WO2010016291A1 - Organic piezoelectric material, method for production of the same, and ultrasonic oscillator, ultrasonic probe and ultrasonic image detection device each comprising the same - Google Patents

Organic piezoelectric material, method for production of the same, and ultrasonic oscillator, ultrasonic probe and ultrasonic image detection device each comprising the same Download PDF

Info

Publication number
WO2010016291A1
WO2010016291A1 PCT/JP2009/054291 JP2009054291W WO2010016291A1 WO 2010016291 A1 WO2010016291 A1 WO 2010016291A1 JP 2009054291 W JP2009054291 W JP 2009054291W WO 2010016291 A1 WO2010016291 A1 WO 2010016291A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic piezoelectric
piezoelectric material
ultrasonic
organic
film
Prior art date
Application number
PCT/JP2009/054291
Other languages
French (fr)
Japanese (ja)
Inventor
朱里 水谷
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2010523780A priority Critical patent/JPWO2010016291A1/en
Publication of WO2010016291A1 publication Critical patent/WO2010016291A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to an organic piezoelectric material using an organic piezoelectric material, a manufacturing method thereof, an ultrasonic transducer, an ultrasonic probe, and an ultrasonic image detection apparatus using the organic piezoelectric material.
  • Inorganic piezoelectric materials and organic piezoelectric materials are known as piezoelectric materials used for sensors such as an ultrasonic probe.
  • the inorganic piezoelectric material for example, a single crystal such as quartz, LiNbO 3 , LiTaO 3 , KNbO 3 , a thin film such as ZnO or AlN, or a sintered body such as Pb (Zr, Ti) O 3 system is polarized. It has been known.
  • these inorganic piezoelectric materials have properties such as high elastic stiffness, high mechanical loss coefficient, high density and high dielectric constant.
  • organic piezoelectric materials such as polyvinylidene fluoride (hereinafter abbreviated as “PVDF”) and polyvinylidene cyanide (hereinafter abbreviated as “PVDCN”) are known as organic piezoelectric materials (see Patent Document 1). ).
  • PVDF polyvinylidene fluoride
  • PVDCN polyvinylidene cyanide
  • a PVDF film is polarized after heat treatment (see Patent Document 2), and is made of a copolymer of ethylene trifluoride or tetrafluoroethylene and vinylidene fluoride. What was produced by extending
  • a method for producing an organic piezoelectric material comprising producing an organic piezoelectric material in which organic piezoelectric bodies are laminated.
  • An ultrasonic vibrator comprising the organic piezoelectric material according to any one of 8.1 to 6.
  • An ultrasonic probe comprising the ultrasonic transducer according to 10.8 or 9.
  • An ultrasonic image detection apparatus comprising the ultrasonic probe according to 11.10.
  • the present invention is an organic piezoelectric material having a first organic piezoelectric body having an electromechanical coupling constant kt of 0.25 or more, an adjacent to the first organic piezoelectric body, and an elongation at break of 70% or more. , 910% or less of the second organic piezoelectric body.
  • the piezoelectric material is composed of at least the first organic piezoelectric body and the second organic piezoelectric body that do not have a layer such as an electrode between each layer, thereby providing excellent piezoelectric characteristics. It is possible to provide an organic piezoelectric material that provides an ultrasonic vibrator having excellent processability and high mechanical strength, and further, an ultrasonic vibrator using the organic piezoelectric material, a method for producing the piezoelectric material, an ultrasonic probe, and an ultrasonic transducer. A sound image detection apparatus can be provided.
  • the organic piezoelectric material of the present invention contains a first organic piezoelectric body and a second organic piezoelectric body adjacent to the first organic piezoelectric body.
  • the term “adjacent to the first organic piezoelectric body” refers to a mode in which the first organic piezoelectric body and the second organic piezoelectric body are laminated in direct contact with each other without interposing a layer such as an electrode. That is, the organic piezoelectric material of the present invention has a configuration in which at least a first organic piezoelectric body and a second organic piezoelectric body are laminated.
  • An organic piezoelectric body is an organic substance having a positive piezoelectric effect that generates a charge by applying mechanical force or strain and a reverse piezoelectric effect that generates a force or strain by applying an electric field.
  • the electromechanical coupling constant kt is 4.2.6 for the vibration of the disk-shaped vibrator described in the electrical test method of the JEITA EM-4501 (formerly EMAS-6100) piezoelectric ceramic vibrator. The value is based on the term and is based on the following formula.
  • kt ( ⁇ / tan ( ⁇ )) 1/2
  • ( ⁇ / 2)
  • S (S / P)
  • P the peak frequency of the resistance value near the thickness resonance frequency
  • S the peak frequency of conductance
  • the first organic piezoelectric body needs to have an electromechanical coupling constant kt of 0.25 or more, preferably 0.30 or more, and particularly preferably 0.34 or more.
  • the kt of the first organic piezoelectric body it is possible to set the kt of the first organic piezoelectric body to 0.25 or more by selecting the first organic piezoelectric body from materials as described below.
  • the first organic piezoelectric material can be used regardless of whether it is a low-molecular material or a high-molecular material, but a high-molecular material is particularly preferable, and the molecular weight is particularly those having a weight average molecular weight of 100,000 to 300,000. Preferably used.
  • a polymer compound having a weight average molecular weight / number average molecular weight (Mw / Mn) of 5.0 or less is particularly preferable from the viewpoint of piezoelectric characteristics.
  • Tosoh high performance liquid chromatography HLC-8220 is loaded with two Tosoh column TSKgel ⁇ -M (7.8 mm ID ⁇ 30 cm), and the detector is used as a differential refractive index detector. N, N-dimethylformamide is used as a developing solvent, and the flow rate is 1.0 ml / min at 40 ° C.
  • Examples of the polymeric organic piezoelectric material used for the first organic piezoelectric material include vinylidene fluoride polymer, vinylidene fluoride copolymer, vinylidene cyanide polymer, vinylidene cyanide copolymer, and the like.
  • a vinylidene fluoride polymer or a vinylidene fluoride copolymer is particularly preferably used from the viewpoints of piezoelectric properties, processability, availability, and the like.
  • it is a homopolymer of polyvinylidene fluoride or a copolymer containing vinylidene fluoride as a main component, which has a CF 2 group having a large dipole moment.
  • a copolymer component in the copolymer tetrafluoroethylene, trifluoroethylene, hexafluoropropane, chlorofluoroethylene, or the like can be used.
  • the former copolymer ratio is preferably 60 to 99 mol%, more preferably 85 to 99 mol%, from the viewpoint of piezoelectric characteristics. It is done.
  • a polymer in which vinylidene fluoride is 85 to 99 mol% and perfluoroalkyl vinyl ether, perfluoroalkoxyethylene, and perfluorohexaethylene is 1 to 15 mol% is particularly preferably used from the viewpoint of sensitivity of harmonics. It is done.
  • the second organic piezoelectric body according to the present invention needs to have an elongation at break of 70% or more and 910% or less. By making the second organic piezoelectric body adjacent to the first organic piezoelectric body, it is possible to improve the workability and maintain the mechanical strength of the ultrasonic vibrator while maintaining the piezoelectric characteristics.
  • the elongation at break is a value measured at 5 mm / min using a 20 mm wide, 200 mm test piece in accordance with JIS K7127.
  • the direction of elongation at break of the film subjected to the stretching treatment is a direction in which force is applied in a direction perpendicular to the stretching axis.
  • a polymer organic piezoelectric material is preferably used, and a molecular weight having a weight average molecular weight of 100,000 to 1,000,000 is particularly preferably used.
  • polymer organic piezoelectric material used for the second organic piezoelectric material examples include vinylidene fluoride polymer, vinylidene fluoride copolymer, vinylidene cyanide polymer, vinylidene cyanide copolymer, nylon 9 and nylon 11 Odd-numbered nylons, aromatic nylons, alicyclic nylons, polyhydroxycarboxylic acids such as polylactic acid and polyhydroxybutyrate, cellulosic derivatives, polyureas, and polymer materials having a relatively low relative dielectric constant described below.
  • polymer material having a relatively low dielectric constant examples include, for example, methyl methacrylate resin (3.0), acrylonitrile resin (4.0), acetate resin (3.4), aniline resin (3.5), Aniline formaldehyde resin (4.0), aminoalkyl resin (4.0), alkyd resin (5.0), nylon-6-6 (3.4), ethylene resin (2.2), epoxy resin (2. 5), vinyl chloride resin (3.3), vinylidene chloride resin (3.0), urea formaldehyde resin (7.0), polyacetal resin (3.6), polyurethane (5.0), polyester resin (2.
  • the thickness of the organic piezoelectric material of the present invention is preferably 10 ⁇ m to 300 ⁇ m, particularly preferably 20 ⁇ m to 100 ⁇ m.
  • the organic piezoelectric material of the present invention preferably contains a laminated first organic piezoelectric body and second organic piezoelectric body.
  • the two-layer organic piezoelectric body has a weight average as described below.
  • a preferred embodiment is a two-layer organic piezoelectric body formed by forming a film using a coating solution containing two types of polymer compounds having different molecular weights.
  • the combination of the plurality of organic piezoelectric bodies of the present invention is a polymer compound in which the electrical coupling constant of the first organic piezoelectric body is 0.34 or more and the molecular weight of the second organic piezoelectric body is 5000 or more. A certain combination is preferable, and the molecular weight of the second organic piezoelectric body is particularly preferably 100,000 or more.
  • organic piezoelectric material of the present invention provides a material having high mechanical strength while maintaining piezoelectric characteristics is not clear, but is presumed as follows.
  • the mechanical strength is weak in a certain direction.
  • the organic piezoelectric material of the present invention is composed of at least two layers of organic piezoelectric material, and between the piezoelectric materials. Since the interface exists, it is presumed that the directionality of the mechanical strength changes at the interface, and as a result, the mechanical strength of the whole organic piezoelectric body is improved.
  • FIG. 1 is a schematic cross-sectional view of an example of the organic piezoelectric material of the present invention.
  • the organic piezoelectric material 1 includes a first organic piezoelectric body 2 and a second organic piezoelectric body 3 adjacent thereto, and the first organic piezoelectric body 2 and the second organic piezoelectric body 3 are laminated. It has a structure.
  • the first organic piezoelectric body and the second organic piezoelectric body may be mixed and present.
  • the organic piezoelectric material of the present invention may further include an organic piezoelectric body other than the first and second organic piezoelectric bodies.
  • Examples of the material used as the organic piezoelectric body other than the first and second organic piezoelectric bodies include the materials mentioned in the first and second organic piezoelectric bodies.
  • the organic piezoelectric material of the present invention can be produced by a method of simultaneously forming a plurality of organic piezoelectric films or a method of integrally forming separately formed organic piezoelectric films.
  • solution polymerization coating method a method in which a mixed solution of organic piezoelectric raw materials is coated on a substrate, dried to some extent under reduced pressure conditions (after the solvent is removed), and heated to perform thermal polymerization can be used.
  • the organic piezoelectric is two polymer compounds having different compatibility with the solvent due to different compositions and different molecular weights.
  • Examples include a method in which a body is dissolved in a solution to form a coating solution, and the coating solution is applied onto a substrate and dried to form a film. This is presumed that during the drying process, as the coating solution is concentrated, the difference in solubility between the two organic piezoelectric bodies in the coating solution becomes significant, and two films are formed by a kind of so-called blooming phenomenon.
  • a vinylidene fluoride copolymer having a weight average molecular weight of 1,000,000 and a vinylidene fluoride copolymer having a weight average molecular weight of 100,000 are coated using methyl ethyl ketone as a solvent.
  • a coating liquid containing a second organic piezoelectric body is applied to a solvent that does not substantially dissolve the organic piezoelectric film and dried to produce a second organic piezoelectric film.
  • the stretching treatment can be performed in a uniaxial / biaxial direction so that the organic piezoelectric film having a predetermined shape is not broken.
  • the stretching ratio can be 2 to 10 times, preferably 2 to 6 times.
  • a solution dissolved in ethyl methyl ketone (MEK) is cast on a substrate such as a glass plate, and the solvent is dried at room temperature to obtain a desired thickness.
  • MEK ethyl methyl ketone
  • the ultrasonic vibrator of the present invention is obtained by attaching an electrode to the organic piezoelectric material of the present invention, and an embodiment having the organic piezoelectric material of the present invention between a pair of opposed electrodes is preferable.
  • the organic piezoelectric material of the present invention When used for an ultrasonic vibrator, it can be used as it is in a formed film, but it is preferably subjected to stretching treatment and polarization treatment.
  • Polarization treatment As a method for polarization treatment, a conventionally known DC voltage application treatment, AC voltage application treatment, or corona discharge treatment method can be applied.
  • the corona discharge treatment can be performed by using a commercially available apparatus comprising a high voltage power source and electrodes.
  • the discharge conditions vary depending on the equipment and the processing environment, so the conditions may be selected as appropriate.
  • the voltage of the high-voltage power supply is -1 to -20 kV, the current is 1 to 80 mA, the distance between the electrodes is 1 to 10 cm,
  • the applied voltage is preferably 0.5 to 2.0 MV / m.
  • the polarization treatment may be performed before the following electrode is attached, or after the electrode is attached, the polarization treatment may be performed using the electrode.
  • a base metal such as titanium (Ti) or chromium (Cr) is formed to a thickness of 0.02 to 1.0 ⁇ m by sputtering, and then the above metal element is mainly used.
  • a metal material composed of an alloy thereof and a metal material thereof, and further, if necessary, a part of the insulating material is formed by a sputtering method or other suitable methods to a thickness of 1 to 10 ⁇ m.
  • Electrode formation can be performed by screen printing, dipping, or thermal spraying using a conductive paste in which fine metal powder and low-melting glass are mixed, as well as sputtering.
  • a predetermined voltage can be supplied between the electrodes formed on both sides of the organic piezoelectric material film to polarize the organic piezoelectric material film.
  • the ultrasonic transducer When used for an ultrasonic probe, it is preferably used together with a substrate.
  • the substrate may be a plastic plate or film such as polyimide, polyamide, polyimide amide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate resin, cycloolefin polymer,
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PMMA polymethyl methacrylate
  • polycarbonate resin polycarbonate resin
  • cycloolefin polymer cycloolefin polymer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Disclosed is an organic piezoelectric material characterized by comprising: a first organic piezoelectric material having an electromechanical coupling constant (kt) of 0.25 or more; and a second organic piezoelectric material which is arranged adjacent to the first organic piezoelectric material and has an elongation at break of 70 to 910% (inclusive). The piezoelectric material can keep its excellent piezoelectric properties, has excellent processability, and enables the production of an ultrasonic oscillator having high mechanical strength.

