構造は、弗化ビニリデンホモ
ポマーによつてPVDFが構成されている場合を始
めとして多くの場合、α型構造を示すのである。
僅かに弗化ビニリデンとある種のコモノマー、例
えば弗化ビニル等からなる共重合体の場合にのみ
β型構造を示すだけである。しかも、これらの場
合でも極性軸の選択配向は示さないのである。
Also, US Patent No. 3580829 or Special Publication No. 51
According to Publication No. 3498, a cross-linked PVDF tube is expanded to about 2 to 3 times its diameter at a temperature above its melting point, and after cooling and solidifying while maintaining its internal pressure, other objects are placed inside the tube. It has been proposed to obtain an elastic memory material such as a heat-shrinkable tube by utilizing the fact that when a tube is inserted and heated above its melting point, the tube returns to approximately its size before being stretched. Although the molded product obtained by this method does not have microfibrils, its crystal structure exhibits an α-type structure in many cases, including when PVDF is composed of vinylidene fluoride homopomer. It is.
Only copolymers consisting of vinylidene fluoride and certain comonomers, such as vinyl fluoride, exhibit a β-type structure. Moreover, even in these cases, the preferred orientation of the polar axis is not shown.

そこで、本発明者は、結晶化しない状態、即ち
高温で溶融している状態からの延伸を試みたが、
このような延伸温度では分子鎖の熱運動が極めて
活発であり、延伸後直ちに急冷するというような
手段を採つても極性軸が選択配向した成形物が得
られないのは勿論のこと、PVDFが弗化ビニリデ
ンホモポリマーをはじめとする多くの場合にもβ
型構造はとり得ないことが判明した。
Therefore, the present inventor attempted to stretch from a non-crystallized state, that is, from a molten state at a high temperature.
At such stretching temperatures, the thermal movement of molecular chains is extremely active, and even if measures such as rapid cooling immediately after stretching are adopted, it is of course impossible to obtain a molded product with the polar axis selectively oriented, and PVDF In many cases, including vinylidene fluoride homopolymers, β
It turns out that type structure is not possible.

ところが、かかる架橋PVDFを溶融状態で、破
断に近い程度の延伸倍率にまで二方向に延伸し、
その延伸状態を保持したまま冷却すると、その結
晶構造がβ型構造を主とするばかりでなく、この
発明の目的とする極性軸の選択配向をも呈するこ
とができることが見出された。
However, when such cross-linked PVDF is stretched in a molten state in two directions to a stretching ratio close to breaking,
It has been found that when cooled while maintaining the stretched state, the crystal structure not only mainly has a β-type structure but also exhibits the selective orientation of the polar axis, which is the object of the present invention.

したがつて、この発明に係る方法は、後述する
ごとき架橋ポリ弗化ビニリデン樹脂(PVDF)
を、溶融状態で、破断に近い延伸倍率にまで少く
とも二方向に延伸し、その延伸状態を保持したま
ま冷却することよりなつている。
Therefore, the method according to the present invention uses crosslinked polyvinylidene fluoride resin (PVDF) as described below.
is stretched in a molten state in at least two directions to a stretching ratio close to breakage, and then cooled while maintaining the stretched state.

この発明でいうPVDFとは、弗化ビニリデンホ
モポリマーに限定されるものではなく、弗化ビニ
リデンを約50モル%以上、好ましくは約70モル%
以上、より好ましくは約90モル%以上とし、これ
と共重合し得る1種以上のコモノマー、例えば弗
化ビニル、三弗化エチレン、三弗化塩化エチレ
ン、四弗化エチレン、六弗化プロピレン等とから
なるコポリマー、またはこれらポリマーの少なく
とも1種を約50重量%以上とする組成物を指すも
のとする。かかる組成物を構成しうる成分の例と
しては、ポリ弗化ビニリデンホモポリマーと相溶
性のあるポリマーとして知られる例えばポリメタ
クリル酸メチル、ポリアクリル酸メチル、ポリ酢
酸ビニル等の酸エステルは勿論のこと、ポリカー
ボネート、ポリエチレンテレフタレート等の相溶
性があるとはいい難いが混合可能なポリマー;ポ
リエステル可塑剤;テレフタル酸エステル;塩化
カリ、塩化ナトリウム、酸化チタン、カーボンブ
ラツク、酸化アルミニウム粉末、チタン酸バリウ
ム、フラバントロン等が挙げられる。
PVDF in this invention is not limited to vinylidene fluoride homopolymer, and contains vinylidene fluoride in an amount of about 50 mol% or more, preferably about 70 mol%.
The above, more preferably about 90 mol% or more, and one or more comonomers that can be copolymerized with this, such as vinyl fluoride, ethylene trifluoride, ethylene chloride trifluoride, ethylene tetrafluoride, propylene hexafluoride, etc. or a composition containing at least about 50% by weight of at least one of these polymers. Examples of components that can constitute such a composition include, of course, acid esters such as polymethyl methacrylate, polymethyl acrylate, and polyvinyl acetate, which are known as polymers that are compatible with polyvinylidene fluoride homopolymer. , polycarbonate, polyethylene terephthalate, and other polymers that can be mixed but cannot be said to be compatible; polyester plasticizers; terephthalic acid esters; potassium chloride, sodium chloride, titanium oxide, carbon black, aluminum oxide powder, barium titanate, flavans. Examples include TRON and the like.

この発明で用いられる架橋PVDFの架橋度合は
ゲル分率が約20〜75%、好ましくは約30〜65%、
より好ましくは約35〜60%である。上記範囲より
余り小さいと、結晶融点以上の温度で延伸した
際、流動してしまい、分子鎖が高度に配向し難く
なり、また上記範囲より大きすぎると、結晶融点
以上の温度で延伸しようとしても、架橋されすぎ
ているため分子鎖が高度に配向し難くなるためで
ある。
The degree of crosslinking of the crosslinked PVDF used in this invention is such that the gel fraction is about 20 to 75%, preferably about 30 to 65%,
More preferably it is about 35-60%. If it is too small than the above range, it will flow when stretched at a temperature above the crystal melting point, making it difficult for the molecular chains to be highly oriented; This is because the molecular chains are difficult to be highly oriented due to excessive crosslinking.

