JPS5856393B2 - Soil stabilization method - Google Patents

Soil stabilization method

Info

Publication number
JPS5856393B2
JPS5856393B2 JP52097528A JP9752877A JPS5856393B2 JP S5856393 B2 JPS5856393 B2 JP S5856393B2 JP 52097528 A JP52097528 A JP 52097528A JP 9752877 A JP9752877 A JP 9752877A JP S5856393 B2 JPS5856393 B2 JP S5856393B2
Authority
JP
Japan
Prior art keywords
grout
bicarbonate
soil
sodium silicate
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52097528A
Other languages
Japanese (ja)
Other versions
JPS5431906A (en
Inventor
要一 岡島
俊介 田沢
健司 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP52097528A priority Critical patent/JPS5856393B2/en
Publication of JPS5431906A publication Critical patent/JPS5431906A/en
Publication of JPS5856393B2 publication Critical patent/JPS5856393B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】 本発明は改良された珪酸塩系土質安定剤により土質を安
定化させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stabilizing soil quality with an improved silicate-based soil stabilizer.

従来、軟弱地盤を強化したり、漏水地盤を止水するため
に種々の薬液を土壌に注入し、土壌中で硬化させるグラ
ウト工法が知られているが、特に珪酸ソーダを主剤とし
、これと硬化剤との組み合せから成るいわゆる珪酸塩系
グラウトは安価であること、他のグラウトにくらべて公
害を起す恐れがないことなどの特長があり、現在広く実
用化されて〜・る。
Conventionally, grouting methods have been known in which various chemical solutions are injected into the soil and hardened in the soil in order to strengthen soft ground or stop leaking ground. So-called silicate-based grouts, which are made in combination with grouting agents, have the advantage of being inexpensive and less likely to cause pollution than other grouts, and are currently in widespread practical use.

珪酸塩系グラウトの硬化剤として従来様々の物質が提案
されているが、危険性がなくて取り扱いが容易な点から
重炭酸ソーダ、重炭酸カリ、重炭酸アンモニウムのよう
な重炭酸塩が一般に用いられている。
Various substances have been proposed as hardening agents for silicate grout, but bicarbonates such as sodium bicarbonate, potassium bicarbonate, and ammonium bicarbonate are generally used because they are non-hazardous and easy to handle. There is.

しかしながら、重炭酸塩を硬化剤として用いた従来の珪
酸塩系グラウトには次に述べるような欠点がある。
However, conventional silicate grouts using bicarbonate as a hardening agent have the following drawbacks.

すなわち、珪酸ソーダ水溶液を硬化させる場合、一般に
珪酸ソーダ濃度を高くすると硬化物の強度が高くなるが
、重炭酸塩を硬化剤として用いた従来の珪酸塩系グラウ
トにおいては珪酸ソーダ濃度を高めても硬化物の強度を
高くすることができない。
In other words, when curing a sodium silicate aqueous solution, the strength of the cured product generally increases as the sodium silicate concentration increases, but in conventional silicate grout using bicarbonate as a hardening agent, even if the sodium silicate concentration increases, the strength of the cured product increases. It is not possible to increase the strength of the cured product.

また、珪酸塩系グラウトにおいては通常、硬化剤の使用
量を種々変化させて硬化時間の調節を行なうが、重炭酸
塩を硬化剤として用いた従来の珪酸塩系グラウトにおい
ては硬化剤の使用量を一定にしても、珪酸ソーダ濃度が
少し変化すると硬化時間が大巾に変動するので硬化時間
の調節が難しい。
In addition, for silicate grouts, the curing time is usually adjusted by varying the amount of hardening agent used, but in conventional silicate grouts that use bicarbonate as a hardening agent, the amount of hardening agent used is Even if constant, the curing time will vary widely if the sodium silicate concentration changes slightly, making it difficult to adjust the curing time.

さらに、このグラウトにおいては硬化物の難漿現象(ゲ
ル体を放置すると水を分離して収縮する現象)が著しく
、このため硬化物を放置すると亀裂が生じる。
Furthermore, in this grout, the cured product exhibits a remarkable phenomenon of retardation (a phenomenon in which water separates and shrinks when the gel body is left unattended), and therefore cracks occur when the cured product is left unattended.

