JPH02203246A - Grain size distribution measuring instrument - Google Patents

Grain size distribution measuring instrument

Info

Publication number
JPH02203246A
JPH02203246A JP8923462A JP2346289A JPH02203246A JP H02203246 A JPH02203246 A JP H02203246A JP 8923462 A JP8923462 A JP 8923462A JP 2346289 A JP2346289 A JP 2346289A JP H02203246 A JPH02203246 A JP H02203246A
Authority
JP
Japan
Prior art keywords
detector
size distribution
light intensity
laser beam
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8923462A
Other languages
Japanese (ja)
Other versions
JPH0675029B2 (en
Inventor
Takeshi Niwa
丹羽 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1023462A priority Critical patent/JPH0675029B2/en
Publication of JPH02203246A publication Critical patent/JPH02203246A/en
Publication of JPH0675029B2 publication Critical patent/JPH0675029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure a wide range of grain size distributions with high accuracy by condensing laser light by a Fourier transform lens onto a sectorial detector consisting of plural photosensors and detecting the diffracted light intensity, etc., of collimated beams of the laser light by the sectorial detector. CONSTITUTION:A sample particle group 40 in a flow cell 20 consisting of a transparent body is irradiated via a circularly deflecting plate 12 with the collimated beams (a) of the laser light formed by a semiconductor laser 11 and a collimator lens 13. The beams (a) are diffracted or scattered by the angle according to the grain diameter. The laser light (b) transmitted through the flow cell 20 is condensed by the Fourier transform lens 31 onto the sectorial detector 32 and the diffracted light intensity or scattered light intensity of the laser light (b) is detected by the detector 32. The electric signal outputted from the detector 32 is introduced to a microcomputer and the diffracted light intensity distribution or scattered light intensity distribution of the laser light (b) is determined in accordance with the resulted data. The grain size distribution of the particle group 40 is calculated in accordance with Fraunhofer diffraction theory and Mie scattering theory.

Description

【発明の詳細な説明】 生業上皇■朋分団 本発明は粉体の物性で最も基本的なものの一つである粒
度分布をレーザ回折法等により測定する粒度分布測定装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particle size distribution measuring device for measuring particle size distribution, which is one of the most basic physical properties of powder, by laser diffraction or the like.

!米夏伎徂 粉体の物性で最も基本的なものの一つに粒度分布がある
。粒度分布は粉体そのものの物理的、化学的性質を左右
する重要な物性であり、更に粉体を原料として生産され
る製品の性能や品質に深く関わっている。近年では、フ
ァインセラミックス原料としての微粉末が注目を浴びて
おり、粒度分布を高精度で迅速に測定し得るものとして
レーザ回折法による粒度分布測定装置がある。この装置
の測定原理を説明すると、供試粒子群にレーザ光を照射
すると、照射されたレーザ光は供試粒子群に回折され、
この回折光をレンズで集光すれば、供試粒子群の背後に
リング状の回折像が得られる。
! One of the most fundamental physical properties of powder is particle size distribution. Particle size distribution is an important physical property that affects the physical and chemical properties of powder itself, and is also deeply related to the performance and quality of products produced using powder as a raw material. In recent years, fine powder as a raw material for fine ceramics has attracted attention, and a particle size distribution measuring device using a laser diffraction method is available as a device that can quickly measure particle size distribution with high accuracy. To explain the measurement principle of this device, when a group of test particles is irradiated with a laser beam, the irradiated laser light is diffracted by the group of test particles,
If this diffracted light is focused with a lens, a ring-shaped diffraction image will be obtained behind the sample particle group.

一方、この回折像における半径方向の光強度分布は供試
粒子群の粒度分布と所定の相関関係を有している。即ち
、粒度分布測定装置はフラウンホーファ(Fraunh
ofer)理論等に基づいた装置であって、レーザ回折
光の回折光強度分布を求め、これにより供試粒子群の粒
度分布を高精度で測定するようになっている、従来の粒
度分布測定装置の概略構成について説明する。
On the other hand, the radial light intensity distribution in this diffraction image has a predetermined correlation with the particle size distribution of the sample particle group. That is, the particle size distribution measuring device is a Fraunhofer
(ofer) A conventional particle size distribution measuring device that is based on theory, etc., and is designed to measure the particle size distribution of a sample particle group with high precision by determining the diffracted light intensity distribution of laser diffracted light. The general configuration of this will be explained.