ここで、ゲル分率とは、PVDFをよく溶かす溶
媒であるジメチルアセトアミドに溶解した場合、
その溶液から未架橋物を抽出したときに残つたゲ
ル分の抽出前樹脂量に対する比率を%で表示した
値である。この際、ジメチルアセトアミド溶液の
濃度は1%以下となるように十分な溶媒を用い、
抽出温度は100℃、抽出時間は24時間である。
Here, the gel fraction means that when PVDF is dissolved in dimethylacetamide, which is a solvent that dissolves well,
It is a value expressed in % of the ratio of the gel content remaining when uncrosslinked substances are extracted from the solution to the amount of resin before extraction. At this time, use enough solvent so that the concentration of the dimethylacetamide solution is 1% or less,
The extraction temperature was 100°C and the extraction time was 24 hours.

なお、この発明において使用する架橋PVDFを
架橋させるために使用できる架橋剤としては、例
えばトリアリルシアヌレート、トリメリツト酸ト
リアリル、トリプロパルギルシアヌレート、ジプ
ロパルギルアリルシアヌレート、ジアリルプロパ
ルギルシアヌレート等のシアヌレート、トリアリ
ルイソシアヌレート、トリプロパルギルイソシア
ヌレート、ジプロパルギルアリルイソシアヌレー
ト、ジアリルプロパルギルイソシアヌレート等の
イソシアヌレート等の公知の架橋剤が用いられ
る。
Examples of the crosslinking agent that can be used to crosslink the crosslinked PVDF used in this invention include cyanurates such as triallyl cyanurate, triallyl trimellitate, tripropargyl cyanurate, dipropargyl allyl cyanurate, and diallyl propargyl cyanurate; Known crosslinking agents such as isocyanurates such as triallyl isocyanurate, tripropargyl isocyanurate, dipropargylallyl isocyanurate, and diallylpropargyl isocyanurate are used.

この発明においては、使用する架橋PVDFは、
前述したようなPVDFを架橋剤によつて常法に従
つて架橋させて製造することができる。得られた
架橋PVDFを、その結晶融解温度以上でかつその
分解開始温度より低い温度で少なくとも二方向に
適度な伸度範囲で延伸し、その伸度を保持させな
がら結晶融点以下の温度で冷却される。
In this invention, the cross-linked PVDF used is
It can be produced by crosslinking PVDF as described above using a crosslinking agent in a conventional manner. The obtained cross-linked PVDF is stretched in at least two directions at a suitable elongation range at a temperature above its crystal melting temperature and below its decomposition start temperature, and then cooled at a temperature below its crystal melting point while maintaining its elongation. Ru.

第2図は、実線が架橋PVDF、点線が未架橋
PVDFの見掛けの応力―歪曲線の例である。ここ
で、実線及び点線について示した温度は雰囲気温
度である。雰囲気温度が170℃のときは、懸濁重
合により得られたポリマーの場合、PVDFの結晶
融点以下であるので、架橋PVDFでも未架橋
PVDFでもネツキング延伸が生じ、ミクロフイブ
リル構造を示す。これに対し、雰囲気温度が
PVDFの結晶融点以上であればネツキング延伸は
生じない。また、架橋PVDFの場合、第2図に示
す様に、伸びが小さいときは伸びの増加に伴う応
力の増加は僅かである。一方、伸びの増加と共に
変化する応力の増加がほぼ一定とみなせる延伸領
域における延伸をここでは「流動延伸」と呼ぶこ
ととする。かかる流動延伸領域を第2図では例え
ばC2―D2の如く示している。未架橋PVDFの場
合にも、図示していないが、かかる流動延伸が認
められる。このような流動延伸されたPVDFを冷
却しても極性軸の選択配向は生じないばかりか、
その結晶構造は前述した通り多くの場合α構造し
か得られないのである。ところが、架橋PVDFを
結晶融点以上で更に延伸すると、それまでの流動
延伸とは異なり、僅かな伸びの増加でも大巾に応
力が増加するようになり、破断点Bに至るまでこ
の傾向は続く。このような流動延伸領域を越え
て、少なくとも二方向に延伸し、その状態を維持
したまま冷却固化させると極性軸の選択配向を行
わしめることができるとともに、その結晶構造
は、流動延伸領域での延伸ではα型構造しかとり
えないものでも、β型構造を呈するようになる。
しかも、この伸度が破断点Bに近い程β型構造の
割合は多くなり、それとともに極性軸の選択配向
はより明確になつてくる。
In Figure 2, the solid line is crosslinked PVDF and the dotted line is uncrosslinked PVDF.
This is an example of the apparent stress-strain curve of PVDF. Here, the temperatures shown for the solid lines and dotted lines are ambient temperatures. When the ambient temperature is 170°C, the polymer obtained by suspension polymerization is below the crystal melting point of PVDF, so even cross-linked PVDF can be uncross-linked.
PVDF also undergoes netting stretching and exhibits a microfibrillar structure. On the other hand, the ambient temperature
If the temperature is above the crystalline melting point of PVDF, no netting stretching will occur. Furthermore, in the case of crosslinked PVDF, as shown in FIG. 2, when the elongation is small, the stress increases only slightly as the elongation increases. On the other hand, stretching in a stretching region where the increase in stress that changes with increase in elongation can be considered to be approximately constant is herein referred to as "flow stretching". Such a flow-stretching region is shown, for example, as C 2 -D 2 in FIG. Although not shown, such flow stretching is also observed in the case of uncrosslinked PVDF. Even if such flow-stretched PVDF is cooled, not only does the preferential orientation of the polar axis not occur,
As mentioned above, in most cases, only the α structure can be obtained. However, when cross-linked PVDF is further stretched above its crystal melting point, unlike the previous flow stretching, even a slight increase in elongation causes a large increase in stress, and this trend continues until breaking point B is reached. By stretching in at least two directions beyond such a flow-stretching region, and cooling and solidifying while maintaining this state, selective orientation of the polar axis can be achieved, and the crystal structure can be changed from that in the flow-stretching region. Even if the material can only have an α-type structure upon stretching, it will now exhibit a β-type structure.
Moreover, the closer this elongation is to the breaking point B, the higher the proportion of the β-type structure becomes, and the preferential orientation of the polar axis becomes more clear.