Description

有機圧電材料、その作製方法、それを用いた超音波振動子、超音波探触子および超音波画像検出装置ORGANIC PIEZOELECTRIC MATERIAL, ITS MANUFACTURING METHOD, ULTRASONIC VIBRATOR, ULTRASONIC PROBE AND ULTRASONIC IMAGE DETECTION DEVICE
 本発明は、有機の圧電体を用いた有機圧電材料、その作製方法、それを用いた超音波振動子、超音波探触子および超音波画像検出装置に関する。 The present invention relates to an organic piezoelectric material using an organic piezoelectric material, a manufacturing method thereof, an ultrasonic transducer, an ultrasonic probe, and an ultrasonic image detection apparatus using the organic piezoelectric material.
 超音波探蝕子などのセンサーに用いられる圧電体材料としては、無機圧電材料および有機圧電材料が知られている。 Inorganic piezoelectric materials and organic piezoelectric materials are known as piezoelectric materials used for sensors such as an ultrasonic probe.
 無機圧電材料としては、例えば水晶、LiNbO、LiTaO、KNbOなどの単結晶、ZnO、AlNなどの薄膜、Pb(Zr,Ti)O系などの焼結体を分極処理した無機圧電材料が知られている。 As the inorganic piezoelectric material, for example, a single crystal such as quartz, LiNbO 3 , LiTaO 3 , KNbO 3 , a thin film such as ZnO or AlN, or a sintered body such as Pb (Zr, Ti) O 3 system is polarized. It has been known.
 しかしながら、これら無機材質の圧電材料は、弾性スティフネスが高く、機械的損失係数が高い、密度が高く誘電率も高いなどの性質がある。 However, these inorganic piezoelectric materials have properties such as high elastic stiffness, high mechanical loss coefficient, high density and high dielectric constant.
 一方、有機圧電材料としては、例えば、ポリフッ化ビニリデン(以下「PVDF」と略す。)、ポリシアン化ビニリデン(以下「PVDCN」と略す。)等の有機圧電材料が知られている(特許文献1参照)。 On the other hand, organic piezoelectric materials such as polyvinylidene fluoride (hereinafter abbreviated as “PVDF”) and polyvinylidene cyanide (hereinafter abbreviated as “PVDCN”) are known as organic piezoelectric materials (see Patent Document 1). ).
 これらの有機圧電材料は、薄膜化、大面積化等の加工性に比較的優れ、任意の形状、形態の物が作ることができ、弾性率が低い、誘電率が低い等の特徴を持つため、センサーとしての使用に際しては、高感度な検出を可能とする特徴を持っている。また、これらの有機圧電材料は、高周波特性、広帯域特性を必要とするハーモニックイメージング技術における圧電材料として適している。 These organic piezoelectric materials are relatively excellent in workability such as thin film and large area, can be made in any shape and form, and have characteristics such as low elastic modulus and low dielectric constant. When used as a sensor, it has a feature that enables highly sensitive detection. Further, these organic piezoelectric materials are suitable as piezoelectric materials in harmonic imaging technology that requires high-frequency characteristics and broadband characteristics.
 そして、圧電特性をさらに向上させたものとして、例えばPVDFフィルムを熱処理後分極させたもの(特許文献2参照)、3フッ化エチレンまたは4フッ化エチレンと、フッ化ビニリデンとの共重合体からなる圧電材料を延伸処理して作製したものが知られている(特許文献3参照)。 And as what further improved the piezoelectric characteristic, for example, a PVDF film is polarized after heat treatment (see Patent Document 2), and is made of a copolymer of ethylene trifluoride or tetrafluoroethylene and vinylidene fluoride. What was produced by extending | stretching the piezoelectric material is known (refer patent document 3).
 しかしながら、これらの圧電材料においては、圧電特性の向上はみられるものの、延伸軸と垂直方向に対する強度が不十分のため、圧電材料の加工性が不十分であり、圧電素子としたときの機械的強度が不十分であるといった問題があった。
特開平6-216422号公報 特開昭60-47034号公報 特開平8-36917号公報
However, in these piezoelectric materials, although the piezoelectric characteristics are improved, the strength in the direction perpendicular to the stretching axis is insufficient, so the workability of the piezoelectric material is insufficient, and the mechanical properties of the piezoelectric element are reduced. There was a problem that the strength was insufficient.
JP-A-6-216422 JP 60-47034 A JP-A-8-36917
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、優れた圧電特性を維持しつつ、加工性に優れ、機械的強度の高い超音波振動子を与える圧電材料を提供することにある。 The present invention has been made in view of the above problems, and a solution to the problem is to provide a piezoelectric material that provides an ultrasonic vibrator having excellent workability and high mechanical strength while maintaining excellent piezoelectric characteristics. There is.
 本発明に係る上記課題は、下記の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.電気機械結合定数ktが0.25以上である第一の有機圧電体と、当該第一の有機圧電体と隣接し、破断点伸度が70%以上、910%以下である第二の有機圧電体とを含有することを特徴とする有機圧電材料。 1. A first organic piezoelectric body having an electromechanical coupling constant kt of 0.25 or more and a second organic piezoelectric element adjacent to the first organic piezoelectric body and having an elongation at break of 70% or more and 910% or less An organic piezoelectric material comprising a body.
 2.前記第一の有機圧電体が、フッ化ビニリデンの重合体または共重合体であることを特徴とする1に記載の有機圧電材料。 2. 2. The organic piezoelectric material according to 1, wherein the first organic piezoelectric material is a vinylidene fluoride polymer or copolymer.
 3.前記第一の有機圧電体の有機圧電材料に対する含有量が、50質量%以上であることを特徴とする1または2に記載の有機圧電材料。 3. Content of said 1st organic piezoelectric material with respect to the organic piezoelectric material is 50 mass% or more, The organic piezoelectric material of 1 or 2 characterized by the above-mentioned.
 4.前記有機圧電材料が、延伸処理されて形成された有機圧電材料であることを特徴とする1~3のいずれか1項に記載の有機圧電材料。 4. 4. The organic piezoelectric material according to any one of claims 1 to 3, wherein the organic piezoelectric material is an organic piezoelectric material formed by stretching.
 5.前記第一の有機圧電体の層と、前記第二の有機圧電体の層とが積層された積層体であることを特徴とする1~4のいずれか1項に記載の有機圧電材料。 5. 5. The organic piezoelectric material according to claim 1, wherein the organic piezoelectric material is a laminate in which the first organic piezoelectric layer and the second organic piezoelectric layer are laminated.
 6.前記有機圧電材料が、重量平均分子量の異なる2種の高分子有機圧電体を含有する塗布液を用い、製膜された有機圧電材料であることを特徴とする1~5のいずれか1項に記載の有機圧電材料。 6. 6. The organic piezoelectric material according to any one of 1 to 5, wherein the organic piezoelectric material is an organic piezoelectric material formed using a coating liquid containing two types of polymer organic piezoelectric materials having different weight average molecular weights. The organic piezoelectric material described.
 7.6に記載の有機圧電材料を作製する、有機圧電材料の作製方法であって、重量平均分子量の異なる2種の高分子有機圧電体を含有する塗布液を用い製膜し、2層の有機圧電体が積層された有機圧電材料を作製することを特徴とする有機圧電材料の作製方法。 7.6 A method for producing an organic piezoelectric material according to 7.6, wherein a film is formed using a coating liquid containing two types of polymeric organic piezoelectric bodies having different weight average molecular weights, and two layers are formed. A method for producing an organic piezoelectric material, comprising producing an organic piezoelectric material in which organic piezoelectric bodies are laminated.
 8.1~6のいずれか1項に記載の有機圧電材料を有することを特徴とする超音波振動子。 8. An ultrasonic vibrator comprising the organic piezoelectric material according to any one of 8.1 to 6.
 9.対向する一対の電極間に、1~6のいずれか1項に記載の有機圧電材料を有することを特徴とする8に記載の超音波振動子。 9. 9. The ultrasonic transducer according to 8, wherein the organic piezoelectric material according to any one of 1 to 6 is provided between a pair of opposed electrodes.
 10.8または9に記載の超音波振動子を具備することを特徴とする超音波探触子。 An ultrasonic probe comprising the ultrasonic transducer according to 10.8 or 9.
 11.10に記載の超音波探触子を具備することを特徴とする超音波画像検出装置。 11. An ultrasonic image detection apparatus comprising the ultrasonic probe according to 11.10.
 本発明の上記手段により、優れた圧電特性を維持しつつ、加工性に優れ、機械的強度の高い超音波振動子を与える有機圧電材料を提供することができ、さらにそれを用いた超音波振動子、有機圧電材料の作製方法、超音波探触子および超音波画像検出装置が提供できる。 By the above means of the present invention, it is possible to provide an organic piezoelectric material that provides an ultrasonic vibrator having excellent workability and high mechanical strength while maintaining excellent piezoelectric characteristics. A piezoelectric element, a method for producing an organic piezoelectric material, an ultrasonic probe, and an ultrasonic image detection apparatus can be provided.
本発明の有機圧電材料の例の模式断面図である。It is a schematic cross section of an example of an organic piezoelectric material of the present invention. 本発明の超音波振動子の例の模式断面図である。It is a schematic cross section of an example of an ultrasonic transducer of the present invention. 本発明の超音波探触子の例の模式断面図である。It is a schematic cross section of an example of an ultrasonic probe of the present invention. 本発明の超音波画像検出装置の主要部の構成を示す概念図である。It is a conceptual diagram which shows the structure of the principal part of the ultrasonic image detection apparatus of this invention.
符号の説明Explanation of symbols
 1 有機圧電材料
 2 第一の有機圧電体
 3 第二の有機圧電体
 4 電極
 5 送信用圧電材料
 6 バッキング層
 7 基板
 8 音響整合層
 9 音響レンズ
 10 超音波振動子
 11 受信用有機圧電材料
 12 送信用超音波振動子
 13 受信用超音波振動子
 20 超音波探触子
DESCRIPTION OF SYMBOLS 1 Organic piezoelectric material 2 1st organic piezoelectric material 3 2nd organic piezoelectric material 4 Electrode 5 Transmission piezoelectric material 6 Backing layer 7 Substrate 8 Acoustic matching layer 9 Acoustic lens 10 Ultrasonic vibrator 11 Receiving organic piezoelectric material 12 Transmission Reliable ultrasonic transducer 13 Receiving ultrasonic transducer 20 Ultrasonic probe
 本発明は、有機圧電材料であって、電気機械結合定数ktが0.25以上である第一の有機圧電体と、当該第一の有機圧電体と隣接し、破断点伸度が70%以上、910%以下である第二の有機圧電体とを含有することを特徴とする。 The present invention is an organic piezoelectric material having a first organic piezoelectric body having an electromechanical coupling constant kt of 0.25 or more, an adjacent to the first organic piezoelectric body, and an elongation at break of 70% or more. , 910% or less of the second organic piezoelectric body.
 本発明においては、圧電材料を、各層の間に電極などの層を有することのない、少なくとも上記第一の有機圧電体と上記第二の有機圧電体から構成することにより、優れた圧電特性を維持して、加工性に優れ、機械的強度の高い超音波振動子を与える有機圧電材料が提供でき、さらにそれを用いた超音波振動子、圧電材料の製造方法、超音波探触子および超音波画像検出装置が提供できる。 In the present invention, the piezoelectric material is composed of at least the first organic piezoelectric body and the second organic piezoelectric body that do not have a layer such as an electrode between each layer, thereby providing excellent piezoelectric characteristics. It is possible to provide an organic piezoelectric material that provides an ultrasonic vibrator having excellent processability and high mechanical strength, and further, an ultrasonic vibrator using the organic piezoelectric material, a method for producing the piezoelectric material, an ultrasonic probe, and an ultrasonic transducer. A sound image detection apparatus can be provided.
 (第一および第二の有機圧電体)
 本発明の有機圧電材料は、第一の有機圧電体と第一の有機圧電体に隣接する第二の有機圧電体とを含有する。
(First and second organic piezoelectric bodies)
The organic piezoelectric material of the present invention contains a first organic piezoelectric body and a second organic piezoelectric body adjacent to the first organic piezoelectric body.
 第一の有機圧電体に隣接するとは、第一の有機圧電体と第二の有機圧電体同士が電極などの層を介することなく直接接触して積層されている態様を指す。即ち本発明の有機圧電材料は、少なくとも第一の有機圧電体と第二の有機圧電体が積層された構成を有する。 The term “adjacent to the first organic piezoelectric body” refers to a mode in which the first organic piezoelectric body and the second organic piezoelectric body are laminated in direct contact with each other without interposing a layer such as an electrode. That is, the organic piezoelectric material of the present invention has a configuration in which at least a first organic piezoelectric body and a second organic piezoelectric body are laminated.
 本発明において、有機圧電体とは、機械的力や歪みを加えることにより、電荷を発生する正圧電効果および、電界を加えると力や歪みを発生する逆圧電効果を持つ有機物質であり、電気機械結合定数ktが、0.1以上であるものをいう。 In the present invention, the organic piezoelectric body is an organic substance having a positive piezoelectric effect that generates a charge by applying mechanical force or strain and a reverse piezoelectric effect that generates a force or strain by applying an electric field. The mechanical coupling constant kt is 0.1 or more.
 有機圧電体とは、機械的力や歪みを加えることにより、電荷を発生する正圧電効果および、電界を加えると力や歪みを発生する逆圧電効果を持つ有機物質である。 An organic piezoelectric body is an organic substance having a positive piezoelectric effect that generates a charge by applying mechanical force or strain and a reverse piezoelectric effect that generates a force or strain by applying an electric field.