このようなことから、重炭酸塩を硬化剤として用いた従
来の珪酸塩素グラウトにより土質を安定化させた場合は (1)安定化処理後の土壌強度を充分高くすることがで
きず、また処理土壌の止水性も良好なものとは云えない
For these reasons, when the soil quality is stabilized with conventional chlorine silicate grout using bicarbonate as a hardening agent, (1) the soil strength after stabilization treatment cannot be sufficiently increased; The water-stopping properties of the soil cannot be said to be good either.

(2)グラウトの硬化時間の調節が難しL・。(2) Difficult to adjust grout curing time L.

などの問題点がある。There are problems such as:

本発明者らは、重炭酸塩を硬化剤として用いた従来の珪
酸塩系グラウトにより土質を安定化させた場合にみられ
る上記欠点を克服しようとして種種研究した結果、珪酸
ソーダ源として、従来珪酸塩系グラウトにおいては用い
られていないNa2O/5i02のモル比が1/3.8
〜42の珪酸ソーダを用いることによりその目的が達成
されることを知り本発明に到達した。
The present inventors conducted various researches in an attempt to overcome the above-mentioned drawbacks that occur when soil quality is stabilized with conventional silicate-based grout using bicarbonate as a hardening agent. The molar ratio of Na2O/5i02, which is not used in salt grout, is 1/3.8.
The present invention was accomplished by finding that the objective could be achieved by using sodium silicate of No. 42.

すなわち本発明は、Na201モルにつきS i02を
3.8〜4.2モルの割合で含む珪酸ソーダを主剤とし
、これに硬化剤として重炭酸塩を配合した薬液を土壌に
注入し、土壌中で硬化させることを特徴とする土質の安
定化法である。
That is, in the present invention, a chemical solution containing sodium silicate as a main ingredient containing 3.8 to 4.2 moles of Si02 per mole of Na and bicarbonate as a hardening agent is injected into soil. This is a soil stabilization method characterized by hardening.

本発明に用いるグラウトは、重炭酸塩を硬化剤として用
いた従来の珪酸塩系グラウト(以下、従来グラウトとい
う)とは異なり、珪酸ソーダ濃度が変化しても硬化時間
の変動が少なく、このため硬化時間の調節が容易である
Unlike conventional silicate-based grout (hereinafter referred to as conventional grout) that uses bicarbonate as a hardening agent, the grout used in the present invention has little variation in hardening time even when the sodium silicate concentration changes. Easy to adjust curing time.

また、本発明に用いるグラウトは珪酸ソーダ濃度を高め
ると硬化物の強度が高くなる。
Furthermore, when the concentration of sodium silicate in the grout used in the present invention is increased, the strength of the cured product increases.

したがって本発明によれば、従来グラウトにより土質を
安定化させる場合にくらべて処理土壌の強度を格段に高
くすることができる。
Therefore, according to the present invention, the strength of treated soil can be made much higher than when the soil quality is conventionally stabilized by grouting.

ここで本発明に用いるグラウトが有する上記利点を明確
にするため該グラウトと従来グラウトの効果の相違を図
を用いて説明する。
Here, in order to clarify the above-mentioned advantages of the grout used in the present invention, the differences in effects between the grout and conventional grout will be explained using figures.

第1図は従来の珪酸塩系グラウトに通常用いられている
JI8 3号珪酸ソーダ(Na20/S i02モル比
=1/3.4)を水で希釈して珪酸ソーダ濃度が種々異
なる薬液を40Olずつ調合し、その各々に重炭酸ソー
ダを13.5 kg添加シテ15〜16℃の温度で硬化
させた場合の薬液中の5i02濃度対硬化時間の関係を
プロットしたものであって、図の横軸は薬液4001中
に存在するS i02の量、縦軸は薬液の硬化時間をあ
られす。
Figure 1 shows JI8 No. 3 sodium silicate (Na20/Si02 molar ratio = 1/3.4), which is commonly used in conventional silicate grouts, diluted with water to produce 400 l of chemical solutions with various sodium silicate concentrations. The relationship between the concentration of 5i02 in the chemical solution and the curing time is plotted when 13.5 kg of sodium bicarbonate is added to each of the chemical solutions and cured at a temperature of 15 to 16°C. The amount of S i02 present in the chemical solution 4001, and the vertical axis represents the hardening time of the chemical solution.