更に、第2図についてより詳細に説明すると、
例えばC1―D1で示したネツキング延伸領域また
は例えばC2―D2で示した流動延伸領域以上に延
伸されると、単位伸び(ΔL)当りの見掛けの応
力の増加分(ΔS)である変化率ΔS/ΔLは高倍
率になる程大きくなるが、この変化率の単位伸び
当たりの変化率、すなわちd2S/dL2はある延伸
倍率で最大値を示す。この点をAとし、第2図で
は延伸温度を異にする曲線毎にA1,A2,A3と示
している。なお、第2図において最下線について
は、A4を表示できなかつたが950%の伸度で認め
られる。即ち、Aは見掛けの応力―歪曲線におい
て破断点に近い伸度で現われる最も急激に見掛け
の応力が増加する点、つまり見掛け応力の最大増
加点を示すものである。
Furthermore, to explain FIG. 2 in more detail,
When stretched beyond the netting stretching region, for example C 1 - D 1 or the fluid stretching region, for example C 2 - D 2 , the increase in apparent stress (ΔS) per unit elongation (ΔL) is The rate of change ΔS/ΔL increases as the stretching ratio increases, but the rate of change per unit elongation, ie, d 2 S/dL 2 reaches its maximum value at a certain stretching ratio. This point is designated as A, and in FIG. 2, curves at different stretching temperatures are indicated as A 1 , A 2 , and A 3 . In addition, in Fig. 2, the bottom line cannot display A4 , but it is recognized at 950% elongation. That is, A indicates the point on the apparent stress-strain curve where the apparent stress increases most rapidly, which appears at an elongation close to the breaking point, that is, the point where the apparent stress increases the most.

このA点における伸度をLA、破断点をB、そ
の伸度をLBとすると、少なくとも二方向の伸び
の和がLAよりやや小さい伸び、すなわちLA−2/5
(LB−LA)の伸びよりも大きく、LBより小さい範
囲内の伸びとすることにより、続いて行なわれる
冷却によつて、その結晶構造をそれ以前の伸度で
はα型構造しかとれないものでもβ型構造を呈す
るようになると共に、極性軸の選択配向を呈する
ようになる。なかでもLA−1/5(LB−LA)より大
きく、LBより小さい伸び、とりわけLAより大き
く、LBより小さい伸びとすることにより、結晶
構造を顕著にβ型構造に呈するようにすることが
できるとともに、極性軸の選択配向はより明確に
行なわしめることができる。
If the elongation at point A is L A , the breaking point is B, and the elongation is L B , then the sum of the elongations in at least two directions is slightly smaller than L A , that is, L A −2/5
By elongating the elongation within a range that is greater than the elongation of (L B − L A ) and smaller than L B , the crystal structure can be changed to only the α-type structure by the subsequent cooling. Even those that do not have a β-type structure come to exhibit a preferential orientation of the polar axis. In particular, by setting the elongation to be larger than L A −1/5 (L B −L A ) and smaller than L B , especially larger than L A and smaller than L B , the crystal structure will noticeably exhibit a β-type structure. In addition, the selective orientation of the polar axis can be made more clearly.

この発明においては、少なくとも二方向の延伸
は、例えばインフレーシヨンのような同時二軸延
伸または逐次二軸延伸のいずれでも良いし、更に
後延伸によつて行つても良い。また、延伸方向は
相互に直角方向であることが望ましいが、特にこ
れに限定されるものではない。
In this invention, the stretching in at least two directions may be simultaneous biaxial stretching such as inflation or sequential biaxial stretching, or may be further performed by post-stretching. Furthermore, it is desirable that the stretching directions be perpendicular to each other, but the stretching directions are not particularly limited thereto.

各々の伸度は、例えば二方向の延伸の場合、一
方が極端に小さく、他方が極端に大きいのは好ま
しくなく、両者がほぼ同程度の伸度にするのが望
ましい。即ち、最小伸度方向の伸度に対する最大
伸度方向の伸度の比が約5以下とするのが好まし
く、また約3以下とするのがより好ましい。この
ように伸度比を定めることによつて、より明瞭に
極性軸の選択配向を行なうことができる。
For example, in the case of stretching in two directions, it is not preferable for one elongation to be extremely small and the other to be extremely large; it is desirable that the elongations be approximately the same. That is, the ratio of the elongation in the maximum elongation direction to the elongation in the minimum elongation direction is preferably about 5 or less, and more preferably about 3 or less. By determining the elongation ratio in this way, the selective orientation of the polar axis can be carried out more clearly.

かかる延伸は架橋PVDFの結晶融点以上、分解
開始温度より低い温度で行なわれる。工業的には
より早く溶融させるために、その延伸を、好まし
くは結晶融点より5℃以上程度高く、かつ、結晶
融点より約100℃以上は高くない温度範囲、より
好ましくは結晶融点より約15℃以上高温であり、
かつ、結晶融点より約80℃より高くない温度範囲
で行なうのがよい。
Such stretching is carried out at a temperature higher than the crystal melting point of crosslinked PVDF and lower than the decomposition initiation temperature. Industrially, in order to melt faster, the stretching is preferably carried out at a temperature range of about 5°C or more higher than the crystal melting point, but not about 100°C or more higher than the crystal melting point, more preferably about 15°C higher than the crystal melting point. The temperature is higher than
In addition, it is preferable to carry out the reaction at a temperature not higher than about 80° C. above the crystal melting point.