 電気機械結合定数ktとは、(出力されたエネルギー/入力されたエネルギー)1/2であり、下記の測定方法により測定された値をいう。 The electromechanical coupling constant kt is (output energy / input energy) ½, which is a value measured by the following measurement method.
 電気機械結合定数ktは、電子情報技術産業協会規格JEITA EM-4501(旧EMAS-6100)圧電セラミック振動子の電気的試験方法に記載の円盤状振動子の厚みたて振動に4.2.6項に準拠した値であり、下記式に基づく値である。 The electromechanical coupling constant kt is 4.2.6 for the vibration of the disk-shaped vibrator described in the electrical test method of the JEITA EM-4501 (formerly EMAS-6100) piezoelectric ceramic vibrator. The value is based on the term and is based on the following formula.
 kt=(α/tan(α))1/2
 ただし、α=(π/2)×(S/P)、Pは厚み共振周波数付近の抵抗値のピーク周波数、Sはコンダクタンスのピーク周波数である。
kt = (α / tan (α)) 1/2
However, α = (π / 2) × (S / P), P is the peak frequency of the resistance value near the thickness resonance frequency, and S is the peak frequency of conductance.
 第一の有機圧電体は、電気機械結合定数ktが、0.25以上であることが必要であるが、0.30以上であることが好ましく特に0.34以上であることが好ましい。 The first organic piezoelectric body needs to have an electromechanical coupling constant kt of 0.25 or more, preferably 0.30 or more, and particularly preferably 0.34 or more.
 第一の有機圧電体のktを0.25以上とすることは、下述するような材料から第一の有機圧電体を選択することで可能となる。 It is possible to set the kt of the first organic piezoelectric body to 0.25 or more by selecting the first organic piezoelectric body from materials as described below.
 第一の有機圧電体としては、低分子材料、高分子材料を問わず使用することができるが特に高分子材料が好ましく、分子量としては、重量平均分子量が10万~30万であるものが特に好ましく用いられる。 The first organic piezoelectric material can be used regardless of whether it is a low-molecular material or a high-molecular material, but a high-molecular material is particularly preferable, and the molecular weight is particularly those having a weight average molecular weight of 100,000 to 300,000. Preferably used.
 また、第一の有機圧電体としては、重量平均分子量/数平均分子量(Mw/Mn)5.0以下の高分子化合物が圧電特性の面から特に好ましい。 Further, as the first organic piezoelectric body, a polymer compound having a weight average molecular weight / number average molecular weight (Mw / Mn) of 5.0 or less is particularly preferable from the viewpoint of piezoelectric characteristics.
 重量平均分子量Mwおよび数平均分子量Mnは、下記の測定方法により測定された値である。 The weight average molecular weight Mw and the number average molecular weight Mn are values measured by the following measuring method.
 ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の値である。東ソー社製高速液体クロマトグラフィーHLC-8220に東ソー社製カラムTSKgel α-M(7.8mmI.D.×30cm)を2本装填し、検出器は示差屈折率検出器として測定を行う。展開溶媒にN,N-ジメチルホルムアミドを用い、流速1.0ml/分、40℃にて行う。 It is a value in terms of polystyrene by gel permeation chromatography (GPC). Tosoh high performance liquid chromatography HLC-8220 is loaded with two Tosoh column TSKgel α-M (7.8 mm ID × 30 cm), and the detector is used as a differential refractive index detector. N, N-dimethylformamide is used as a developing solvent, and the flow rate is 1.0 ml / min at 40 ° C.
 第一の有機圧電体に用いられる高分子の有機圧電体としては、フッ化ビニリデン重合体、フッ化ビニリデン共重合体、シアン化ビニリデン重合体、シアン化ビニリデン共重合体などが挙げられるが、フッ化ビニリデン重合体またはフッ化ビニリデン共重合体が圧電特性、加工性、入手容易性等の面から特に好ましく用いられる。 Examples of the polymeric organic piezoelectric material used for the first organic piezoelectric material include vinylidene fluoride polymer, vinylidene fluoride copolymer, vinylidene cyanide polymer, vinylidene cyanide copolymer, and the like. A vinylidene fluoride polymer or a vinylidene fluoride copolymer is particularly preferably used from the viewpoints of piezoelectric properties, processability, availability, and the like.
 具体的には、大きい双極子モーメントをもつCF基を有する、ポリフッ化ビニリデンの単独重合体又はフッ化ビニリデンを主成分とする共重合体である。共重合体における共重合成分としては、テトラフルオロエチレン、トリフルオロエチレン、ヘキサフルオロプロパン、クロロフルオロエチレン等を用いることができる。 Specifically, it is a homopolymer of polyvinylidene fluoride or a copolymer containing vinylidene fluoride as a main component, which has a CF 2 group having a large dipole moment. As a copolymer component in the copolymer, tetrafluoroethylene, trifluoroethylene, hexafluoropropane, chlorofluoroethylene, or the like can be used.
 例えば、フッ化ビニリデン/トリフルオロエチレン共重合体の場合、圧電特性の面から、前者の共重合比が60~99モル%であるものが好ましく、更に85~99モル%であるものが好ましく用いられる。 For example, in the case of a vinylidene fluoride / trifluoroethylene copolymer, the former copolymer ratio is preferably 60 to 99 mol%, more preferably 85 to 99 mol%, from the viewpoint of piezoelectric characteristics. It is done.
 また、フッ化ビニリデンを85~99モル%にして、パーフルオロアルキルビニルエーテル、パーフルオロアルコキシエチレン、パーフルオロヘキサエチレンを1~15モル%にしたポリマーは、高調波受信を感度の面から特に好ましく用いられる。 In addition, a polymer in which vinylidene fluoride is 85 to 99 mol% and perfluoroalkyl vinyl ether, perfluoroalkoxyethylene, and perfluorohexaethylene is 1 to 15 mol% is particularly preferably used from the viewpoint of sensitivity of harmonics. It is done.
 第一の有機圧電体の有機圧電材料に対する含有量としては、50質量%以上であることが好ましく、特に90質量%以上であることが特に好ましい。 The content of the first organic piezoelectric material relative to the organic piezoelectric material is preferably 50% by mass or more, and particularly preferably 90% by mass or more.
 本発明に係る第二の有機圧電体は、破断点伸度が70%以上、910%以下である必要がある。第二の有機圧電体を第一の有機圧電体と隣接させることで、圧電特性を維持しつつ、加工性を向上させ、超音波振動子の機械的強度を向上させることができる。 The second organic piezoelectric body according to the present invention needs to have an elongation at break of 70% or more and 910% or less. By making the second organic piezoelectric body adjacent to the first organic piezoelectric body, it is possible to improve the workability and maintain the mechanical strength of the ultrasonic vibrator while maintaining the piezoelectric characteristics.
 第二の有機圧電体の破断点伸度を70%以上、910%以下とすることは、下述するような材料から第二の有機圧電体を選択することで可能となる。 It is possible to set the elongation at break of the second organic piezoelectric body to 70% or more and 910% or less by selecting the second organic piezoelectric body from materials as described below.
 破断点伸度はJIS K7127に従い、20mm幅、200mmの試験片を用い、5mm/minにて測定した値をいう。尚、延伸処理を施した膜の破断点伸度測定方向は、延伸軸に対して垂直な方向に力を加える方向とする。 The elongation at break is a value measured at 5 mm / min using a 20 mm wide, 200 mm test piece in accordance with JIS K7127. The direction of elongation at break of the film subjected to the stretching treatment is a direction in which force is applied in a direction perpendicular to the stretching axis.
 本発明に係る第二の有機圧電体としては、高分子の有機圧電体が好ましく用いられ、分子量としては重量平均分子量が、10万~100万であるものが特に好ましく用いられる。 As the second organic piezoelectric material according to the present invention, a polymer organic piezoelectric material is preferably used, and a molecular weight having a weight average molecular weight of 100,000 to 1,000,000 is particularly preferably used.
 第二の有機圧電体に用いられる高分子の有機圧電体としては、フッ化ビニリデン重合体、フッ化ビニリデン共重合体、シアン化ビニリデン重合体、シアン化ビニリデン共重合体、ナイロン9やナイロン11などの奇数ナイロン、芳香族ナイロン、脂環族ナイロン、ポリ乳酸やポリヒドロキシブチレートなどのポリヒドロキシカルボン酸、セルロース系誘導体、ポリウレアおよび下記の比誘電率の比較的低い高分子材料などが挙げられる。 Examples of the polymer organic piezoelectric material used for the second organic piezoelectric material include vinylidene fluoride polymer, vinylidene fluoride copolymer, vinylidene cyanide polymer, vinylidene cyanide copolymer, nylon 9 and nylon 11 Odd-numbered nylons, aromatic nylons, alicyclic nylons, polyhydroxycarboxylic acids such as polylactic acid and polyhydroxybutyrate, cellulosic derivatives, polyureas, and polymer materials having a relatively low relative dielectric constant described below.
 比誘電率の比較的低い高分子材料としては、例えば、メタクリル酸メチル樹脂(3.0)、アクリルニトリル樹脂(4.0)、アセテート樹脂(3.4)、アニリン樹脂(3.5)、アニリンホルムアルデヒド樹脂(4.0)、アミノアルキル樹脂(4.0)、アルキッド樹脂(5.0)、ナイロン-6-6(3.4)、エチレン樹脂(2.2)、エポキシ樹脂(2.5)、塩化ビニル樹脂(3.3)、塩化ビニリデン樹脂(3.0)、尿素ホルムアルデヒド樹脂(7.0)、ポリアセタール樹脂(3.6)、ポリウレタン(5.0)、ポリエステル樹脂(2.8)、ポリエチレン(低圧)(2.3)、ポリエチレンテレフタレート(2.9)、ポリカーポネート樹脂(2.9)、メラミン樹脂(5.1)、メラミンホルムアルデヒド樹脂(8.0)、酢酸セルロース(3.2)、酢酸ビニル樹脂(2.7)、スチレン樹脂(2.3)、スチレンブタジエンゴム(3.0)、スチロール樹脂(2.4)、フッ化エチレン樹脂(2.0)等が挙げられる(かっこ内は、比誘電率の値である)。 Examples of the polymer material having a relatively low dielectric constant include, for example, methyl methacrylate resin (3.0), acrylonitrile resin (4.0), acetate resin (3.4), aniline resin (3.5), Aniline formaldehyde resin (4.0), aminoalkyl resin (4.0), alkyd resin (5.0), nylon-6-6 (3.4), ethylene resin (2.2), epoxy resin (2. 5), vinyl chloride resin (3.3), vinylidene chloride resin (3.0), urea formaldehyde resin (7.0), polyacetal resin (3.6), polyurethane (5.0), polyester resin (2. 8), polyethylene (low pressure) (2.3), polyethylene terephthalate (2.9), polycarbonate resin (2.9), melamine resin (5.1), melamine formaldehyde resin 8.0), cellulose acetate (3.2), vinyl acetate resin (2.7), styrene resin (2.3), styrene butadiene rubber (3.0), styrene resin (2.4), fluorinated ethylene Resin (2.0) etc. are mentioned (the value in the parenthesis is the value of relative dielectric constant).
 本発明の有機圧電材料の厚さとしては、10μm~300μmが好ましく、特に20μm~100μmであることが好ましい。 The thickness of the organic piezoelectric material of the present invention is preferably 10 μm to 300 μm, particularly preferably 20 μm to 100 μm.
 本発明の有機圧電材料は、積層された第一の有機圧電体と第二の有機圧電体とを含有することが好ましいが、特にこの2層の有機圧電体が、下述するように重量平均分子量が異なる2種の高分子化合物を含有する塗布液を用い、製膜して形成された2層の有機圧電体である態様が好ましい。 The organic piezoelectric material of the present invention preferably contains a laminated first organic piezoelectric body and second organic piezoelectric body. In particular, the two-layer organic piezoelectric body has a weight average as described below. A preferred embodiment is a two-layer organic piezoelectric body formed by forming a film using a coating solution containing two types of polymer compounds having different molecular weights.
 また、本発明の複数の有機圧電体の組み合わせとしては、第一の有機圧電体の電気結合定数が0.34以上であり、第二の有機圧電体の分子量が5000以上である高分子化合物である組み合わせが好ましく、さらには第二の有機圧電体の分子量が10万以上であることが特に好ましい。 The combination of the plurality of organic piezoelectric bodies of the present invention is a polymer compound in which the electrical coupling constant of the first organic piezoelectric body is 0.34 or more and the molecular weight of the second organic piezoelectric body is 5000 or more. A certain combination is preferable, and the molecular weight of the second organic piezoelectric body is particularly preferably 100,000 or more.
 本発明の有機圧電材料により、圧電特性を維持しつつ機械的強度が高いものが得られる理由は明確ではないが、以下のように推測される。 The reason why the organic piezoelectric material of the present invention provides a material having high mechanical strength while maintaining piezoelectric characteristics is not clear, but is presumed as follows.
 圧電材料として、有機圧電体単体のみの場合には、機械的強度がある特定の方向においては弱いが、本発明の有機圧電材料は、少なくとも2層の有機圧電体からなり、各圧電材料間に界面が存在するため、この界面において機械的強度の方向性が変化し、その結果有機圧電体全体の機械的強度が向上すると推定される。 In the case where only a single organic piezoelectric material is used as the piezoelectric material, the mechanical strength is weak in a certain direction. However, the organic piezoelectric material of the present invention is composed of at least two layers of organic piezoelectric material, and between the piezoelectric materials. Since the interface exists, it is presumed that the directionality of the mechanical strength changes at the interface, and as a result, the mechanical strength of the whole organic piezoelectric body is improved.
 図1を用いて、本発明の有機圧電体を説明する。 The organic piezoelectric material of the present invention will be described with reference to FIG.
 図1は、本発明の有機圧電材料の例の模式断面図である。有機圧電材料1は、第一の有機圧電体2と、これと隣接する第二の有機圧電体3からなり、第一の有機圧電体2と第二の有機圧電体3とは積層されている構造を有している。 FIG. 1 is a schematic cross-sectional view of an example of the organic piezoelectric material of the present invention. The organic piezoelectric material 1 includes a first organic piezoelectric body 2 and a second organic piezoelectric body 3 adjacent thereto, and the first organic piezoelectric body 2 and the second organic piezoelectric body 3 are laminated. It has a structure.