第1図にみられるように、従来グラウトにおいては薬液
400J中にS i02分がたとえば50kg存在する
場合の硬化時間は5分であるのに対し、硬化剤の使用量
はそのままで5i02の量を5kg増加させ薬液中に5
5kg存在させた場合には硬化時が16分に延長される
ことから明らかなように硬化剤の使用量が一定の場合で
もSiO2濃度が少し変化しただけでグラウトの硬化時
間は大巾に変動する。
As shown in Fig. 1, in conventional grout, if 50 kg of Si02 is present in 400 J of chemical solution, the curing time is 5 minutes, whereas the amount of hardening agent used remains the same and the hardening time is 5 minutes. Increase by 5 kg and add 5 to the drug solution.
As is clear from the fact that when 5 kg of grout is present, the curing time is extended to 16 minutes, even if the amount of curing agent used is constant, the curing time of the grout will vary greatly even if the SiO2 concentration changes slightly. .

そしてこのように硬化時間の変動が大きいと実際の工事
においてグラウトを何回も分けて調合する場合、毎回、
硬化時間が同じグラウトを調合するのは困難である。
And if the curing time fluctuates greatly like this, when grout is mixed several times during actual construction, each time,
It is difficult to formulate grouts with the same cure time.

これに対して第2図は本発明に用いられるNa2O/S
iO2のモル比が1/4.0の珪酸ソーダを前記の場合
と同様、水で希釈してSiO2濃度が種々異なる薬液を
400Jずつ調合し、その各々に重炭酸ソーダを9.5
kg添加して15〜16℃の温度で硬化させた場合の
薬液中の5i02濃度対硬化時間の関係をプロットした
もので、図の横軸および縦軸の定義は第1図の場合と同
じである。
In contrast, Fig. 2 shows the Na2O/S used in the present invention.
Similarly to the above case, sodium silicate with an iO2 molar ratio of 1/4.0 was diluted with water to prepare 400 J of chemical solutions with various SiO2 concentrations, and 9.5 J of sodium bicarbonate was added to each of them.
This is a plot of the relationship between the 5i02 concentration in the chemical solution and the curing time when 5i02 kg is added and cured at a temperature of 15 to 16°C. The definitions of the horizontal and vertical axes in the figure are the same as in Figure 1. be.

第2図にみられるように、本発明に用いるグラウトにお
いては薬液4001中に5i02分が50kg存在する
場合の硬化時間は3分30秒であるのに対し、硬化剤使
用量はそのままでSiO2分を55kgに増加させた場
合の硬化時間は3分30秒と4分の間であることから明
らかなように第1図の場合(従来グラウト)にくらべて
薬液中の5i02濃度の変化に対する硬化時間の変動は
格段に少ない。
As shown in Fig. 2, in the grout used in the present invention, the curing time is 3 minutes and 30 seconds when 50 kg of 5i02 min is present in the chemical solution 4001, whereas the curing time is 3 minutes and 30 seconds when the amount of curing agent used remains unchanged. The curing time when increasing the weight to 55 kg is between 3 minutes and 30 seconds and 4 minutes, which shows that the curing time for changes in the 5i02 concentration in the chemical solution is longer than that in the case of Fig. 1 (conventional grout). The fluctuation is much smaller.

このため、本発明に用いるグラウトは何回かに分けて調
合する場合にも、毎回、硬化時間が殆ど同じグラウトが
容易に得られる。
Therefore, even when the grout used in the present invention is prepared in several batches, it is easy to obtain a grout with almost the same curing time each time.

第3図は第1図で説明したグラウトの硬化物の強度とグ
ラウト中のSiO2濃度との関係をあられすものであっ
て、図の縦軸は硬化物の一軸圧縮強度をあられし、横軸
の定義は第1,2図の場合、と同じである。
Figure 3 shows the relationship between the strength of the cured grout and the SiO2 concentration in the grout as explained in Figure 1. The vertical axis of the figure shows the uniaxial compressive strength of the cured product, and the horizontal axis The definition of is the same as in the case of Figures 1 and 2.

第3図から明らかなように従来グラウトにおいてはSi
O2濃度を高くしても硬化物の強度は向上せず、かえっ
て強度は低下する。
As is clear from Figure 3, in conventional grout, Si
Even if the O2 concentration is increased, the strength of the cured product does not improve, but rather decreases.

これに対し第4図は第2図で説明したグラウトの硬化物
の強度とグラウト中の5i02濃度との関係をあられす
ものであって、図の縦軸および横軸の定義は第3図の場
合と同じである。
On the other hand, Fig. 4 shows the relationship between the strength of the cured grout and the 5i02 concentration in the grout as explained in Fig. 2, and the definition of the vertical and horizontal axes in the figure is as shown in Fig. 3. Same as in case.