また、ここでいう少なくとも二方向の伸びの和
とは、例えばインフレーシヨンの場合、直角な二
方向の伸びの和を指し、二軸延伸を更に後延伸し
たときはそれぞれの伸びの和を指すものとする。
Furthermore, the sum of elongations in at least two directions here refers to the sum of elongations in two orthogonal directions in the case of inflation, for example, and refers to the sum of each elongation when post-stretching is performed after biaxial stretching. shall be taken as a thing.

この発明においては、前述したような延伸をし
た後、その伸度を保持したまま結晶化させるため
に結晶融点より低い温度で冷却する。この冷却
は、好ましくは最大結晶化速度が得られる温度以
下、より好ましくは約40℃以下の温度で急冷する
ことにより機械的強度の大きいものが得られる。
In this invention, after stretching as described above, the material is cooled at a temperature lower than the crystal melting point in order to crystallize while maintaining the degree of elongation. This cooling is preferably carried out at a temperature below which the maximum crystallization rate is obtained, more preferably at a temperature below about 40° C., whereby a high mechanical strength can be obtained.

この発明に係る製造方法のより具体的な例とし
ては、架橋剤を含んだPVDFをチユーブ状に押出
成形し、γ線或いはβ型等の放射線により架橋し
た後、一端をピンチし、他端から不活性ガスを吹
き込むと共に高温炉中で結晶融点以上の温度に加
熱してインフレーシヨンし、次いでこのチユーブ
状物に内圧をかけたままで冷却し、チユーブ状フ
イルムを得る方法がある。この方法では、チユー
ブは架橋により妨げられない限りガスの吹き込み
により膨張し、架橋によりそれ以上膨張が不可能
な大きさ迄膨張することができる。その際ガスの
吹き込み圧力を適当にすることにより、チユーブ
が破断することなく、かつ、二方向の伸びの和が
前述したような範囲になるように膨張させること
ができる。その状態から前述したようにして冷却
結晶化させることにより結晶構造がβ型構造を主
とし、かつ、極性軸の選択配向したフイルムを得
ることができる。なお、かかるフイルムは、延伸
前の原チユーブに大きな厚さ斑がない限り、長さ
方向にも円周方向にも極めて均一な厚さにするこ
とができる。また、このような溶融状態でのイン
フレーシヨンによるフイルムは、冷間延伸に較べ
高延伸倍率となり、薄膜化が容易であり、ミクロ
フイブリル構造が存在しないので、表面は平滑で
あり、フイルム内はミクロボイドが存在しない構
造を呈することができる。
As a more specific example of the manufacturing method according to the present invention, PVDF containing a crosslinking agent is extruded into a tube shape, crosslinked with γ-rays or β-type radiation, and then one end is pinched and the other end is extruded. There is a method in which a tube-like film is obtained by blowing an inert gas into the material and heating it in a high-temperature furnace to a temperature above the crystal melting point to cause inflation, and then cooling the tube-like material while applying internal pressure. In this method, the tube is expanded by blowing gas unless prevented by the crosslinking, and the crosslinking allows the tube to expand to a size where no further expansion is possible. At this time, by adjusting the gas blowing pressure appropriately, the tube can be expanded without breaking and so that the sum of the elongations in two directions falls within the above-mentioned range. From this state, by cooling and crystallizing as described above, it is possible to obtain a film whose crystal structure is mainly a β-type structure and whose polar axis is selectively oriented. Note that such a film can be made to have an extremely uniform thickness both in the lengthwise direction and in the circumferential direction, as long as there is no large thickness unevenness in the original tube before stretching. In addition, the film produced by inflation in such a molten state has a higher stretching ratio than cold stretching, and can be easily made into a thin film.Since there is no microfibrillar structure, the surface is smooth, and the inside of the film is smooth. can exhibit a structure without microvoids.

前述したようなインフレーシヨン法を採用する
ときには、放射線の照射線量は架橋剤の量、重合
体の種類、重合度などによつて左右されるが、そ
の採用されるべき量は特に説明するまでもなく当
業者であれば適宜選択可能であろう。
When employing the inflation method described above, the radiation dose depends on the amount of crosslinking agent, the type of polymer, the degree of polymerization, etc., but the amount that should be adopted will not be explained unless specifically explained. Those skilled in the art will be able to select one as appropriate.

この発明に係る方法によつて得られる成形物
は、結晶構造としてβ型構造を主とするものであ
るが、そのβ型構造は、以下に述べる方法により
定量化されたものである。即ち、β型結晶に基づ
く赤外線吸収である510cm-1の吸光度D510及びα
型結晶に基づく赤外線吸収である530cm-1の吸光
度D530を、第6図に示す如くベースラインを引い
て求め、次式によつてβ型結晶系中における割合
を求めたものである。
The molded product obtained by the method according to the present invention mainly has a β-type crystal structure, and the β-type structure was quantified by the method described below. That is, the absorbance D 510 at 510 cm -1 , which is infrared absorption based on β-type crystals, and α
The absorbance D 530 at 530 cm -1 , which is infrared absorption based on the type crystal, was determined by drawing a baseline as shown in FIG. 6, and the proportion in the β-type crystal system was determined using the following formula.

D510/D510+D530×100(%) なお、この発明でいう「β型構造を主とする」
とは、上記式で求めた値がほぼ50%以上であり、
好ましくは65%以上、更に好ましくは75%以上の
ものである。
D 510 / D 510 + D 530 × 100 (%) In this invention, “mainly has β-type structure”
means that the value calculated using the above formula is approximately 50% or more,
Preferably it is 65% or more, more preferably 75% or more.