 第一の有機圧電体2と第二の有機圧電体とが接触している面の近傍においては、第一の有機圧電体と第二の有機圧電体とが混合して存在してもよい。 In the vicinity of the surface where the first organic piezoelectric body 2 and the second organic piezoelectric body are in contact, the first organic piezoelectric body and the second organic piezoelectric body may be mixed and present.
 本発明の有機圧電材料は、上記第一および第二の有機圧電体以外の有機圧電体をさらに隣接して有してもよい。第一および第二の有機圧電体以外の有機圧電体として用いられる素材としては、上記第一および第二の有機圧電体で挙げられた素材を挙げることができる。 The organic piezoelectric material of the present invention may further include an organic piezoelectric body other than the first and second organic piezoelectric bodies. Examples of the material used as the organic piezoelectric body other than the first and second organic piezoelectric bodies include the materials mentioned in the first and second organic piezoelectric bodies.
 (有機圧電材料の作製方法)
 本発明の有機圧電材料は、複数の有機圧電体の膜を同時に形成する方法または別々に形成した有機圧電体の膜を一体化して形成する方法により作製することができる。
(Production method of organic piezoelectric material)
The organic piezoelectric material of the present invention can be produced by a method of simultaneously forming a plurality of organic piezoelectric films or a method of integrally forming separately formed organic piezoelectric films.
 有機圧電体の膜を作製する方法としては、溶融・流延法、上記有機圧電体を溶解してなる溶液を基板上に塗布し、乾燥して得る方法、上記有機圧電体の原料化合物を用いて従来公知の蒸着重合法や溶液重合塗布法などにより高分子膜を形成する方法が挙げられる。 As a method for producing an organic piezoelectric film, a melting / casting method, a method in which a solution obtained by dissolving the organic piezoelectric material is applied on a substrate and dried, and a raw material compound of the organic piezoelectric material is used. And a method of forming a polymer film by a conventionally known vapor deposition polymerization method or solution polymerization coating method.
 蒸着重合法としては、特開平7-258370号公報、特開平5-311399号公報、及び特開2006-49418号公報に開示されている方法を用いることができる。 As the vapor deposition polymerization method, methods disclosed in JP-A-7-258370, JP-A-5-311399, and JP-A-2006-49418 can be used.
 また溶液重合塗布法としては、有機圧電体原料の混合溶液を基板上に塗布し、減圧条件下である程度乾燥後(溶媒を除去した後)、加熱し、熱重合を行う方法を用いることができる。 In addition, as the solution polymerization coating method, a method in which a mixed solution of organic piezoelectric raw materials is coated on a substrate, dried to some extent under reduced pressure conditions (after the solvent is removed), and heated to perform thermal polymerization can be used. .
 第一の有機圧電体と第二の有機圧電体の膜を同時に形成する方法としては、組成が異なること、分子量が異なることなどで、溶媒に対する相溶性が異なる2つの高分子化合物である有機圧電体を溶液に溶解し塗布液とし、塗布液を基板上に塗布し、乾燥して膜を形成する方法が挙げられる。これは、乾燥途中で、塗布液が濃縮されるに従い2つの有機圧電体の塗布液への溶解度の差が顕著となり、所謂ブルーミング現象の一種により2つの膜を生ずるものと推測される。 As a method of simultaneously forming the film of the first organic piezoelectric body and the second organic piezoelectric body, the organic piezoelectric is two polymer compounds having different compatibility with the solvent due to different compositions and different molecular weights. Examples include a method in which a body is dissolved in a solution to form a coating solution, and the coating solution is applied onto a substrate and dried to form a film. This is presumed that during the drying process, as the coating solution is concentrated, the difference in solubility between the two organic piezoelectric bodies in the coating solution becomes significant, and two films are formed by a kind of so-called blooming phenomenon.
 例えば、重量平均分子量が100万であるフッ化ビニリデンの共重合体と、重量平均分子量が10万であるフッ化ビニリデンの共重合体とを用い、メチルエチルケトンを溶媒として塗布する方法が挙げられる。 For example, there is a method in which a vinylidene fluoride copolymer having a weight average molecular weight of 1,000,000 and a vinylidene fluoride copolymer having a weight average molecular weight of 100,000 are coated using methyl ethyl ketone as a solvent.
 また、第一の有機圧電体と第二の有機圧電体の膜を別々に作製する方法としては、例えば、第一の有機圧電体の膜を作製した後、この膜の上に、第一の有機圧電体の膜を実質的に溶解しない溶媒に第二の有機圧電体を含む塗布液を塗布し、乾燥して第二の有機圧電体の膜を作製する方法などがある。 In addition, as a method of separately manufacturing the first organic piezoelectric body film and the second organic piezoelectric body film, for example, after the first organic piezoelectric body film is manufactured, There is a method in which a coating liquid containing a second organic piezoelectric body is applied to a solvent that does not substantially dissolve the organic piezoelectric film and dried to produce a second organic piezoelectric film.
 (延伸処理)
 本発明の有機圧電材料は延伸処理を施したものであることが好ましい。延伸処理は、圧電特性を向上させるために行われるもので、種々の公知の方法を採用することができる。
(Extension process)
The organic piezoelectric material of the present invention is preferably subjected to a stretching treatment. The stretching process is performed to improve the piezoelectric characteristics, and various known methods can be employed.
 延伸処理は、所定形状の有機圧電体膜が破壊されない程度に一軸・ニ軸方向に延伸することができる。延伸倍率としては、2~10倍、好ましくは2~6倍の範囲で行うことができる。 The stretching treatment can be performed in a uniaxial / biaxial direction so that the organic piezoelectric film having a predetermined shape is not broken. The stretching ratio can be 2 to 10 times, preferably 2 to 6 times.
 例えば、ポリフッ化ビニリデン-トリフルオロエチレン共重合体の場合、エチルメチルケトン(MEK)に溶解した液をガラス板などの基板上に流延し、常温にて溶媒を乾燥させ、所望の厚さのフィルムを得て、このフィルムを室温で所定の倍率の長さに延伸する方法が挙げられる。 For example, in the case of a polyvinylidene fluoride-trifluoroethylene copolymer, a solution dissolved in ethyl methyl ketone (MEK) is cast on a substrate such as a glass plate, and the solvent is dried at room temperature to obtain a desired thickness. A method of obtaining a film and stretching the film at a predetermined magnification at room temperature may be mentioned.
 (超音波振動子)
 本発明の超音波振動子は、本発明の有機圧電材料に電極を付したものであり、対向する一対の電極間に、本発明の有機圧電材料を有する態様が好ましい。
(Ultrasonic transducer)
The ultrasonic vibrator of the present invention is obtained by attaching an electrode to the organic piezoelectric material of the present invention, and an embodiment having the organic piezoelectric material of the present invention between a pair of opposed electrodes is preferable.
 本発明の有機圧電材料は、超音波振動子に用いる場合、形成された膜の状態のまま使用することもできるが、延伸処理、分極処理が施されていることが好ましい。 When the organic piezoelectric material of the present invention is used for an ultrasonic vibrator, it can be used as it is in a formed film, but it is preferably subjected to stretching treatment and polarization treatment.
 (分極処理)
 分極処理の方法としては、従来公知の直流電圧印加処理、交流電圧印加処理又はコロナ放電処理方法が適用され得る。
(Polarization treatment)
As a method for polarization treatment, a conventionally known DC voltage application treatment, AC voltage application treatment, or corona discharge treatment method can be applied.
 例えば、コロナ放電処理法による場合には、コロナ放電処理は、市販の高電圧電源と電極からなる装置を使用して処理することができる。 For example, in the case of the corona discharge treatment method, the corona discharge treatment can be performed by using a commercially available apparatus comprising a high voltage power source and electrodes.
 放電条件は、機器や処理環境により異なるので適宜条件を選択すればよいが、高電圧電源の電圧としては-1~-20kV、電流としては1~80mA、電極間距離としては、1~10cm、印加電圧としては、0.5~2.0MV/mである条件が好ましい。 The discharge conditions vary depending on the equipment and the processing environment, so the conditions may be selected as appropriate. The voltage of the high-voltage power supply is -1 to -20 kV, the current is 1 to 80 mA, the distance between the electrodes is 1 to 10 cm, The applied voltage is preferably 0.5 to 2.0 MV / m.
 分極処理に用いられる電極としては、従来から用いられている針状電極、線状電極(ワイヤー電極)、網状電極を用いることができる。 Conventionally used needle electrodes, linear electrodes (wire electrodes), and mesh electrodes can be used as the electrodes used for the polarization treatment.
 分極処理は、下記の電極を付す前に行ってもよいし、電極を付した後に、当該電極を使用して分極処理を行ってもよい。 The polarization treatment may be performed before the following electrode is attached, or after the electrode is attached, the polarization treatment may be performed using the electrode.
 (電極)
 超音波振動子に付される電極に用いられる材料としては、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、銅(Cu)、ニッケル(Ni)、スズ(Sn)などが挙げられる。
(electrode)
Materials used for the electrodes attached to the ultrasonic transducer include gold (Au), platinum (Pt), silver (Ag), palladium (Pd), copper (Cu), nickel (Ni), tin (Sn) Etc.
 有機圧電材料に電極を付す方法としては、例えば、チタン(Ti)やクロム(Cr)などの下地金属をスパッタ法により0.02~1.0μmの厚さに形成した後、上記金属元素を主体とする金属及びそれらの合金からなる金属材料、さらには必要に応じ一部絶縁材料をスパッタ法、その他の適当な方法で1~10μmの厚さに形成する方法が挙げられる。 As a method for attaching an electrode to an organic piezoelectric material, for example, a base metal such as titanium (Ti) or chromium (Cr) is formed to a thickness of 0.02 to 1.0 μm by sputtering, and then the above metal element is mainly used. And a metal material composed of an alloy thereof and a metal material thereof, and further, if necessary, a part of the insulating material is formed by a sputtering method or other suitable methods to a thickness of 1 to 10 μm.
 電極形成はスパッタ法以外でも、微粉末の金属粉末と低融点ガラスとを混合した導電ペーストをスクリーン印刷やディッピング法、溶射法で形成することもできる。 Electrode formation can be performed by screen printing, dipping, or thermal spraying using a conductive paste in which fine metal powder and low-melting glass are mixed, as well as sputtering.
 さらに、有機圧電材料の膜の両面に形成した電極間に、所定の電圧を供給し、有機圧電材料の膜を分極処理することができる。 Furthermore, a predetermined voltage can be supplied between the electrodes formed on both sides of the organic piezoelectric material film to polarize the organic piezoelectric material film.
 超音波振動子は、超音波探触子に用いられる場合、基板と共に用いられることが好ましい。 When the ultrasonic transducer is used for an ultrasonic probe, it is preferably used together with a substrate.
 基板としては、ポリイミド、ポリアミド、ポリイミドアミド、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリメタクリル酸メチル(PMMA)、ポリカーボネート樹脂、シクロオレフィンポリマーのようなプラスチック板またはフィルムでもよいし、これらの素材の表面をアルミニウム、金、銅、マグネシウム、珪素等で覆ったものでもよい。 The substrate may be a plastic plate or film such as polyimide, polyamide, polyimide amide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate resin, cycloolefin polymer, The surface of these materials may be covered with aluminum, gold, copper, magnesium, silicon or the like.
 またアルミニウム、金、銅、マグネシウム、珪素単体、希土類のハロゲン化物の単結晶の板またはフィルムでもかまわない。 Also, a single crystal plate or film of aluminum, gold, copper, magnesium, silicon simple substance, or rare earth halide may be used.
 本発明に係る超音波振動子は、超音波探触子に用いられる場合、超音波受信用振動子として、または超音波送信用振動子として用いられるが、特に超音波受信用振動子として用いられることが好ましい態様である。 The ultrasonic transducer according to the present invention, when used in an ultrasonic probe, is used as an ultrasonic receiving transducer or an ultrasonic transmitting transducer, and particularly used as an ultrasonic receiving transducer. Is a preferred embodiment.
 図2を用いて、本発明の超音波振動子を説明する。 The ultrasonic transducer of the present invention will be described with reference to FIG.
 図2は、本発明の超音波振動子の例の模式断面図である。超音波振動子10は、第一の有機圧電体2と、第二の有機圧電体3とが積層された有機圧電材料1の両側に電極4が配置されている。電極4は、必要に応じ、有機圧電材料1の全面にわたり配置されてもよいし、有機圧電材料1の一部分に配置されてもよい。 FIG. 2 is a schematic cross-sectional view of an example of the ultrasonic transducer of the present invention. In the ultrasonic vibrator 10, electrodes 4 are arranged on both sides of an organic piezoelectric material 1 in which a first organic piezoelectric body 2 and a second organic piezoelectric body 3 are laminated. The electrode 4 may be disposed over the entire surface of the organic piezoelectric material 1 as necessary, or may be disposed on a part of the organic piezoelectric material 1.
 (超音波探触子)
 本発明の超音波探触子は、本発明の超音波振動子を具備したものである。超音波探触子は、超音波振動子として、超音波送信用振動子と超音波受信用振動子とを具備することが好ましい。
(Ultrasonic probe)
The ultrasonic probe of the present invention comprises the ultrasonic transducer of the present invention. The ultrasonic probe preferably includes an ultrasonic transmission transducer and an ultrasonic reception transducer as the ultrasonic transducer.