第4図に示すように、半導体レーザ11、コリメータレ
ンズ13により生成された平行レーザ光aは、内部で試
料混濁液が流通状態となった透明体からなるフローセル
20に照射されるようになっている。
As shown in FIG. 4, the parallel laser beam a generated by the semiconductor laser 11 and the collimator lens 13 is irradiated onto a flow cell 20 made of a transparent body in which a sample turbid liquid is flowing. There is.

しかも試料混濁液に含まれている供試粒子群40に平行
レーザ光aが照射されると回折され、このレーザ光すを
フーリエ変換レンズ31でもってリングデテクタ34上
に集光させるようになっている。そして、レーザ光すの
回折光強度をリングデテクタ34における複数個の受光
素子でもって検出するとともに、この検出結果を図外の
マイクロコンピュータ等に導き、ここで供試粒子群40
0粒度分布が算出されるような基本構成となっている。
Furthermore, when the collimated laser beam a is irradiated onto the sample particle group 40 contained in the sample turbid liquid, it is diffracted, and this laser beam is focused onto the ring detector 34 using the Fourier transform lens 31. There is. Then, the intensity of the diffracted light of the laser beam is detected by a plurality of light receiving elements in the ring detector 34, and the detection results are led to a microcomputer, etc. (not shown), where the sample particle group 40
The basic configuration is such that a zero particle size distribution is calculated.

なお、リングデテクタ34は半導体ウェハー上に同心円
状複数個差べられたフォトダイオード等を半導体技術に
より形成して造られたもので、レーザ光すの回折光強度
がその回折角の増大とともに弱くなることから、各フォ
トダイオードの受光面積はリング中心から半径方向にか
けて太き(なるように設定されている。
Note that the ring detector 34 is made by forming a plurality of photodiodes or the like arranged concentrically on a semiconductor wafer using semiconductor technology, and the intensity of the diffracted light of the laser beam becomes weaker as the diffraction angle increases. Therefore, the light-receiving area of each photodiode is set to increase from the ring center to the radial direction.

ところで、供試粒子群40の各粒子が大きい場合には、
レーザ光すの回折光強度は回折角の小さい範囲で強く、
しかもその変化は激しい。一方供試粒子群40の各粒子
が小さい場合には、レーザ光すの回折光強度はその回折
角の大きい範囲で強いが、その変化は緩やかであるとい
う特徴を有している。
By the way, when each particle of the sample particle group 40 is large,
The intensity of the diffracted light of the laser beam is strong in the small diffraction angle range,
Moreover, the changes are drastic. On the other hand, when each particle of the sample particle group 40 is small, the intensity of the diffracted light of the laser beam is strong in a range where the diffraction angle is large, but the intensity changes slowly.

そこで、粒度分布測定装置では、焦点距離の互いに異な
るフーリエ変換レンズ31(例えば3個)を用意すると
ともに、このフーリエ変換レンズ31を測定レンジの設
定に応じて交換する機構を備えて(図示せず)、これで
広い測定範囲にわたって高い測定精度を有するよう工夫
されている。即ち、供試粒子群40の粒子径が大きい場
合での測定レンジでは、焦点距離の長いフーリエ変換1
/ンズ31を用いて回折角の小さい範囲での回折像を拡
大し、拡大した回折像をリングデテクタ34でもって検
出する一方、供試粒子群40の粒子径が小さい場合での
測定レンジでは、焦点距離の短いフーリエ変換レンズ3
1を用いて回折角の大きい範囲での回折像を圧縮し、圧
縮した回折像をリングデテクタ34でもって検出するよ
うにしている。
Therefore, in the particle size distribution measuring device, Fourier transform lenses 31 (for example, three lenses) having different focal lengths are prepared, and a mechanism (not shown) for exchanging the Fourier transform lenses 31 according to the setting of the measurement range is provided. ), which is designed to have high measurement accuracy over a wide measurement range. That is, in the measurement range when the particle size of the sample particle group 40 is large, the Fourier transform 1 with a long focal length
The diffraction image in a small range of diffraction angles is magnified using the lens 31, and the magnified diffraction image is detected by the ring detector 34. In the measurement range when the particle diameter of the sample particle group 40 is small, Fourier transform lens with short focal length 3
1 is used to compress the diffraction image in a large range of diffraction angles, and the compressed diffraction image is detected by the ring detector 34.