また、この発明に係る方法により得られた成形
物は極性軸の選択配向を呈するが、ここでいう
「極性軸の選択配向」とは、理想的な二重配向の
状態のみばかりでなく、広角X線回折写真によつ
て、β型結晶の(200)面と(110)面の回折像が
6点像もしくは6個のアーク状像となる場合を指
すものである。この広角X線回折写真は、二軸ま
たはそれ以上の延伸方向のうち最も高い延伸倍率
方向に対して直角に切り出したフイルム断面のフ
イルム巾方向を上下に立ててセツトし、このフイ
ルム断面に直角にX線のCuKα線を入射させるこ
とにより撮影される。この発明に係る製造方法に
より得られた典型的な例の広角X線写真を第3図
に示すと、6個のアーク像となつていることが認
められる。
In addition, the molded product obtained by the method according to the present invention exhibits a selective orientation of the polar axis, but the "selective orientation of the polar axis" here refers not only to the ideal double orientation state but also to the wide-angle This refers to the case where the diffraction images of the (200) and (110) planes of a β-type crystal form a 6-point image or 6 arc-shaped images in an X-ray diffraction photograph. This wide-angle X-ray diffraction photograph is obtained by setting a cross-section of a film cut perpendicularly to the direction of the highest stretching ratio among two or more stretching directions, with the film width direction vertically vertically. Photographs are taken by injecting CuKα X-rays. When a typical wide-angle X-ray photograph obtained by the manufacturing method according to the present invention is shown in FIG. 3, it can be seen that there are six arc images.

β型結晶のすべての極性軸の方向が限られた方
向に配向していればいる程、6点像はシヤープに
6点のスポツトとして観察されるのである。しか
し、極性軸の配向が十分でなくなるに従い、6点
像はぼやけ、6点像のスポツトは6個のアーク状
像となるのである。けれども、6個のアーク状像
である限り、この発明における極性軸の選択配向
ということができるのは前述した通りである。更
にその配向が乱れて、双極子がフイルム断面内で
ランダムに配向している場合は、第4図の如く同
一円周上でリング状に観察されることになる。
The more the directions of all the polar axes of the β-type crystal are oriented in limited directions, the more the six-point image is observed as six spots in the sharpness. However, as the orientation of the polar axis becomes insufficient, the 6-point image becomes blurred, and the 6-point image spots become 6 arc-shaped images. However, as described above, as long as there are six arc-shaped images, it can be said that the selective orientation of the polar axis in this invention can be achieved. Furthermore, if the orientation is disturbed and the dipoles are oriented randomly within the cross section of the film, they will be observed in a ring shape on the same circumference as shown in FIG.

以下、この発明を実施例によつて説明する。 The present invention will be explained below with reference to Examples.

実施例 1 重合度1350の弗化ビニリデンホモポリマー100
重量部に対し、架橋剤としてトリアリルイソシア
ヌレート2重量部を添加し、ヘンシエルミキサー
で十分に混合ブレンドした後、押出機によつて外
径約15mmφ肉厚約0.4mmのチユーブ状に押出し結
晶化させた。このチユーブに室温で4Mradのγ
線照射を行ない架橋させた。このチユーブのゲル
分率は50%であつた。
Example 1 Vinylidene fluoride homopolymer 100 with a degree of polymerization of 1350
2 parts by weight of triallyl isocyanurate as a crosslinking agent was added to the parts by weight, thoroughly mixed and blended using a Henschel mixer, and extruded into a tube shape with an outer diameter of about 15 mm and a wall thickness of about 0.4 mm using an extruder. turned into γ of 4 Mrad at room temperature in this tube.
It was cross-linked by radiation irradiation. The gel fraction of this tube was 50%.

このようにして得たチユーブを210℃に保つた
加熱炉中で一端をピンチし、他端から空気を吹き
込み溶融しつつインフレーシヨンした。その後、
インフレーシヨンされたチユーブを、内圧をかけ
たまま取り出し空冷した。この様にして得られた
フイルムの円周方向は約8倍に、長さ方向は約
4.5倍に延伸され、見掛けの応力歪曲線でほぼLA
の伸度に対応するものであつた。また、そのフイ
ルムの厚さは約11μであつて、厚さ斑の極めて少
ない均一なフイルムが得られた。
The tube thus obtained was inflated in a heating furnace maintained at 210° C. by pinching one end and blowing air through the other end to melt it. after that,
The inflated tube was taken out and air cooled while the internal pressure was still applied. The circumferential direction of the film thus obtained is approximately 8 times larger, and the longitudinal direction is approximately 8 times larger.
Stretched 4.5 times, the apparent stress strain curve is approximately L A
It corresponded to the elongation of . Further, the thickness of the film was approximately 11 μm, and a uniform film with very little thickness unevenness was obtained.

このフイルムの{D510/(D510+D530)}×100
は91%であり、またその広角X線写真を第3図で
示した。またこのフイルムの25℃および30Hzにお
ける比誘電率は14.0であり、引張強度は21Kg/mm2
であつた。なお、引張強度はフイルムの成形時の
円周方向に平行にサンプルの試長100mm、その垂
直方向に巾10mmのサンプルを各々5個作製し、引
張速度10mm/minで東洋ボールドウイン製テンシ
ロンUTM―型を用いて測定した平均値であ
る。
This film's {D 510 / (D 510 + D 530 )} x 100
The rate was 91%, and its wide-angle X-ray photograph is shown in Figure 3. Furthermore, the dielectric constant of this film at 25℃ and 30Hz is 14.0, and the tensile strength is 21Kg/mm 2
It was hot. The tensile strength was determined by making five samples each with a sample length of 100 mm parallel to the circumferential direction during film molding and a width of 10 mm in the perpendicular direction. This is an average value measured using a mold.

更に電子顕微鏡写真によるフイルムの表面観察
をしたが、第5図に示す如く何らフイブリルが認
められないものであつた。
Furthermore, the surface of the film was observed using an electron micrograph, but as shown in FIG. 5, no fibrils were observed.