第4図から明らかなように、本発明に用ち・るグラウト
はS i02濃度を高くすると硬化物の強度が向上する
だけではな〈従来グラウトにくらべて硬化物の強度は格
段に高い水準にある。
As is clear from Figure 4, when the Si02 concentration of the grout used in the present invention is increased, the strength of the cured product not only improves, but also the strength of the cured product rises to a much higher level compared to conventional grout. be.

したがって本発明によれば従来グラウトにより土質を安
定化させる場合にくらべて処理土壌を格段に堅固なもの
にすることができる。
Therefore, according to the present invention, treated soil can be made much stronger than when the soil quality is conventionally stabilized by grouting.

本発明においては珪酸ソーダ源としてNa201モルに
つき5i02を3.8〜4.2モル含有する珪酸ソーダ
を用いることが必要である。
In the present invention, it is necessary to use sodium silicate containing 3.8 to 4.2 moles of 5i02 per 201 mole of Na as the sodium silicate source.

SiO20割合がNa2O1モルに対して3.8モル以
下の珪酸ソーダを用いた場合は効果が不充分であり、好
ましくない。
When sodium silicate with a SiO20 ratio of 3.8 mol or less per 1 mol of Na2O is used, the effect is insufficient and is not preferred.

5i02の割合がNa201モルに対し3.8モルを越
えて高い珪酸ソーダを用いるほど効果は良好になるが、
Na201モルに対しSiO2を42モル以上含有する
珪酸ソーダを製造することは通常困難である。
The effect becomes better when using sodium silicate with a higher ratio of 5i02 (more than 3.8 mol per 201 mol of Na).
It is usually difficult to produce sodium silicate containing 42 mol or more of SiO2 per 201 mol of Na.

本発明においては通常重量でNa2Oを5〜6%、5i
02を19〜25%含有する珪酸ソーダ水溶液が好適に
用いられる。
In the present invention, 5 to 6% Na2O by weight, 5i
An aqueous sodium silicate solution containing 19 to 25% of 02 is preferably used.

珪酸ソーダは施工前に水で希釈して施工目的に適した適
宜の濃度の水溶液にするが、土壌に注入する薬液中の有
効成分(Na2SiO3分)の濃度は通常15〜30重
量%である。
Sodium silicate is diluted with water before construction to make an aqueous solution with an appropriate concentration suitable for the purpose of construction, but the concentration of the active ingredient (3 parts Na2SiO) in the chemical solution injected into the soil is usually 15 to 30% by weight.

本発明に用いられる重炭酸塩の種類としては重炭酸ソー
ダ、重炭酸カリ、重炭酸アンモニウムが挙げられる。
Types of bicarbonate used in the present invention include sodium bicarbonate, potassium bicarbonate, and ammonium bicarbonate.

勿論、重炭酸ソーダを単独で用いることも可能であるが
、重炭酸ソーダは他の重炭酸塩にくらべて水に対する溶
解度が小さいので多く用いるような場合は他の重炭酸塩
と併用することが望ましい。
Of course, it is possible to use sodium bicarbonate alone, but since sodium bicarbonate has a lower solubility in water than other bicarbonates, it is desirable to use it in combination with other bicarbonates when a large amount is used.

重炭酸塩の使用量は目的とする硬化時間に応じて種々変
化させる。
The amount of bicarbonate used varies depending on the desired curing time.

たとえば本発明において通常用いられるNa2Oを5〜
6重量%、SiO2を19〜25重量%含有する珪酸ソ
ーダ水溶液を等量(容量)の水で希釈してつくった薬液
を常温の土壌中で1〜10分で硬化させる場合は通常該
薬液に対して重炭酸塩を1〜2%用いる。
For example, Na2O, which is commonly used in the present invention, is
When a chemical solution prepared by diluting a sodium silicate aqueous solution containing 6% by weight and 19 to 25% by weight of SiO2 with an equal volume (volume) of water is cured in soil at room temperature in 1 to 10 minutes, the chemical solution is usually 1 to 2% of bicarbonate is used.