■が ′ しよ′とする昔 しかしながら、上記従来例による場合には、リングデテ
クタ34の製造方法上この大きさに限界があることから
、次に述べるような欠点が指摘されている。第1の欠点
としては、広範囲での粒度分布が高精度で測定できると
いえ、複数個のフーリエ変換レンズ31を必要とする他
、これを交換する機構が必要となることから、光学機構
の全体が非常に複雑となっており、その調整も煩わしく
、装置全体のコストダウンを推進する上で非常に大きな
障害となっている。第2の欠点としては、供試粒子群4
0の粒子径が大きい範囲での測定レンジを測定精度を落
とすことなく更に拡げようとした場合に、現状以上に焦
点距離の長いフーリエ交換レンズを用いなくてはならず
、これに伴って装置全体が大型化するのである。言い換
えると、装置の寸法に規制がある場合には、上記した範
囲での測定レンジ拡大を図ることができない。
However, in the conventional example described above, there is a limit to the size due to the manufacturing method of the ring detector 34, and the following drawbacks have been pointed out. The first drawback is that although the particle size distribution over a wide range can be measured with high precision, it requires multiple Fourier transform lenses 31 and a mechanism to replace them, so the entire optical mechanism is The system is extremely complicated and its adjustment is troublesome, which is a huge obstacle in reducing the overall cost of the device. The second drawback is that the sample particle group 4
In order to further expand the measurement range in the range of large particle diameters without reducing measurement accuracy, it would be necessary to use a Fourier interchangeable lens with a longer focal length than the current one, and this would require the entire device to be becomes larger. In other words, if there are restrictions on the dimensions of the device, it is not possible to expand the measurement range within the above range.

本発明は上記事情に濫みて創案されたものであり、単一
のフーリエ交換レンズのみで広範囲での粒度分布を高精
度で測定できる上に、測定範囲を拡大することも可能な
粒度分布測定装置を提供することを目的とする。
The present invention was devised in view of the above circumstances, and is a particle size distribution measuring device that can measure particle size distribution over a wide range with high precision using only a single Fourier interchangeable lens, and can also expand the measurement range. The purpose is to provide

!n゛  るための 本発明にかかる粒度分布測定装置は、平行レーザ光線を
円偏向板を介して分散層しょう状態の供試粒子群に照射
するレーザ光照射部と、前記供試粒子群にて回折又は散
乱された平行レーザ光線をビーム中心部から半径方向に
かけて受光面積が大きく各々複数の受光素子を有する複
数のフォトセンサから構成される扇状デテクタ上にフー
リエ変換レンズにより集光させ、前記平行レーザ光線の
回折光強度或いは散乱光強度を前記扇状デテクタにより
検出するレーザ光受光部とを具備している。
! The particle size distribution measuring device according to the present invention for measuring the particle size distribution includes a laser beam irradiation unit that irradiates a parallel laser beam to a group of test particles in a dispersed layer state through a circular deflection plate, and a particle size distribution measurement device that The diffracted or scattered parallel laser beam is condensed by a Fourier transform lens onto a fan-shaped detector consisting of a plurality of photosensors each having a large light-receiving area and a plurality of light-receiving elements in the radial direction from the center of the beam. The laser beam receiving section detects the diffracted light intensity or scattered light intensity of the light beam using the fan-shaped detector.