 本発明の超音波探触子は、超音波送信用振動子および超音波受信用振動子の少なくとも一方が本発明の超音波振動子であることが必要であるが、特に少なくとも超音波受信用振動子が本発明の超音波振動子であることが好ましい。 The ultrasonic probe of the present invention requires that at least one of the ultrasonic transmission transducer and the ultrasonic reception transducer is the ultrasonic transducer of the present invention. The child is preferably the ultrasonic transducer of the present invention.
 本発明においては、超音波の送受信の両方を一つの振動子で担ってもよいが、より好ましくは、送信用と受信用で振動子は分けて超音波探触子内に構成されることが好ましい。 In the present invention, both transmission and reception of ultrasonic waves may be performed by a single transducer, but more preferably, the transducers are configured separately for transmission and reception in the ultrasonic probe. preferable.
 本発明の超音波振動子以外の超音波振動子を用いる場合、それは従来公知のセラミックス無機圧電材料でも、有機圧電材料でもよい。 When an ultrasonic transducer other than the ultrasonic transducer of the present invention is used, it may be a conventionally known ceramic inorganic piezoelectric material or an organic piezoelectric material.
 送信用振動子と、受信用振動子の配列としては、各々を上下に配置する配列および並列に配置する配列のどちらでもよいが、上下に配置して積層する構造が好ましい。 The arrangement of the transducer for transmission and the transducer for reception may be either an array arranged one above the other or an array arranged in parallel, but a structure in which the transducers are arranged one above the other and stacked is preferable.
 積層する場合の送信用振動子および受信用振動子の厚さとしては、40~150μmであることが好ましい。 The thickness of the transmitting vibrator and the receiving vibrator when stacked is preferably 40 to 150 μm.
 本発明の超音波探触子は、必要に応じバッキング層、音響整合層、音響レンズなどを具備することが好ましい。 The ultrasonic probe of the present invention preferably includes a backing layer, an acoustic matching layer, an acoustic lens, and the like as necessary.
 図3に本発明の超音波探触子の好ましい態様の例を示す。超音波探触子20は、バッキング層6上に、送信用圧電材料5に電極4が付された送信用超音波振動子12を有し、送信用超音波振動子12上に基板7を有し、基板7上に受信用有機圧電材料11に電極4が付された受信用超音波振動子13を有し、さらにその上に音響整合層8および音響レンズ9を有する構成を有する。 FIG. 3 shows an example of a preferred embodiment of the ultrasonic probe of the present invention. The ultrasonic probe 20 has a transmission ultrasonic transducer 12 in which an electrode 4 is attached to a transmission piezoelectric material 5 on a backing layer 6, and has a substrate 7 on the transmission ultrasonic transducer 12. Then, the receiving ultrasonic transducer 13 having the electrode 4 attached to the receiving organic piezoelectric material 11 is provided on the substrate 7, and the acoustic matching layer 8 and the acoustic lens 9 are further provided thereon.
 (超音波医用画像診断装置)
 本発明の超音波探触子は、種々の態様の超音波診断装置に用いることができる。例えば、図4に示すような超音波画像検出装置において好適に使用することができる。
(Ultrasonic medical diagnostic imaging equipment)
The ultrasonic probe of the present invention can be used in various types of ultrasonic diagnostic apparatuses. For example, it can be suitably used in an ultrasonic image detection apparatus as shown in FIG.
 図4は、本発明の超音波画像検出装置の主要部の構成を示す概念図である。 FIG. 4 is a conceptual diagram showing the configuration of the main part of the ultrasonic image detection apparatus of the present invention.
 超音波画像検出装置は、例えば、生体などの被検体に対して超音波を送信し、被検体で反射した超音波をエコー信号として受信する超音波振動子が配列されている超音波探触子(プローブ)を備えている。 For example, the ultrasonic image detection apparatus transmits an ultrasonic wave to a subject such as a living body, and an ultrasonic probe in which ultrasonic transducers that receive ultrasonic waves reflected by the subject as echo signals are arranged. (Probe).
 また当該超音波探触子に電気信号を供給して超音波を発生させるとともに、当該超音波探触子の各超音波振動子が受信したエコー信号を受信する送受信回路と、送受信回路の送受信制御を行う送受信制御回路を備えている。 Also, an electric signal is supplied to the ultrasonic probe to generate an ultrasonic wave, and a transmission / reception circuit that receives an echo signal received by each ultrasonic transducer of the ultrasonic probe, and transmission / reception control of the transmission / reception circuit A transmission / reception control circuit is provided.
 さらに、送受信回路が受信したエコー信号を被検体の超音波画像データに変換する画像データ変換回路を備えている。また当該画像データ変換回路によって変換された超音波画像データでモニタを制御して表示する表示制御回路と、超音波画像検出装置全体の制御を行う制御回路を備えている。 Furthermore, an image data conversion circuit for converting the echo signal received by the transmission / reception circuit into ultrasonic image data of the subject is provided. Further, a display control circuit for controlling and displaying a monitor with the ultrasonic image data converted by the image data conversion circuit and a control circuit for controlling the entire ultrasonic image detection apparatus are provided.
 制御回路には、送受信制御回路、画像データ変換回路、表示制御回路が接続されており、制御回路はこれら各部の動作を制御している。そして、超音波探触子の各超音波振動子に電気信号を印加して被検体に対して超音波を送信し、被検体内部で音響インピーダンスの不整合によって生じる反射波を超音波探触子で受信する。 The transmission / reception control circuit, the image data conversion circuit, and the display control circuit are connected to the control circuit, and the control circuit controls the operations of these units. Then, an electric signal is applied to each ultrasonic transducer of the ultrasonic probe to transmit an ultrasonic wave to the subject, and the reflected wave generated by the mismatch of acoustic impedance inside the subject is detected by the ultrasonic probe. Receive at.
 以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
 (実施例1)
 (有機圧電材料1および超音波振動子1の作製と評価)
 フッ化ビニリデン(以下VDF)とトリフルオロエチレン(以下3FE)との共重合比率が80:20である共重合体粉末[以下P(VDF80/3FE20)](Mw2.2×10、Mw/Mn2.1)10.01gを60℃に加熱したエチルメチルケトン(以下MEK)に40gに溶解した。この溶液をガラス板上に塗布し、溶媒を乾燥させ、第一の有機圧電体の膜を作製した。このフィルムの上に、PVDF粉末(Mw4.8×10、Mw/Mn1.7)0.97g/MEK3gのMEK溶液を塗布し、溶媒を乾燥させ、第二の有機圧電体の膜を作製し、有機圧電体材料のフィルムを得た。このフィルムを室温で4倍に延伸した後、延伸した長さを保ったまま135℃1時間熱処理を行い、有機圧電材料1を得た。得られた熱処理後のフィルムの示差走査熱量計による吸熱ピーク温度は、118℃、120℃、141℃、153℃であった。
Example 1
(Production and evaluation of organic piezoelectric material 1 and ultrasonic vibrator 1)
Vinylidene fluoride (hereinafter VDF) and trifluoroethylene (hereinafter 3FE) copolymer powder copolymerization ratio of is 80:20 [hereinafter P (VDF 80 / 3FE 20) ] (Mw2.2 × 10 5, Mw /Mn2.1) 10.01 g was dissolved in 40 g in ethyl methyl ketone (hereinafter MEK) heated to 60 ° C. This solution was applied on a glass plate, and the solvent was dried to produce a first organic piezoelectric film. On this film, a MEF solution of 0.97 g / MEK 3 g of PVDF powder (Mw 4.8 × 10 6 , Mw / Mn 1.7) was applied, and the solvent was dried to produce a second organic piezoelectric film. A film of organic piezoelectric material was obtained. This film was stretched 4 times at room temperature, and then heat treated at 135 ° C. for 1 hour while maintaining the stretched length, whereby an organic piezoelectric material 1 was obtained. The endothermic peak temperatures of the obtained heat-treated film by differential scanning calorimetry were 118 ° C., 120 ° C., 141 ° C., and 153 ° C.
 得られたフィルムの両面に表面抵抗が1Ω以下になるように金/アルミニウムを蒸着塗布して表面電極付の試料を得た。つづいて、この電極に室温にて、0.1Hzの交流電圧を印加しながら分極処理を行い、超音波振動子1を得た。分極処理は低電圧から行い、最終的に電極間電場が50MV/mになるまで徐々に電圧をかけた。 Gold / aluminum was vapor-deposited on both surfaces of the obtained film so that the surface resistance was 1Ω or less to obtain a sample with a surface electrode. Subsequently, polarization treatment was performed on this electrode while applying an AC voltage of 0.1 Hz at room temperature, and the ultrasonic vibrator 1 was obtained. The polarization treatment was performed from a low voltage, and a voltage was gradually applied until the electric field between the electrodes finally reached 50 MV / m.
 (超音波振動子2の作製)
 P(VDF80/3FE20)共重合体粉末(Mw2.2×10、Mw/Mn2.1)9.97g用い、超音波振動子1を作製したのと同様な手順で製膜した。つづいて、この膜の上に、PVDF粉末(Mw4.8×10、Mw/Mn4.0)1.00g/MEK3gのMEK溶液を塗布し、溶媒を乾燥させフィルムを得、超音波振動子1と同様に延伸を行った。このフィルムに超音波振動子1を作製したのと同様な手順にて熱処理、電極付けを行い、分極済みの超音波振動子2を得た。
(Preparation of ultrasonic transducer 2)
Using 9.97 g of P (VDF 80 / 3FE 20 ) copolymer powder (Mw 2.2 × 10 5 , Mw / Mn 2.1), a film was formed in the same procedure as that for producing the ultrasonic vibrator 1. Subsequently, an MEK solution of 1.00 g / MEK 3 g of PVDF powder (Mw 4.8 × 10 5 , Mw / Mn 4.0) was applied on this film, and the solvent was dried to obtain a film. It extended | stretched similarly to. The film was subjected to heat treatment and electrode attachment in the same procedure as the production of the ultrasonic vibrator 1 to obtain a polarized ultrasonic vibrator 2.
 (超音波振動子3の作製)
 P(VDF80/3FE20)共重合体粉末(Mw2.2×10、Mw/Mn2.1)10.01gを用い、超音波振動子1を作製したのと同様な手順で製膜、延伸を行った。つづいて、このフィルムの上に、PVDF粉末(Mw4.8×10、Mw/Mn4.0)0.99g/MEK3gのMEK溶液を塗布し、溶媒を乾燥させた。さらに、このフィルムに熱処理、電極付けを行い、分極済みの超音波振動子3を得た。
(Preparation of ultrasonic transducer 3)
Using 10.01 g of P (VDF 80 / 3FE 20 ) copolymer powder (Mw2.2 × 10 5 , Mw / Mn2.1), the film was formed and stretched in the same procedure as the ultrasonic vibrator 1 was manufactured. Went. Subsequently, a MEK solution of 0.99 g / MEK 3 g of PVDF powder (Mw 4.8 × 10 5 , Mw / Mn 4.0) was applied on the film, and the solvent was dried. Furthermore, this film was subjected to heat treatment and electrode attachment to obtain a polarized ultrasonic transducer 3.
 (超音波振動子4(比較)の作製)
 P(VDF80/3FE20)共重合体粉末(Mw2.2×10、Mw/Mn2.1)を用い、超音波振動子1を作製したのと同様な手順で製膜、延伸、熱処理および電極付けを行い、分極済みの超音波振動子4を得た。
(Production of ultrasonic transducer 4 (comparative))
Using a P (VDF 80 / 3FE 20 ) copolymer powder (Mw 2.2 × 10 5 , Mw / Mn 2.1), film formation, stretching, heat treatment and Electrodes were attached to obtain a polarized ultrasonic transducer 4.
 (超音波振動子5(比較)の作製)
 m-キシリレンジアミン(以下XDA)と4,4′-ジフェニルメタンジイソシアネート(以下MDI)との共重合比率が50:50であるポリ尿素共重合体粉末(XDA-MDI)(Mw9.3×10、Mw/Mn3.8)(第二の有機圧電体)のDMF溶液をガラス板上に塗布し、溶媒を乾燥させた。つづいて、このフィルムの上に、P(VDF80/3FE20)共重合体粉末(Mw2.2×10、Mw/Mn2.1)(第一の有機圧電体)用い、超音波振動子1を作製したのと同様な手順で製膜を行った。その後、減圧下、50℃にて溶媒を乾燥させた。このフィルムへの延伸処理を試みたが、延伸されなかった。フィルムを熱処理し、電極付けを行い、分極済みの超音波振動子5を得た。
(Preparation of ultrasonic transducer 5 (comparative))
Polyurea copolymer powder (XDA-MDI) (Mw 9.3 × 10 5 ) having a copolymerization ratio of m-xylylenediamine (hereinafter referred to as XDA) and 4,4′-diphenylmethane diisocyanate (hereinafter referred to as MDI) of 50:50 , Mw / Mn 3.8) (second organic piezoelectric body) DMF solution was applied on a glass plate, and the solvent was dried. Subsequently, P (VDF 80 / 3FE 20 ) copolymer powder (Mw 2.2 × 10 5 , Mw / Mn 2.1) (first organic piezoelectric body) is used on this film, and the ultrasonic vibrator 1 is used. Film formation was performed in the same procedure as that for preparing the film. Thereafter, the solvent was dried at 50 ° C. under reduced pressure. An attempt was made to stretch the film, but it was not stretched. The film was heat-treated and electrodes were attached to obtain a polarized ultrasonic transducer 5.
 (超音波振動子6~10の作製)
 超音波振動子1~5を作製したのと同様にして、第一の有機圧電体として、P(VDF60/3FE40)共重合体粉末(Mw3.5×10、Mw/Mn1.9)と各対応する材料を用い、分極済みの超音波振動子6~10を得た。
(Production of ultrasonic transducers 6 to 10)
Similarly to the production of the ultrasonic vibrators 1 to 5, as the first organic piezoelectric body, P (VDF 60 / 3FE 40 ) copolymer powder (Mw 3.5 × 10 5 , Mw / Mn 1.9) Using the corresponding materials, polarized ultrasonic transducers 6 to 10 were obtained.
 (超音波振動子11~16(比較)の作製)
 下記に記載の第一の有機圧電体と、第二の有機圧電体とを用い、上記方法と同様にして、表1に示す超音波振動子11~16を得た。
(Production of ultrasonic transducers 11 to 16 (comparative))
Using the first organic piezoelectric body described below and the second organic piezoelectric body, ultrasonic transducers 11 to 16 shown in Table 1 were obtained in the same manner as described above.
 (超音波振動子17~19の作製)
 下記に記載の第一の有機圧電体と、第二の有機圧電体とを用い、表1に示す割合で第一の有機圧電体と、第二の有機圧電体との割合を変えた他は、超音波振動子1と同様にして、超音波振動子17~19を作製した。
(Preparation of ultrasonic transducers 17 to 19)
The first organic piezoelectric body described below and the second organic piezoelectric body were used, and the ratios of the first organic piezoelectric body and the second organic piezoelectric body were changed at the ratios shown in Table 1. Ultrasonic vibrators 17 to 19 were produced in the same manner as the ultrasonic vibrator 1.