従来、珪酸塩系グラウトに硫酸ソーダ、炭酸ソーダ、炭
酸カリ、硫酸カリ、塩化カリ、塩化ナト※※リウム、チ
オ硫酸ナトリウム、ヨウ化カリ、ヨウ化ナトリウム、ト
リポリリン酸ソーダまたは硫酸マグネシウム等を適量添
加すると硬化時間の調節が容易になることが知られてい
る。
Conventionally, appropriate amounts of sodium sulfate, soda carbonate, potassium carbonate, potassium sulfate, potassium chloride, sodium chloride**, sodium thiosulfate, potassium iodide, sodium iodide, sodium tripolyphosphate, or magnesium sulfate are added to silicate grout. It is known that this makes it easier to adjust the curing time.

したがって、本発明に用いるグラウトには必要に応じて
このような薬剤を適宜添加することもできる。
Therefore, such chemicals can be added to the grout used in the present invention as appropriate.

土質安定化の施工法は従来と同じであって施工前に珪酸
ソーダを水に溶かした薬液(A液)と他の成分を水に溶
かした薬液(B液)をそれぞれ判別に調合しておいて、
土壌注入時に両者を混合しつつポンプで土壌中に注入す
る。
The construction method for soil stabilization is the same as before, and before construction, a chemical solution containing sodium silicate dissolved in water (solution A) and a chemical solution containing other ingredients dissolved in water (solution B) are mixed separately. There,
Both are mixed and injected into the soil using a pump.

次に比較例および実施例を用いて本発明を説明するが、
各例中、単に部とあるのはすべて重量をあられすものと
する。
Next, the present invention will be explained using comparative examples and examples.
In each example, all parts simply refer to weight.

比較例 JIS 3号珪酸ソーダ(Na20/5i02モル比
=1/3.4)を水で希釈してSiO2濃度がそれぞれ
異なる珪酸ソーダ水溶液(A液)を200CCずつ4種
類調合する。
Comparative Example JIS No. 3 sodium silicate (Na20/5i02 molar ratio = 1/3.4) is diluted with water to prepare four types of 200 cc of sodium silicate aqueous solutions (liquid A) each having a different SiO2 concentration.

(第1表参照)一方、重炭酸ソーダ13.5S’を水に
溶解して全容を200 CCにした薬液(B液)を4ケ
用意する。
(See Table 1) On the other hand, prepare four containers of a chemical solution (solution B) in which 13.5 S' of bicarbonate of soda was dissolved in water to make a total volume of 200 CC.

A液とB液を15℃の温度下で混合して硬化させた。Liquid A and liquid B were mixed and cured at a temperature of 15°C.

混合物の硬化時間、硬化物の一軸圧縮強度および硬化後
7日間放置する間に硬化物より離漿L7た水の量を測定
した結果を第1表に示す。
Table 1 shows the results of measuring the curing time of the mixture, the unconfined compressive strength of the cured product, and the amount of water released from the cured product during 7 days of standing after curing.

第1表から明らかなように、従来グラウトは硬化剤の使
用量が一定でも5i02濃度が変化すると硬化時間が大
巾に変動する。
As is clear from Table 1, even if the amount of curing agent used in conventional grouts is constant, the curing time varies widely when the 5i02 concentration changes.

また、このグラウトはSiO2濃度を増加させても硬化
物の強度は向上せず、離漿水の量も多かった。
Furthermore, even if the SiO2 concentration was increased in this grout, the strength of the cured product did not improve, and the amount of syneresis water was large.

実施例 I Na 2/ S i 02のモル比が1/40の珪酸ソ
ーダの水溶液(Na 205.8重量%、5j0222
.5重量%、残余は水)を水で希釈して5/02濃度が
それぞれ異なる珪酸ソーダ水溶液(A液)を200CC
ずつ6種類調合する。
Example I Aqueous solution of sodium silicate (Na 205.8% by weight, 5j0222) with a molar ratio of Na 2 / Si 02 of 1/40
.. 5% by weight, the remainder is water) and diluted with water to prepare 200CC of sodium silicate aqueous solutions (liquid A) with different 5/02 concentrations.
Mix 6 types of each.

(第2表参照)一方、重炭酸ソーダ9.51を水に溶解
して全容※※を200CCにした薬液(B液)を6ケ用
意する。
(See Table 2) On the other hand, prepare 6 bottles of a chemical solution (solution B) made by dissolving 9.51 parts of bicarbonate of soda in water to make the total volume** 200CC.