旦 平行レーザ光線は直線偏向しており、特定方向を測光す
ると、偏向の影響を受けるが、円偏向板により偏向の影
響が排除される。また、円偏向板を通過した平行レーザ
光線が分散層しょう状態の供試粒子群に照射されると、
供試粒子群の粒子径に大きさに応じて回折或いは散乱さ
れる。この回折光或いは散乱光はフーリエ変換レンズに
より扇状デテクタ上に集光され、回折光強度或いは或い
は散乱光強度が扇状デテクタに形成された複数個の受光
エレメントでもって検出される。この検出結果により回
折光強度分布或いは散乱光強度分布が求められ、これを
通じて供試粒子群の粒度分布が算出される。
Parallel laser beams are linearly polarized, and when photometrically measured in a specific direction, they are affected by the polarization, but the circular deflection plate eliminates the effects of the polarization. In addition, when the parallel laser beam that has passed through the circularly polarized plate is irradiated onto the sample particles in the dispersed layer state,
The particles are diffracted or scattered depending on the particle diameter of the sample particle group. This diffracted light or scattered light is focused onto a fan-shaped detector by a Fourier transform lens, and the intensity of the diffracted light or scattered light is detected by a plurality of light-receiving elements formed in the fan-shaped detector. The diffracted light intensity distribution or scattered light intensity distribution is obtained from this detection result, and through this the particle size distribution of the sample particle group is calculated.

失隻班 以下、本発明にかかる粒度分布測定装置の一実施例を図
面を参照して説明する。第1図は粒度分布測定装置の構
成図、第2図は扇状デテクタの平面図、第3図は扇状デ
テクタの製造方法を説明するための半導体ウェハーの正
面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the particle size distribution measuring device according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a particle size distribution measuring apparatus, FIG. 2 is a plan view of a fan-shaped detector, and FIG. 3 is a front view of a semiconductor wafer for explaining a method of manufacturing the fan-shaped detector.

ここに掲げる粒度分布測定装置はレーザ回折法とレーザ
散乱法とによって希釈液中に含有する供試粒子群(分散
層しょう状態の供試粒子群)の粒度分布を、2μm以上
の粒子についてはフラウンホーフy (Fraunho
fer)回折理論、2am以下の粒子についてはミー(
Mie)散乱理論に基づき、高精度で測定する装置であ
る。以下、第1図を参照して粒度分布測定装置の構成に
ついて説明する。
The particle size distribution measuring device listed here measures the particle size distribution of the sample particles contained in the diluted solution (the sample particles in a dispersed layer state) using the laser diffraction method and the laser scattering method. y (Fraunho
fer) diffraction theory, for particles smaller than 2 am, Mie (
Mie) This is a highly accurate measurement device based on scattering theory. The configuration of the particle size distribution measuring device will be explained below with reference to FIG.

半導体レーザ11(ここではGaAIAS半導体、波長
780n−1出力3IIW)、コリメータレンズ13に
て生成された平行レーザ光aは、円偏向板12を介して
透明体のフローセル20に照射されるようになっている
。これらはレーザ光照射部10を構成する。フローセル
20はガラス管等からなり、この管内には希釈液中に供
試粒子群40を含んだ懸濁液41が図示する方向に循環
するようになっている。
A parallel laser beam a generated by a semiconductor laser 11 (GaAIAS semiconductor here, wavelength 780n-1 output 3IIW) and a collimator lens 13 is irradiated onto a transparent flow cell 20 via a circular deflection plate 12. ing. These constitute the laser beam irradiation section 10. The flow cell 20 is made of a glass tube or the like, and a suspension 41 containing a sample particle group 40 in a diluent is circulated in the direction shown in the figure.

なお、フローセル20に連結された図外の希釈、循環装
置等により、フローセル20内の懸濁液濃度が常に適正
値に保たれ、しかも供試粒子群40の浮遊状態が常に適
正に保たれるようになっている。
Note that the concentration of the suspension in the flow cell 20 is always maintained at an appropriate value by a dilution device, circulation device, etc. (not shown) connected to the flow cell 20, and the suspended state of the sample particle group 40 is always maintained at an appropriate value. It looks like this.