 (超音波振動子20の作製)
 フッ化ビニリデンとトリフルオロエチレンとの共重合比率が80:20である共重合体粉末(Mw2.2×10、Mw/Mn2.1)10.01g、同共重合体粉末(Mw5.3×10、Mw/Mn1.9)0.97gを50℃に加熱したエチルメチルケトン(以下MEK)1000mlに溶解した。この溶液をガラス板上に塗布した。その後、常温にて溶媒を乾燥させ、厚さ約140μmのフィルム(有機圧電体膜)を得た。このフィルムを室温で4倍に延伸した後、延伸した長さを保ったまま135℃1時間熱処理を行った。得られたフィルムの両面に表面抵抗が1Ω以下になるように金/アルミニウムを蒸着塗布して表面電極付の試料を得た。つづいて、この電極に室温にて、0.1Hzの交流電圧を印加しながら分極処理を行った。分極処理は低電圧から行い、最終的に電極間電場が50MV/mになるまで徐々に電圧をかけ超音波振動子20を得た。
(Preparation of ultrasonic transducer 20)
10.01 g of copolymer powder (Mw 2.2 × 10 5 , Mw / Mn 2.1) having a copolymerization ratio of vinylidene fluoride and trifluoroethylene of 80:20, and copolymer powder (Mw 5.3 ×) 10 6 , Mw / Mn 1.9) 0.97 g was dissolved in 1000 ml of ethyl methyl ketone (hereinafter MEK) heated to 50 ° C. This solution was applied on a glass plate. Thereafter, the solvent was dried at room temperature to obtain a film (organic piezoelectric film) having a thickness of about 140 μm. This film was stretched 4 times at room temperature, and then heat treated at 135 ° C. for 1 hour while maintaining the stretched length. Gold / aluminum was vapor-deposited on both surfaces of the obtained film so that the surface resistance was 1Ω or less to obtain a sample with a surface electrode. Subsequently, the electrode was subjected to polarization treatment while applying an AC voltage of 0.1 Hz at room temperature. The polarization treatment was performed from a low voltage, and the ultrasonic transducer 20 was obtained by gradually applying a voltage until the electric field between the electrodes finally reached 50 MV / m.
 (超音波振動子21の作製)
 超音波振動子5を作製したのと同様にして、第一の有機圧電体として、P(VDF60/3FE40)共重合体粉末(Mw2.2×10、Mw/Mn2.1)、第二の有機圧電体として、4,4′-メチレンジアニリン(以下MDA)とMDIとのポリ尿素共重合体粉末(MDA-MDI)(Mw3.7×10、Mw/Mn2.9)を用い、製膜および乾燥を行った。このフィルムに延伸処理を施し、分極済みの超音波振動子21を得た。
(Preparation of ultrasonic transducer 21)
Similarly to the production of the ultrasonic vibrator 5, as the first organic piezoelectric body, P (VDF 60 / 3FE 40 ) copolymer powder (Mw 2.2 × 10 5 , Mw / Mn 2.1), Polyurea copolymer powder (MDA-MDI) of 4,4′-methylenedianiline (hereinafter referred to as MDA) and MDI (Mw 3.7 × 10 5 , Mw / Mn 2.9) is used as the second organic piezoelectric body. Film formation and drying were performed. The film was stretched to obtain a polarized ultrasonic transducer 21.
 [分子量および分子量分布の測定方法]
 数平均分子量Mn、重量平均分子量Mwはゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の値である。東ソー社製高速液体クロマトグラフィーHLC-8220に東ソー社製カラムTSKgel α-M(7.8mmI.D.×30cm)を2本装填し、検出器は示差屈折率検出器として測定を行った。展開溶媒にN,N-ジメチルホルムアミドを用い、流速1.0ml/分、40℃にて行った。
[Measurement method of molecular weight and molecular weight distribution]
The number average molecular weight Mn and the weight average molecular weight Mw are values in terms of polystyrene by gel permeation chromatography (GPC). Tosoh high performance liquid chromatography HLC-8220 was loaded with two Tosoh column TSKgel α-M (7.8 mm ID × 30 cm), and the detector was used as a differential refractive index detector. N, N-dimethylformamide was used as a developing solvent, and the flow rate was 1.0 ml / min at 40 ° C.
 [圧電特性評価方法]
 上記のようにして得られた電極付の超音波振動子の両面の電極にリード線を付け、アジレントテクノロジー社製インピーダンスアナライザ4294Aを用いて、25℃雰囲気下において、40Hzから110MHzまで等間隔で600点周波数掃引した。厚み共振周波数における比誘電率の値を求めた。同様に、厚み共振周波数付近の抵抗値のピーク周波数P、コンダクタンスのピーク周波数Sをそれぞれ求め、下記式にて電気機械結合定数ktを求めた。
[Piezoelectric property evaluation method]
Lead wires are attached to the electrodes on both sides of the ultrasonic transducer with electrodes obtained as described above, and 600 Hz at an equal interval from 40 Hz to 110 MHz in an atmosphere of 25 ° C. using an impedance analyzer 4294A manufactured by Agilent Technologies. The point frequency was swept. The value of the relative dielectric constant at the thickness resonance frequency was obtained. Similarly, the peak frequency P of the resistance value near the thickness resonance frequency and the peak frequency S of the conductance were obtained, and the electromechanical coupling constant kt was obtained by the following equation.
 kt=(α/tan(α))1/2 ただし、α=(π/2)×(S/P)
 インピーダンスアナライザを用いて厚み共振周波数から電気機械結合定数を求める方法としては、電子情報技術産業協会規格JEITA EM-4501(旧EMAS-6100)圧電セラミック振動子の電気的試験方法に記載の円盤状振動子の厚みたて振動に4.2.6項に準拠した。
kt = (α / tan (α)) 1/2 where α = (π / 2) × (S / P)
As a method of obtaining an electromechanical coupling constant from a thickness resonance frequency using an impedance analyzer, a disk-like vibration described in the electrical information testing method of the JEITA EM-4501 (formerly EMAS-6100) piezoelectric ceramic vibrator of the Japan Electronics and Information Technology Industries Association The thickness of the child was measured in accordance with Section 4.2.6.
 電気機械結合定数ktの値としては、0.24以上が実用的に良好な範囲である。 As a value of the electromechanical coupling constant kt, 0.24 or more is a practically good range.
 [加工性評価方法]
 上記により得られた有機圧電体材料の薄膜から所定の大きさの有機圧電材料とするために切断した際の膜の変形を観察し、これを加工性の指標とした。
[Processability evaluation method]
Deformation of the film was observed when the organic piezoelectric material thin film obtained as described above was cut to obtain an organic piezoelectric material of a predetermined size, and this was used as an index of workability.
 具体的には、厚さ40μm、20cm×30cmのフィルムを作製し、押切カッターで2cm×5cmの大きさに切断した。 Specifically, a film having a thickness of 40 μm and a size of 20 cm × 30 cm was produced and cut into a size of 2 cm × 5 cm with a press cutter.
 上記評価結果を表1に示す。(kt:電気機械結合定数、H(%):破断点伸度) The evaluation results are shown in Table 1. (Kt: electromechanical coupling constant, H (%): elongation at break)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
A-1:フッ化ビニリデン(以下VDF)とトリフルオロエチレン(以下3FE)との共重合比率が80:20である共重合体[以下P(VDF80/3FE20)](Mw2.2×105、Mw/Mn2.1)(延伸、熱処理あり)
A-2:P(VDF80/3FE20)共重合体(Mw2.2×10、Mw/Mn2.1)(熱処理のみ)
A-3:PVDF(Mw4.8×10、Mw/Mn1.7)(延伸、熱処理)
A-4:PVDF(Mw4.8×10、Mw/Mn1.7)(熱処理))
A-5:フッ化ビニリデン(以下VDF)とトリフルオロエチレン(以下3FE)との共重合比率が80:20である共重合体[以下P(VDF80/3FE20)](Mw3.1×10、Mw/Mn5.4)(延伸、熱処理あり)
A-11:フッ化ビニリデン(以下VDF)とトリフルオロエチレン(以下3FE)との共重合比率が60:40である共重合体[以下P(VDF60/3FE40)](Mw3.5×10、Mw/Mn1.9)
B-1:P(VDF80/3FE20)共重合体(Mw2.2×10、Mw/Mn2.1)(熱処理のみ)
B-2:PVDF(Mw4.8×10、Mw/Mn1.7)(延伸、熱処理)
B-3:PVDF(Mw4.8×10、Mw/Mn1.7)(熱処理)
B-4:XDAとMDIとの共重合比率が50:50であるポリ尿素共重合体粉末(XDA-MDI)(Mw9.3×10、Mw/Mn3.8)(熱処理)
B-5:P(VDF80/3FE20)共重合体(Mw5.3×10、Mw/Mn1.9)(延伸、熱処理)
B-6:4,4′-メチレンジアニリン(以下MDA)とMDIとの共重合比率が50:50であるポリ尿素共重合体粉末(MDA-MDI)(Mw3.7×10、Mw/Mn2.9)(熱処理、延伸)
 表1から、本発明の有機圧電材料は、優れた圧電特性を維持しており、加工性に優れ、機械的強度の高い超音波振動子を与えることが分かる。
A-1: a copolymer having a copolymerization ratio of vinylidene fluoride (hereinafter VDF) and trifluoroethylene (hereinafter 3FE) of 80:20 [hereinafter P (VDF80 / 3FE20)] (Mw 2.2 × 105, Mw /Mn2.1) (with stretching and heat treatment)
A-2: P (VDF 80 / 3FE 20) copolymer (Mw2.2 × 10 5, Mw / Mn2.1) ( heat treatment only)
A-3: PVDF (Mw 4.8 × 10 5 , Mw / Mn 1.7) (stretching, heat treatment)
A-4: PVDF (Mw 4.8 × 10 5 , Mw / Mn 1.7) (heat treatment))
A-5: a copolymer having a copolymerization ratio of vinylidene fluoride (hereinafter referred to as VDF) and trifluoroethylene (hereinafter referred to as 3FE) of 80:20 [hereinafter referred to as P (VDF80 / 3FE20)] (Mw 3.1 × 10 5 , Mw / Mn 5.4) (with stretching and heat treatment)
A-11: a copolymer having a copolymerization ratio of vinylidene fluoride (hereinafter VDF) and trifluoroethylene (hereinafter 3FE) of 60:40 [hereinafter P (VDF60 / 3FE40)] (Mw 3.5 × 10 5 , Mw / Mn 1.9)
B-1: P (VDF 80 / 3FE 20) copolymer (Mw2.2 × 10 5, Mw / Mn2.1) ( heat treatment only)
B-2: PVDF (Mw 4.8 × 10 5 , Mw / Mn 1.7) (stretching, heat treatment)
B-3: PVDF (Mw 4.8 × 10 5 , Mw / Mn 1.7) (heat treatment)
B-4: Polyurea copolymer powder (XDA-MDI) having a copolymerization ratio of XDA and MDI of 50:50 (Mw 9.3 × 10 5 , Mw / Mn 3.8) (heat treatment)
B-5: P (VDF 80 / 3FE 20 ) copolymer (Mw 5.3 × 10 6 , Mw / Mn 1.9) (stretching, heat treatment)
B-6: Polyurea copolymer powder (MDA-MDI) having a copolymerization ratio of 4,4′-methylenedianiline (hereinafter referred to as MDA) and MDI of 50:50 (Mw 3.7 × 10 5 , Mw / Mn 2.9) (heat treatment, stretching)
From Table 1, it can be seen that the organic piezoelectric material of the present invention maintains an excellent piezoelectric characteristic, provides an ultrasonic vibrator having excellent workability and high mechanical strength.
 (実施例2)
 -超音波探触子の作製と評価-
 (送信用振動子の作製)
 成分原料であるCaCO、La、BiとTiO、及び副成分原料であるMnOを準備し、成分原料については、成分の最終組成が(Ca0.97La0.03)Bi4.01Ti15となるように秤量した。次に、純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて8時間混合し、十分に乾燥を行い、混合粉体を得た。
(Example 2)
-Fabrication and evaluation of ultrasonic probe-
(Manufacture of transducer for transmission)
Component raw materials CaCO 3 , La 2 O 3 , Bi 2 O 3 and TiO 2 , and subcomponent raw materials MnO are prepared, and for the component raw materials, the final composition of the components is (Ca 0.97 La 0.03 ) Weighed to be Bi 4.01 Ti 4 O 15 . Next, pure water was added, mixed in a ball mill containing zirconia media in pure water for 8 hours, and sufficiently dried to obtain a mixed powder.
 得られた混合粉体を、仮成形し、空気中、800℃で2時間仮焼を行い仮焼物を作製した。次に、得られた仮焼物に純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて微粉砕を行い、乾燥することにより圧電セラミックス原料粉末を作製した。 The obtained mixed powder was temporarily molded and calcined in air at 800 ° C. for 2 hours to prepare a calcined product. Next, pure water was added to the obtained calcined product, pulverized with a ball mill containing zirconia media in pure water, and dried to prepare a piezoelectric ceramic raw material powder.
 微粉砕においては、微粉砕を行う時間および粉砕条件を変えることにより、それぞれ粒子径100nmの圧電セラミックス原料粉末を得た。それぞれ粒子径の異なる各圧電セラミックス原料粉末にバインダーとして純水を6質量%添加し、プレス成形して、厚み100μmの板状仮成形体とし、この板状仮成形体を真空パックした後、235MPaの圧力でプレスにより成形した。次に、上記の成形体を焼成した。最終焼結体の厚さは20μmの焼結体を得た。なお、焼成温度は、それぞれ1100℃であった。抗電界の1.5倍以上の電界を1分間印加して分極処理を施した。 In pulverization, piezoelectric ceramic raw material powder having a particle diameter of 100 nm was obtained by changing the pulverization time and pulverization conditions. 6% by mass of pure water as a binder is added to each piezoelectric ceramic raw material powder having a different particle diameter, press-molded to form a plate-shaped temporary molded body having a thickness of 100 μm, and this plate-shaped temporary molded body is vacuum-packed and then 235 MPa. It shape | molded by the press with the pressure of. Next, the molded body was fired. The final sintered body had a thickness of 20 μm. The firing temperature was 1100 ° C. Polarization treatment was performed by applying an electric field of 1.5 times or more of the coercive electric field for 1 minute.
 (超音波探触子1、超音波画像検出装置の作製)
 常法に従って、上記の送信用振動子の上に基板を介して超音波振動子1を積層し、かつバッキング層と音響整合層を設置し超音波探触子1を作製した。超音波探触子1と同様にして、超音波振動子2、3、5~8、10~21を用い超音波探触子2、3、5~8、10~21を作製した。これらを用い、図4に記載の機能を有する超音波検出装置1~3、5~8、10~20を作製し、生体を対象として測定を行った。超音波検出装置1~3、6~8、17~20においては良好な画像が得られたが、超音波検出装置5、10~16においては画像が不明瞭であった。
(Production of ultrasonic probe 1 and ultrasonic image detection device)
In accordance with a conventional method, the ultrasonic transducer 1 was manufactured by laminating the ultrasonic transducer 1 on the above-described transmission transducer via a substrate, and installing a backing layer and an acoustic matching layer. In the same manner as the ultrasonic probe 1, ultrasonic probes 2, 3, 5 to 8, 10 to 21 were produced using the ultrasonic transducers 2, 3, 5 to 8, 10 to 21. Using these, ultrasonic detectors 1 to 3, 5 to 8, and 10 to 20 having the functions shown in FIG. 4 were produced, and measurement was performed on a living body. Good images were obtained with the ultrasonic detectors 1 to 3, 6 to 8, and 17 to 20, but the images were unclear with the ultrasonic detectors 5, 10 to 16.