比較例 1 重合度1350の弗化ビニリデンホモポリマーから
なる厚さ9μのシートを100℃で押出方向に4.0倍に
延伸し、次いで150℃でテンターにより押出方向
と垂直方向に6.0倍に延伸してフイルムを得た。
そのフイルム表面の電子顕微鏡写真を第1図に示
すが、明らかにフイブリルの存在が認められる。
また、このフイルムの25℃および30Hzにおける比
誘電率は15.0であつた。
Comparative Example 1 A 9μ thick sheet made of vinylidene fluoride homopolymer with a degree of polymerization of 1350 was stretched 4.0 times in the extrusion direction at 100°C, and then 6.0 times in the direction perpendicular to the extrusion direction at 150°C. I got the film.
An electron micrograph of the surface of the film is shown in FIG. 1, and the presence of fibrils is clearly recognized.
Further, the dielectric constant of this film at 25° C. and 30 Hz was 15.0.

実施例 2 重合度1000の弗化ビニリデンホモポリマー100
重量部に対し、架橋剤としてトリアリルイソシア
ヌレート1重量部を添加し、実施例1と同様にし
て外径約15mmφ肉厚約0.5mmのチユーブ状に押出
し結晶化させた後、このチユーブに室温で
3Mradのγ線照射を行ない、架橋させた。この
チユーブのゲル分率は30%であつた。
Example 2 Vinylidene fluoride homopolymer 100 with a degree of polymerization of 1000
1 part by weight of triallylisocyanurate as a crosslinking agent was added to each part by weight, and the tube was extruded and crystallized in the same manner as in Example 1 to form a tube with an outer diameter of about 15 mm and a wall thickness of about 0.5 mm. in
Crosslinking was performed by irradiation with 3 Mrad of gamma rays. The gel fraction of this tube was 30%.

このチユーブを実施例1と同一状件でインフレ
ーシヨンして得られたフイルムは、円周方向が約
12倍、長さ方向が約7倍に延伸されたものであつ
た。この伸度は見掛けの応力―歪曲線でほぼLA
であり、このフイルムの{D510/D510+D530)}×
100は80%であつた。また広角X線写真はほぼ第
3図と同じように6点アーク像を示した。電子顕
微鏡写真によるフイルムの表面観察は実施例1で
示した第1図ほとんど同じパターンを示し、フイ
ブリル構造は認められないものであつた。
The film obtained by inflating this tube under the same conditions as in Example 1 had a circumferential direction of approximately
It was stretched 12 times and about 7 times in the length direction. This elongation is approximately L A in the apparent stress-strain curve.
And this film's {D 510 /D 510 +D 530 )}×
100 was 80%. Furthermore, the wide-angle X-ray photograph showed a 6-point arc image, almost the same as in Figure 3. Observation of the surface of the film using electron micrographs showed almost the same pattern as shown in FIG. 1 in Example 1, and no fibrillar structure was observed.

更にこのフイルムの引張強度は23Kg/mm2であ
り、25℃、35Hzでの比誘電率は13.5であつた。
Furthermore, the tensile strength of this film was 23 Kg/mm 2 and the dielectric constant at 25° C. and 35 Hz was 13.5.

実施例 3 重合度1000の弗化ビニリデンホモポリマー100
重量部に対し、架橋剤としてトリアリルイソシア
ヌレート4重量部を添加し、実施例1と同様にし
て外径約15mmφ、内厚約0.4mmのチユーブ状に押
出し結晶化させた後このチユーブに室温で
8Mradのγ線照射を行ない架橋させた。このチ
ユーブのゲル分率は75%であつた。
Example 3 Vinylidene fluoride homopolymer 100 with a degree of polymerization of 1000
4 parts by weight of triallyl isocyanurate as a crosslinking agent was added to the weight part, and the same procedure as in Example 1 was performed to extrude and crystallize the tube into a tube with an outer diameter of about 15 mmφ and an inner thickness of about 0.4 mm. in
Crosslinking was performed by 8 Mrad γ-ray irradiation. The gel fraction of this tube was 75%.

このチユーブを実施例1とほぼ同一条件でイン
フレーシヨンした。得られたフイルムの円周方向
は約3倍に、長さ方向は約2倍に延伸された。こ
の伸度は見掛けの応力―歪曲線はほぼLAであり、
このフイルムの{D510/(D510+D530)}×100は
95%であつた。また電子顕微鏡写真でフイブリル
構造を認めることはできなかつた。
This tube was inflated under substantially the same conditions as in Example 1. The obtained film was stretched approximately three times in the circumferential direction and approximately twice in the longitudinal direction. The apparent stress-strain curve for this elongation is approximately L A ,
This film's {D 510 / (D 510 + D 530 )} x 100 is
It was 95%. Further, no fibrillar structure could be observed in the electron micrograph.

更にこのフイルムの引張強度は25Kg/mm2であ
り、25℃、35Hzでの比誘電率は13.5であつた。
Furthermore, the tensile strength of this film was 25 Kg/mm 2 and the dielectric constant at 25° C. and 35 Hz was 13.5.

比較例 2 重合度1100の弗化ビニリデンホモポリマー100
重量部に対し、架橋剤としてトリアリルイソシア
ヌレート4重量部を添加し、実施例1と同様にし
て外径約14mmφ、肉厚約0.5mmのチユーブ状に押
出し結晶化させた後、このチユーブに室温で
16Mradのγ線照射を行ない架橋させた。このチ
ユーブのゲル分率は85%であつた。
Comparative Example 2 Vinylidene fluoride homopolymer 100 with a degree of polymerization of 1100
4 parts by weight of triallylisocyanurate as a crosslinking agent was added to the parts by weight, and extruded and crystallized into a tube with an outer diameter of about 14 mmφ and a wall thickness of about 0.5 mm in the same manner as in Example 1. at room temperature
Crosslinking was performed by irradiating with γ-rays at 16 Mrad. The gel fraction of this tube was 85%.