円偏向板12にて円偏向された平行レーザ光aは、フロ
ーセル20内の供試粒子群40に照射され、この粒子径
に応じた角度で回折或いは散乱されることになる。
The parallel laser beam a that has been circularly polarized by the circularly polarizing plate 12 is irradiated onto the sample particle group 40 within the flow cell 20, and is diffracted or scattered at an angle corresponding to the particle diameter.

そして回折或いは散乱され且つフローセル20を透過し
たレーザ光すは、フーリエ変換レンズ31によって後述
する扇状デテクタ32上に集光され、扇状デテクタ32
によりレーザ光すの回折光強度或いは散乱光強度が検出
されるようになっている。これらはレーザ光受光部30
を構成する。
The laser beam that has been diffracted or scattered and transmitted through the flow cell 20 is focused by a Fourier transform lens 31 onto a fan-shaped detector 32, which will be described later.
The diffracted light intensity or scattered light intensity of the laser beam is detected. These are the laser light receiving section 30
Configure.

ところで、扇状デテクタ32は第2図に示すようにここ
では3つに分断されたデテクタ321.322.323
を同一平面上に接着せしめた構造となっている。デテク
タ321.322.323上にはフォトダイオード等で
ある受光エレメント321a、 322a、 323a
が所定個数夫々形成されていて、これらは全体として扇
形状をなしている。しかも受光ニレメン) 321a、
322a、 323aは図中AからBにかけて同心円状
に並べられている上に、その受光面積が大きくなるよう
になっている。このような構造の扇状デテクタ32を第
1図に示すようにフーリエ変換レンズ31の光軸に対し
て垂直に、且つ上記A部をフーリエ変換レンズ31の光
軸方向に向けて配置する他は、配置に関しては特に大き
な制限はない、即ち、扇状デテクタ32の図中B部分に
ついては如何なる方向に向けてもかまわない。この理由
について説明すると、平行レーザ光aはもともと直線偏
向しており、偏向方向に対して90″と180 ”でな
いと偏向の影響を受ける訳であるが、木本例では、円偏
向板12により円偏向の影響が排除されているので、レ
ーザ光すの回折光強度或いは散乱光強度はビーム中心か
ら同一半径位置であれば如何なる角度であっても等しく
、扇状デテクタ32の配置を上記した通りにしても良い
のである。なお、扇状デテクタ32の製造方法について
は後述する。
By the way, the fan-shaped detector 32 is here divided into three parts 321, 322, and 323 as shown in FIG.
It has a structure in which the two are glued together on the same plane. On the detectors 321, 322, 323 are light receiving elements 321a, 322a, 323a such as photodiodes.
are formed in a predetermined number, and these are fan-shaped as a whole. Moreover, the light-receiving Niremen) 321a,
322a and 323a are arranged concentrically from A to B in the figure, and have a large light receiving area. The fan-shaped detector 32 having such a structure is arranged perpendicularly to the optical axis of the Fourier transform lens 31 as shown in FIG. There is no particular restriction regarding the arrangement; in other words, the fan-shaped detector 32 may be oriented in any direction at portion B in the figure. To explain the reason for this, the parallel laser beam a is originally linearly polarized, and will be affected by the polarization unless it is 90'' or 180'' with respect to the deflection direction, but in the Kimoto example, the circular deflection plate 12 Since the influence of circular deflection is eliminated, the intensity of the diffracted light or scattered light of the laser beam is the same regardless of the angle at the same radial position from the beam center, and the fan-shaped detector 32 is arranged as described above. It is okay to do so. Note that a method for manufacturing the fan-shaped detector 32 will be described later.