Claims (11)

  1. 電気機械結合定数ktが0.25以上である第一の有機圧電体と、当該第一の有機圧電体と隣接し、破断点伸度が70%以上、910%以下である第二の有機圧電体とを含有することを特徴とする有機圧電材料。 A first organic piezoelectric body having an electromechanical coupling constant kt of 0.25 or more and a second organic piezoelectric element adjacent to the first organic piezoelectric body and having an elongation at break of 70% or more and 910% or less An organic piezoelectric material comprising a body.
  2. 前記第一の有機圧電体が、フッ化ビニリデンの重合体または共重合体であることを特徴とする請求の範囲第1項に記載の有機圧電材料。 2. The organic piezoelectric material according to claim 1, wherein the first organic piezoelectric material is a polymer or copolymer of vinylidene fluoride.
  3. 前記第一の有機圧電体の有機圧電材料に対する含有量が、50質量%以上であることを特徴とする請求の範囲第1項または第2項に記載の有機圧電材料。 3. The organic piezoelectric material according to claim 1, wherein the content of the first organic piezoelectric material with respect to the organic piezoelectric material is 50% by mass or more.
  4. 前記有機圧電材料が、延伸処理されて形成された有機圧電材料であることを特徴とする請求の範囲第1項から第3項のいずれか1項に記載の有機圧電材料。 The organic piezoelectric material according to any one of claims 1 to 3, wherein the organic piezoelectric material is an organic piezoelectric material formed by stretching.
  5. 前記第一の有機圧電体の層と、前記第二の有機圧電体の層とが積層された積層体であることを特徴とする請求の範囲第1項から第4項のいずれか1項に記載の有機圧電材料。 5. The structure according to claim 1, wherein the first organic piezoelectric layer and the second organic piezoelectric layer are stacked. The organic piezoelectric material described.
  6. 前記有機圧電材料が、重量平均分子量の異なる2種の高分子有機圧電体を含有する塗布液を用い、製膜された有機圧電材料であることを特徴とする請求の範囲第1項から第5項のいずれか1項に記載の有機圧電材料。 6. The organic piezoelectric material according to claim 1, wherein the organic piezoelectric material is an organic piezoelectric material formed by using a coating liquid containing two types of polymer organic piezoelectric bodies having different weight average molecular weights. The organic piezoelectric material according to any one of the items.
  7. 請求の範囲第6項に記載の有機圧電材料を作製する、有機圧電材料の作製方法であって、重量平均分子量の異なる2種の高分子有機圧電体を含有する塗布液を用い製膜し、2層の有機圧電体が積層された有機圧電材料を作製することを特徴とする有機圧電材料の作製方法。 An organic piezoelectric material production method for producing the organic piezoelectric material according to claim 6, wherein a film is formed using a coating liquid containing two types of polymer organic piezoelectric bodies having different weight average molecular weights, A method for producing an organic piezoelectric material, comprising producing an organic piezoelectric material in which two layers of an organic piezoelectric material are laminated.
  8. 請求の範囲第1項から第6項のいずれか1項に記載の有機圧電材料を有することを特徴とする超音波振動子。 An ultrasonic transducer comprising the organic piezoelectric material according to any one of claims 1 to 6.
  9. 対向する一対の電極間に、請求の範囲第1項から第6項のいずれか1項に記載の有機圧電材料を有することを特徴とする請求の範囲第8項に記載の超音波振動子。 The ultrasonic transducer according to claim 8, comprising the organic piezoelectric material according to any one of claims 1 to 6 between a pair of opposed electrodes.
  10. 請求の範囲第8項または第9項に記載の超音波振動子を具備することを特徴とする超音波探触子。 An ultrasonic probe comprising the ultrasonic transducer according to claim 8 or 9.
  11. 請求の範囲第10項に記載の超音波探触子を具備することを特徴とする超音波画像検出装置。 An ultrasonic image detection apparatus comprising the ultrasonic probe according to claim 10.
PCT/JP2009/054291 2008-08-06 2009-03-06 Organic piezoelectric material, method for production of the same, and ultrasonic oscillator, ultrasonic probe and ultrasonic image detection device each comprising the same WO2010016291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523780A JPWO2010016291A1 (en) 2008-08-06 2009-03-06 ORGANIC PIEZOELECTRIC MATERIAL, ITS MANUFACTURING METHOD, ULTRASONIC VIBRATOR, ULTRASONIC PROBE AND ULTRASONIC IMAGE DETECTION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008202867 2008-08-06
JP2008-202867 2008-08-06