このチユーブを実施例1と同様の条件でインフ
レーシヨンした。得られたフイルムの円周方向は
約2倍に、長さ方向は約1.6倍に延伸されていた。
このフイルムの{D510/(D510+D530)}×100は
96%であり、β型構造を主とする結晶構造であつ
た。また電子顕微鏡写真でフイブリル構造を認め
ることはできなかつた。しかし極性軸の選択配向
はほとんど認められず第4図とほとんど同一の広
角X線写真であつた。しかも、かかるフイルムは
褐色を呈しており、熱安定性の悪いことが認めら
れた。
This tube was inflated under the same conditions as in Example 1. The obtained film had been stretched approximately twice as much in the circumferential direction and approximately 1.6 times as long in the longitudinal direction.
This film's {D 510 / (D 510 + D 530 )} x 100 is
The crystal structure was 96%, and the crystal structure was mainly a β-type structure. Further, no fibrillar structure could be observed in the electron micrograph. However, almost no selective orientation of the polar axis was observed, and the wide-angle X-ray photograph was almost the same as that in FIG. Moreover, such a film was brown in color and was found to have poor thermal stability.

前述した実施例からも明らかなように、この発
明に係る方法によつて得られたフイルムは、極性
軸の選択配向したβ型構造を主体とし、ミクロフ
イブリルがなく、また前述の引張強度の試験法に
より得られた引張強度が12Kg/mm2以上、好ましく
は15Kg/mm2以上、より好ましい条件下で製造すれ
ば20Kg/mm2以上のフイルムが得られ、しかも透明
性、表面平滑性に優れるフイルムである。
As is clear from the above-mentioned Examples, the film obtained by the method according to the present invention mainly has a β-type structure with the polar axis selectively oriented, has no microfibrils, and has the above-mentioned tensile strength. A film with a tensile strength of 12 Kg/mm 2 or more, preferably 15 Kg/mm 2 or more, and 20 Kg/mm 2 or more if manufactured under more preferable conditions, can be obtained by the test method, and has good transparency and surface smoothness. It's an excellent film.

この発明に係る方法によつて得られるポリ弗化
ビニリデン樹脂成形物は、前述したようなかかる
特徴を有するほか、従来のPVDFの特徴も併せて
有するため、例えばコンデンサー用フイルム、圧
電、焦電性フイルム等の電気材料として、また屋
外若しくは屋内用建築材料として、更には薬品と
接触する材料等に特に好ましく用いられる。
The polyvinylidene fluoride resin molded product obtained by the method according to the present invention has the above-mentioned characteristics as well as the characteristics of conventional PVDF, so it can be used, for example, as a film for capacitors, piezoelectric, pyroelectric, etc. It is particularly preferably used as electrical materials such as films, as outdoor or indoor building materials, and as materials that come into contact with chemicals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はミクロフイブリルのあることを示す比
較例によつて得られた結晶表面の電子顕微鏡写
真、第2図は見掛けの応力―歪曲線の例を示すグ
ラフ、第3図および第4図は結晶表面の広角X線
写真、第5図はミクロフイブリルのないことを示
す実施例1によつて得られた結晶表面の電子顕微
鏡写真、第6図は赤外線吸光度比を示すグラフで
ある。
Figure 1 is an electron micrograph of a crystal surface obtained in a comparative example showing the presence of microfibrils, Figure 2 is a graph showing an example of an apparent stress-strain curve, Figures 3 and 4. 5 is a wide-angle X-ray photograph of the crystal surface, FIG. 5 is an electron micrograph of the crystal surface obtained in Example 1 showing the absence of microfibrils, and FIG. 6 is a graph showing the infrared absorbance ratio.

Claims (1)