また、扇状デテクタ32における受光エレメント321
a、322a、323aから出力された電気信号は、レ
ーザ光すの回折光強度或いは散乱光強度を与える信号と
なっており、図外のマイクロコンピュータに導入するよ
うになっている。このマイクロコンピュータでは、得ら
れたデータに基づいてレーザ光すの回折光強度分布或い
は散乱光強度分布を求め、ともに周知なフラウンホーフ
ァ回折理論、ミ−散乱理論に基づいて供試粒子群40の
粒度分布を算出し、算出結果を外部出力するようになっ
ている。
Moreover, the light receiving element 321 in the fan-shaped detector 32
The electrical signals outputted from a, 322a, and 323a are signals that give the intensity of the diffracted light or the intensity of the scattered light of the laser beam, and are introduced into a microcomputer (not shown). This microcomputer calculates the diffracted light intensity distribution or scattered light intensity distribution of the laser beam based on the obtained data, and calculates the particle size distribution of the sample particle group 40 based on the well-known Fraunhofer diffraction theory and Mie scattering theory. It is designed to calculate and output the calculation results externally.

次に、扇状デテクタ32の製造方法について第3図を参
照して説明する。即ち、半導体ウェハ33上に、半導体
技術によってデテクタ321.322.323により区
分された受光エレメント321a、 322a。
Next, a method for manufacturing the fan-shaped detector 32 will be explained with reference to FIG. That is, on a semiconductor wafer 33, light receiving elements 321a, 322a are separated by detectors 321, 322, and 323 using semiconductor technology.

323aを夫々形成し、その後、半導体ウェハ33を切
断してデテクタ321.322.323を取り出す。そ
して互いに切断されたデテクタ321.322.323
を第2図に示すように接着すれば、扇状デテクタ32が
造られることになる。この製造方法による場合には、例
えば半導体ウェハ33が4インチで、デテクタ321 
、322.323の扇状角度が12.5°であるときに
は、約180 mmの大きな扇状デテクタ32を造るこ
とができる。また、複数枚の半導体ウェハから同様な方
法でもって扇状デテクタ32を造った場合には、従来に
比べて非常に大きなものを造ることができる。だが、本
実施例のように1枚の半導体ウェハ33から扇状デテク
タ32を造った場合には、受光エレメント321a、 
322a、323aの各電気的特性が均一となり易いの
で、温度ドリフト補償等の観点からメリットがある。な
お、扇状デテクタ32における受光エレメント321a
、 322a、323aが第2図で示すように扇状であ
ることから、これらの面積の違いによる設計上の補正計
算を簡単化することができるというメリットもある。
After that, the semiconductor wafer 33 is cut to take out the detectors 321, 322, and 323. and the detectors 321, 322, 323 disconnected from each other
If they are glued together as shown in FIG. 2, a fan-shaped detector 32 will be made. In the case of this manufacturing method, for example, the semiconductor wafer 33 is 4 inches long and the detector 321 is
, 322, 323 is 12.5°, a large fan-shaped detector 32 of about 180 mm can be made. Further, when the fan-shaped detector 32 is made from a plurality of semiconductor wafers using the same method, it can be made much larger than conventional ones. However, when the fan-shaped detector 32 is made from one semiconductor wafer 33 as in this embodiment, the light receiving element 321a,
Since the electrical characteristics of 322a and 323a are likely to be uniform, there is an advantage from the viewpoint of temperature drift compensation, etc. Note that the light receiving element 321a in the fan-shaped detector 32
, 322a, and 323a are fan-shaped as shown in FIG. 2, which has the advantage of simplifying design correction calculations based on the difference in area.