Publications (1)

Publication Number Publication Date
WO2010016291A1 true WO2010016291A1 (en) 2010-02-11

Family

ID=41663517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054291 WO2010016291A1 (en) 2008-08-06 2009-03-06 Organic piezoelectric material, method for production of the same, and ultrasonic oscillator, ultrasonic probe and ultrasonic image detection device each comprising the same

Country Status (2)

Country Link
JP (1) JPWO2010016291A1 (en)
WO (1) WO2010016291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159354A1 (en) * 2015-04-02 2016-10-06 株式会社イデアルスター Piezoelectric film and process for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860584A (en) * 1981-10-06 1983-04-11 Toray Ind Inc Production of high molecular piezo-electric conductor
WO2006127285A1 (en) * 2005-05-26 2006-11-30 Eastman Chemical Company Micro-coextruded film modified with piezoelectric layers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606220B2 (en) * 1979-04-11 1985-02-16 三菱油化株式会社 Stretched thin film production method of polyvinylidene fluoride or vinylidene fluoride copolymer
JPS5869019A (en) * 1981-10-22 1983-04-25 Kureha Chem Ind Co Ltd Manufacture of polyvinylidene fluoride resin molded item
US4434114A (en) * 1982-02-04 1984-02-28 Pennwalt Corporation Production of wrinkle-free piezoelectric films by poling
AU2005254358B2 (en) * 2004-06-15 2011-03-10 Kureha Corporation Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
JP4835485B2 (en) * 2007-03-26 2011-12-14 ダイキン工業株式会社 Ferroelectric laminate and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860584A (en) * 1981-10-06 1983-04-11 Toray Ind Inc Production of high molecular piezo-electric conductor
WO2006127285A1 (en) * 2005-05-26 2006-11-30 Eastman Chemical Company Micro-coextruded film modified with piezoelectric layers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAROL MAZUR: "ELECTRET AND PIEZOELECTRIC PROPERTIES IN THE LAMINATED SYSTEMS OF PTFE AND PUE POLYMER FILMS", 1992 PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CONDUCTION AND BREAKDOWN IN SOLID DIELECTRICS, IEEE, - 22 June 1992 (1992-06-22), pages 280 - 284 *
KAROL MAZUR: "PIEZOELECTRICITY OF PVDF/PUE, PVDF/PMMA AND PVDF/PMMA+BaTi03 LAMINATES", IEEE TRANSACTIONS ON ELECTRICAL INSULATION, vol. 27, no. ISS.4, August 1992 (1992-08-01), pages 782 - 786 *
NAKAZAWA M. ET AL.: "A 100MHz MULTI-LAYERED HIGH PERFORMANCE TRANSDUCER USING POLYUREA THIN FILM", 2006 IEEE ULTRASONIC SYMPOSIUM, - 2 October 2006 (2006-10-02), pages 2421 - 2424 *
NEWMAN B.A. ET AL.: "ASYMMETRY IN FERROELECTRIC POLYMER LAMINATE COMPOSITES", POLYMER PREPRINTS, vol. 37, no. 1, March 1996 (1996-03-01), pages 616 - 617 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159354A1 (en) * 2015-04-02 2016-10-06 株式会社イデアルスター Piezoelectric film and process for producing same
JP2016197626A (en) * 2015-04-02 2016-11-24 株式会社イデアルスター Piezoelectric film and method of manufacturing the same
KR20170134564A (en) * 2015-04-02 2017-12-06 가부시키가이샤 이디알 스타 Piezoelectric film and manufacturing method thereof
CN107534080A (en) * 2015-04-02 2018-01-02 理想星株式会社 Piezoelectric film and its manufacture method
US10535811B2 (en) 2015-04-02 2020-01-14 Ideal Star Inc. Piezoelectric film and process for producing same
CN107534080B (en) * 2015-04-02 2020-08-28 理想星株式会社 Piezoelectric film and method for manufacturing same
KR102651023B1 (en) * 2015-04-02 2024-03-25 피에조포리마돗토코무 가부시키가이샤 Piezoelectric film and its manufacturing method

Also Published As

Publication number Publication date
JPWO2010016291A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
Holmes-Siedle et al. PVdF: An electronically-active polymer for industry
JP5392090B2 (en) Ultrasonic wave receiving vibrator, manufacturing method thereof, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
JP5493520B2 (en) Organic piezoelectric material manufacturing method, organic piezoelectric material, ultrasonic transducer, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
WO2008015917A1 (en) Ultrasonic probe, and ultrasonic probe manufacturing method
JP5633509B2 (en) Organic piezoelectric material, ultrasonic probe, and ultrasonic image detection apparatus
WO2010106924A1 (en) Method of drawing organic piezoelectric material, method of producing organic piezoelectric material, ultrasound transducer, ultrasound probe and ultrasound medical image diagnosis device
JP5533651B2 (en) Organic piezoelectric material manufacturing method, ultrasonic transducer, and ultrasonic medical diagnostic imaging apparatus
WO2010061726A1 (en) Organic piezoelectric material, ultrasonic transducer and ultrasonic probe
JP2008188415A (en) Piezoelectric element, manufacturing method for it, and ultrasonic probe equipped with the piezoelectric element
WO2010016291A1 (en) Organic piezoelectric material, method for production of the same, and ultrasonic oscillator, ultrasonic probe and ultrasonic image detection device each comprising the same
JP2010095606A (en) Organic polymer film, organic piezoelectric film, ultrasonic vibrator, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
JP2010114122A (en) Organic piezoelectric body, ultrasonic resonator, ultrasonic probe and ultrasonic image detector
JP5315925B2 (en) Organic piezoelectric material, organic piezoelectric film manufacturing method, ultrasonic transducer and ultrasonic probe using the same
JP2010123845A (en) Organic piezoelectric substance, organic piezoelectric material, ultrasonic vibrator, and ultrasonic probe
JP5115348B2 (en) Organic piezoelectric material, method for producing organic piezoelectric film, ultrasonic transducer, and ultrasonic probe
WO2010001633A1 (en) Organic piezoelectric material, process for producing the organic piezoelectric material, ultrasonic vibrator, and ultrasonic image diagnosis apparatus for medical application
JP2010209277A (en) Organic piezoelectric material, ultrasonic vibrator element and ultrasonic probe
JP2010182994A (en) Organic piezoelectric element, ultrasonic vibrator, and ultrasonic probe
WO2010029783A1 (en) Organic piezoelectric material, organic piezoelectric film, ultrasound transducer, method for manufacturing ultrasound transducer, ultrasound probe and ultrasound medical imaging device
JP2010219484A (en) Organic piezoelectric material, ultrasonic vibrator, ultrasonic probe, and ultrasonic medical image diagnosis device
JP5464213B2 (en) ORGANIC PIEZOELECTRIC MATERIAL, MANUFACTURING METHOD THEREOF, ULTRASONIC VIBRATOR, ULTRASONIC PROBE, AND ULTRASONIC MEDICAL IMAGE DIAGNOSIS DEVICE USING THE SAME
JP5652203B2 (en) Organic piezoelectric material and ultrasonic probe
JP5459216B2 (en) Organic piezoelectric materials, ultrasonic transducers and ultrasonic probes
JP2010138339A (en) Thiourea group-containing organic polymer, organic piezoelectric material containing compound containing urea group or thiourea group, and ultrasonic wave probe
JP2010199488A (en) Organic piezoelectric body, ultrasonic vibrator and ultrasonic probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523780

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804778

Country of ref document: EP

Kind code of ref document: A1