A液とB液を15℃の温度下で混合して硬化させた。Liquid A and liquid B were mixed and cured at a temperature of 15°C.

混合物の硬化時間、硬化物の一軸圧縮強度および硬化後
7日間放置する間に硬化物より離漿した水の量を測定し
た結果を第2表に示す。
Table 2 shows the results of measuring the curing time of the mixture, the unconfined compressive strength of the cured product, and the amount of water released from the cured product during a period of 7 days after curing.

第2表と第1表の対比から明らかなように、本発明に用
いるグラウトは比較例で示した従来グラウトにくらべて
SiO2濃度の変化に対する硬化時間の変動が格段に少
ない。
As is clear from the comparison between Table 2 and Table 1, the grout used in the present invention shows much less variation in curing time with respect to changes in SiO2 concentration than the conventional grout shown in the comparative example.

また、グラウト中の5/02濃度を増加させるにつれて
硬化物の強度は高くなり、かつ硬化物からの離漿水の量
も比較例の場合にくらべて格段に少ない。
Furthermore, as the 5/02 concentration in the grout increases, the strength of the cured product increases, and the amount of syneresis water from the cured product is significantly smaller than in the comparative example.

実施例 2 実施例1で用いたのと同じ珪酸ソーダを用い、同じ方法
でそれぞれ5/02濃度が異なる珪酸ノー**ダ水溶液
(A液)を200CCずつ3種類調合する。
Example 2 Using the same sodium silicate as used in Example 1, three 200 cc aqueous silicate solutions (Liquid A) each having a different 5/02 concentration are prepared in the same manner.

(第3表参照) 一方、重炭酸カリ82と硫酸ソーダ72を水に溶解して
全容を200CCにした薬液(B液)を3ケ用意する。
(See Table 3) On the other hand, prepare three chemical solutions (liquid B) in which potassium bicarbonate 82 and sodium sulfate 72 are dissolved in water to make a total volume of 200 cc.

以下、実施例1と同じ方法でA、B両液を混合して硬化
させた。
Thereafter, both liquids A and B were mixed and cured in the same manner as in Example 1.

混合物の硬化時間、硬化物の一軸圧縮強度および硬化物
からの離漿水を測定した結果を第3表に示す。
Table 3 shows the results of measuring the curing time of the mixture, the unconfined compressive strength of the cured product, and the syneresis water from the cured product.

得られた結果については実施例1の場合と同様のことが
云える。
Regarding the obtained results, the same can be said as in Example 1.

実施例 3 実施例2で用いたのと同じ珪酸ソーダ水溶液を調合する
(3種類) 一方、重炭酸ソーダ82と炭酸カリウム5グを水に溶解
して全容を200CCにした薬液(B液)※※を3ケ用
意する。
Example 3 Prepare the same sodium silicate aqueous solution as used in Example 2 (3 types) On the other hand, a chemical solution (liquid B) ※※ prepared by dissolving 82 g of sodium bicarbonate and 5 g of potassium carbonate in water to make a total volume of 200 cc. Prepare 3 pieces.

以下、実施例2と同じ方法でA、B両液を混合して硬化
させた。
Thereafter, both liquids A and B were mixed and cured in the same manner as in Example 2.

混合物の硬化時間、硬化物の一軸圧縮強度および硬化物
からの離漿水を測定した結果を第4表に示す。
Table 4 shows the results of measuring the curing time of the mixture, the unconfined compressive strength of the cured product, and the syneresis water from the cured product.