【特許請求の範囲】 1 ゲル分率が20〜75%の架橋ポリ弗化ビニリデ
ン樹脂を、その結晶の融解する温度以上である
が、その樹脂の分解開始温度より低い温度で少な
くとも二方向に延伸し、その伸度の和が、見掛け
の応力―歪曲線において、見掛け応力の最大増加
点における伸度をLA、破断点における伸度をLB
としたとき、LA−2/5(LB−LA)より大きく、LB
より小さい範囲になるようにし、次いでかかる伸
度を保持したまま結晶融点より低い温度で冷却す
ることを特徴とするポリ弗化ビニリデン樹脂成形
物の製造法。 2 ゲル分率が20〜75%の架橋ポリ弗化ビニリデ
ン樹脂は、ポリ弗化ビニリデン樹脂と架橋剤から
なる組成物を押出成形し放射線架橋により得られ
ることを特徴とする特許請求の範囲第1項記載の
ポリ弗化ビニリデン樹脂成形物の製造法。 3 延伸がインフレーシヨンによりなされること
を特徴とする特許請求の範囲第1項または第2項
記載のポリ弗化ビニリデン樹脂成形物の製造法。 4 伸度の和がLA−1/5(LB−LA)より大きいこ
とを特徴とする特許請求の範囲第1項乃至第3項
のいずれか1項に記載のポリ弗化ビニリデン樹脂
成形物の製造法。 5 伸度の和がLAより大きいことを特徴とする
特許請求の範囲第4項記載のポリ弗化ビニリデン
樹脂成形物の製造法。 6 ゲル分率が30〜65%であることを特徴とする
特許請求の範囲第1項乃至第5項のいずれか1項
に記載のポリ弗化ビニリデン樹脂成形物の製造
法。 7 ゲル分率が35〜60%であることを特徴とする
特許請求の範囲第6項記載のポリ弗化ビニリデン
樹脂成形物の製造法。 8 少なくとも二方向に延伸する工程が二方向に
延伸され、最小伸度方向の伸度に対する最大伸度
方向の伸度の比が5以下であることを特徴とする
特許請求の範囲第1項乃至第7項のいずれか1項
に記載のポリ弗化ビニリデン樹脂成形物の製造
法。 9 最小伸度方向の伸度に対する最大伸度方向の
伸度の比が3以下であることを特徴とする特許請
求の範囲第8項記載のポリ弗化ビニリデン樹脂成
形物の製造法。
[Scope of Claims] 1. Stretching a crosslinked polyvinylidene fluoride resin having a gel fraction of 20 to 75% in at least two directions at a temperature higher than the melting temperature of its crystals but lower than the decomposition starting temperature of the resin. In the apparent stress-strain curve, the sum of the elongations is L A , which is the elongation at the point of maximum increase in apparent stress, and L B , which is the elongation at the breaking point.
Then, L B is larger than L A −2/5 (L B − L A ), and L B
1. A method for producing a polyvinylidene fluoride resin molded product, which comprises elongating the polyvinylidene fluoride resin molded product to a smaller range, and then cooling it at a temperature lower than the crystal melting point while maintaining such elongation. 2. The crosslinked polyvinylidene fluoride resin having a gel fraction of 20 to 75% is obtained by extrusion molding a composition consisting of a polyvinylidene fluoride resin and a crosslinking agent and by radiation crosslinking. A method for producing a polyvinylidene fluoride resin molded product as described in 2. 3. A method for producing a polyvinylidene fluoride resin molded product according to claim 1 or 2, wherein the stretching is performed by inflation. 4. The polyvinylidene fluoride resin according to any one of claims 1 to 3, wherein the sum of elongations is greater than L A -1/5 (L B - L A ). Method of manufacturing molded products. 5. The method for producing a polyvinylidene fluoride resin molded product according to claim 4, wherein the sum of elongations is greater than LA . 6. The method for producing a polyvinylidene fluoride resin molded product according to any one of claims 1 to 5, wherein the gel fraction is 30 to 65%. 7. The method for producing a polyvinylidene fluoride resin molded product according to claim 6, wherein the gel fraction is 35 to 60%. 8. Claims 1 to 8, characterized in that the step of stretching in at least two directions involves stretching in two directions, and the ratio of the elongation in the maximum elongation direction to the elongation in the minimum elongation direction is 5 or less. The method for producing a polyvinylidene fluoride resin molded product according to any one of Item 7. 9. The method for producing a polyvinylidene fluoride resin molded product according to claim 8, wherein the ratio of the elongation in the maximum elongation direction to the elongation in the minimum elongation direction is 3 or less.
JP16918681A 1981-10-22 1981-10-22 Manufacture of polyvinylidene fluoride resin molded item Granted JPS5869019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16918681A JPS5869019A (en) 1981-10-22 1981-10-22 Manufacture of polyvinylidene fluoride resin molded item

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16918681A JPS5869019A (en) 1981-10-22 1981-10-22 Manufacture of polyvinylidene fluoride resin molded item

Publications (2)

Publication Number Publication Date
JPS5869019A JPS5869019A (en) 1983-04-25
JPH0220416B2 true JPH0220416B2 (en) 1990-05-09

Family

ID=15881822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16918681A Granted JPS5869019A (en) 1981-10-22 1981-10-22 Manufacture of polyvinylidene fluoride resin molded item

Country Status (1)

Country Link
JP (1) JPS5869019A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539570B2 (en) * 1996-06-13 2004-07-07 旭化成エレクトロニクス株式会社 Hybrid electrolyte, method for producing the electrolyte, and method for producing an electrochemical device using the electrolyte
JPWO2010016291A1 (en) * 2008-08-06 2012-01-19 コニカミノルタエムジー株式会社 ORGANIC PIEZOELECTRIC MATERIAL, ITS MANUFACTURING METHOD, ULTRASONIC VIBRATOR, ULTRASONIC PROBE AND ULTRASONIC IMAGE DETECTION DEVICE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431906A (en) * 1977-08-16 1979-03-09 Nitto Chemical Industry Co Ltd Method of stabilizing nature of soil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431906A (en) * 1977-08-16 1979-03-09 Nitto Chemical Industry Co Ltd Method of stabilizing nature of soil

Also Published As

Publication number Publication date
JPS5869019A (en) 1983-04-25

Similar Documents

Publication Publication Date Title
KR940000967B1 (en) Process for preparing microporous polyethylene film
JPS5936575B2 (en) Manufacturing method of microporous polymer film
JPH0357945B2 (en)
US4335069A (en) Flat sheet process for production of polyolefin shrink film
US4481158A (en) Extrusion of films of vinylidene fluoride polymers
US4519969A (en) Stretched fluorine type film and method for manufacture thereof
US4670527A (en) Shaped article of vinylidene fluoride resin and process for preparing thereof
US4110395A (en) Process for producing polymeric films from crystallizable polyesters
US4656234A (en) Dielectric film for capacitor and process for producing same
JPH0220416B2 (en)
US4385022A (en) Process for preparing biaxially oriented films of butene-1 homopolymer and copolymers
JPH05261809A (en) Manufacture of biaxially oriented polybutylene terephthalate film
JP2571538B2 (en) Vinylidene fluoride resin fiber, method for producing the same, and fiber for marine material
US4731288A (en) Vinylidene fluoride resin film and metallized film thereof
JPH08504874A (en) Polymer blend
JPH04226736A (en) Plastic pipe
JPH0314840A (en) Biaxially cold-stretched vinylidene fluoride polymer film and its preparation
JPS62286720A (en) Manufacture of capacitor film composed of vinylidene fluoride resin
US4551514A (en) Biaxially oriented films of butene-1 homopolymer and copolymers
JPH11156934A (en) Manufacture of flexible polyester film excellent in thickness uniformity
JPH0564090B2 (en)
JPS6163433A (en) Fluorine series oriented film and its manufacture
JPS6367460B2 (en)
US4966950A (en) Oriented polymeric tape
JP2569471B2 (en) Method for producing toughened polyester film