得られた結果については実施例1の場合と同様のことが
云える。
Regarding the obtained results, the same can be said as in Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は重炭酸塩を硬化剤として用いた従来の珪酸塩系
グラウト中に含まれるS i02の量とグラウトの硬化
時間の関係をあられす図、第2図は本発明に用いるグラ
ウト中に含まれる5i02の量とグラウトの硬化時間の
関係をあられす図であって、両図の横軸はグラウト中に
含まれる5iO20量(kg)、縦軸はグラウトの硬化
時間(分)を示す。 第3図は第1図に示したグラウトの硬化物の一軸圧縮強
度とグラウト中に含まれるSiO2の量との関係をあら
れす図、第4図は第2図に示したグラウトの硬化物の一
軸圧縮強度とグラウト中に含まれるSiO2の量との関
係をあられす図であって第3図および第4図の横軸の定
義は第1,2図の場合と同じであり、縦軸は硬化物の一
軸圧縮強度(kg/c4)を示す。
Figure 1 shows the relationship between the amount of Si02 contained in a conventional silicate grout using bicarbonate as a hardening agent and the hardening time of the grout. FIG. 2 is a diagram showing the relationship between the amount of 5iO2 contained in the grout and the hardening time of the grout. In both figures, the horizontal axis shows the amount of 5iO20 (kg) contained in the grout, and the vertical axis shows the hardening time (minutes) of the grout. Figure 3 shows the relationship between the unconfined compressive strength of the cured grout shown in Figure 1 and the amount of SiO2 contained in the grout, and Figure 4 shows the relationship between the cured grout shown in Figure 2. This is a diagram showing the relationship between unconfined compressive strength and the amount of SiO2 contained in grout. The definition of the horizontal axis in Figures 3 and 4 is the same as in Figures 1 and 2, and the vertical axis is The uniaxial compressive strength (kg/c4) of the cured product is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 Na201モルにつき5i02を3.8〜4.2モ
ルの割合で含む珪酸ソーダを主剤とし、これに重炭酸塩
を硬化剤として配合した薬液を土壌に注入し、土壌中で
硬化させることを特徴とする土質の安定化法。
1 The main ingredient is sodium silicate containing 5i02 at a ratio of 3.8 to 4.2 moles per 201 moles of Na, and a chemical solution containing bicarbonate as a hardening agent is injected into the soil and hardened in the soil. A method for stabilizing soil quality.
JP52097528A 1977-08-16 1977-08-16 Soil stabilization method Expired JPS5856393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52097528A JPS5856393B2 (en) 1977-08-16 1977-08-16 Soil stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52097528A JPS5856393B2 (en) 1977-08-16 1977-08-16 Soil stabilization method

Publications (2)

Publication Number Publication Date
JPS5431906A JPS5431906A (en) 1979-03-09
JPS5856393B2 true JPS5856393B2 (en) 1983-12-14

Family

ID=14194740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52097528A Expired JPS5856393B2 (en) 1977-08-16 1977-08-16 Soil stabilization method

Country Status (1)

Country Link
JP (1) JPS5856393B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869019A (en) * 1981-10-22 1983-04-25 Kureha Chem Ind Co Ltd Manufacture of polyvinylidene fluoride resin molded item
JPS6393320U (en) * 1986-12-08 1988-06-16
CN1060502C (en) * 1995-07-28 2001-01-10 铁道部科学研究院西北分院 Method for strengthening collapsable loess foundation by silicifying method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185218A (en) * 1975-01-22 1976-07-26 Raito Kogyo Kk DOSHITSUANTEIKAKOHO
JPS5282812A (en) * 1975-12-30 1977-07-11 Kyokado Eng Co Neutral grout method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185218A (en) * 1975-01-22 1976-07-26 Raito Kogyo Kk DOSHITSUANTEIKAKOHO
JPS5282812A (en) * 1975-12-30 1977-07-11 Kyokado Eng Co Neutral grout method

Also Published As

Publication number Publication date
JPS5431906A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
JPS5856393B2 (en) Soil stabilization method
JPS6148559B2 (en)
JPS5849585B2 (en) soil stabilization method
JPS5911632B2 (en) Soil stabilization method
JP2001019957A (en) Chemical for stabilizing ground and ground stabilizing method of construction using the same
JPH0236154B2 (en) JIBANCHUNYUZAIOYOBIJIBANNOANTEIKAHOHO
JPS6216990B2 (en)
JPS6334198B2 (en)
JPH0354154B2 (en)
JPS6312514B2 (en)
JPS6339631B2 (en)
JPH10176326A (en) Ground hardening method
JPH0155679B2 (en)
JP3429899B2 (en) Silicate soil stabilization chemicals and ground stabilization method using the same
JPS58103586A (en) Pollution-free grouting
JPS6247915B2 (en)
JP3445417B2 (en) Silicate-based soil stabilization chemicals and ground stabilization method using the same
JP3949844B2 (en) Silicate soil chemicals
JPH0125800B2 (en)
JPH0662953B2 (en) Ground injection with excellent durability
JP2002194352A (en) Agent solution for stabilizing ground and method for stabilizing ground with the same
JPH0121197B2 (en)
JPS58174489A (en) Stabilization method of soil
JP4094285B2 (en) Silicate-based soil stabilization chemicals
JP3751085B2 (en) Soil stabilization method