従って、本実の粒度分布測定装置では従来に比べて非常
に大きな扇状デテクタ32を用いてレーザ光すの回折光
強度或いは散乱光強度を検出することができ、この波及
効果として次のようなメリットを得ることができる。即
ち、従来例では、幅広い範囲にわたって高精度で粒度分
布を測定しようとするには、焦点距離の互いに異なる複
数枚のフーリエ変換レンズを測定レンジの設定に応じて
交換するような機構が必要だった訳であるが、本実施例
では、デテクタの受光面積を従来に比べて大きく採るこ
とができることから、所定の焦点距離を有する一枚のフ
ーリエ変換レンズ31だけで同様な範囲を高精度で粒度
分布の測定を行うことができる。それ故、フーリエ変換
レンズの枚数を少なくすることができる他、光学機構を
非常に単純化することができ、これを調整する煩わしさ
も省くこともできるので、装置のコストダウンを推進す
る上で非常に大きな意義がある。
Therefore, the actual particle size distribution measuring device can detect the diffracted light intensity or scattered light intensity of the laser beam using the fan-shaped detector 32, which is much larger than the conventional one, and the ripple effects of this are as follows. can be obtained. In other words, in conventional methods, in order to measure particle size distribution with high precision over a wide range, a mechanism was required to replace multiple Fourier transform lenses with different focal lengths depending on the measurement range setting. However, in this embodiment, since the light-receiving area of the detector can be made larger than that of the conventional one, it is possible to cover the same range with high accuracy using just one Fourier transform lens 31 having a predetermined focal length. can be measured. Therefore, in addition to being able to reduce the number of Fourier transform lenses, it is also possible to greatly simplify the optical mechanism and eliminate the trouble of adjusting it, which is extremely effective in reducing equipment costs. has great significance.

更にその上で、フーリエ変換レンズ31を焦点距離の異
なるものに交換する必要がないことに関連して、測定ダ
イナミックレンジを非常に大きく採ることができる。即
ち、従来例では、被測定対象に合った測定レンジに切り
換える方式でもって、幅広い測定範囲をカバーしていた
のであるが、本実例では、測定レンジの切り換えを要せ
ず、一つの測定レンジで同一の測定範囲をカバーできる
のである。また、上記したようにデテクタの受光面積を
従来に比べて大きく採ることができることから、装置を
必要以上に大型化させないで、供試粒子群40の粒子径
が大きい範囲等の測定レンジを更に拡げることが可能で
ある。それ故、装置の性能アップを図る上で非常に大き
な意義がある。
Furthermore, in connection with the fact that there is no need to replace the Fourier transform lens 31 with one having a different focal length, a very large measurement dynamic range can be achieved. In other words, in the conventional example, a wide measurement range was covered by switching to the measurement range that matched the object to be measured, but in this example, there is no need to switch the measurement range, and one measurement range can be used. This allows them to cover the same measurement range. In addition, as mentioned above, since the light-receiving area of the detector can be larger than that of conventional detectors, the measurement range, such as the range where the particle size of the sample particle group 40 is large, can be further expanded without making the device unnecessarily large. Is possible. Therefore, it is of great significance in improving the performance of the device.

なお、本発明にかかる粒度分布測定装置では希釈液中に
供試粒子群を分散させた場合の測定例について示したが
、ガス中に供試粒子群を分散させた場合でも適用可能で
あることは当然である。
Note that although the particle size distribution measuring device according to the present invention has been shown as an example of measurement when the sample particle group is dispersed in a diluted liquid, it can also be applied to a case where the sample particle group is dispersed in a gas. Of course.

l肌夏着来 以上、本実粒度分布測定装置による場合には、回折光強
度或いは散乱光強度の検出を非常に大きな扇状デテクタ
でもって行うことができるので、単一のフーリエ交換レ
ンズのみで広範囲での粒度分布を高精度で測定できる。
Since summer has arrived, this real particle size distribution measuring device can detect the diffracted light intensity or scattered light intensity using a very large fan-shaped detector, so it can be used over a wide range with only a single Fourier interchangeable lens. Particle size distribution can be measured with high accuracy.

それ故、光学機構の全体が非常に簡単となり、その煩わ
しい調整を省くことができる。しかも供試粒子群の粒子
径が大きい範囲での測定レンジ拡大も容易に行うことも
でき、装置のコストダウンと高性能化とを共に推進する
上で非常に大きな意義がある。
Therefore, the entire optical mechanism becomes very simple and its troublesome adjustment can be omitted. Moreover, it is possible to easily expand the measurement range in a range where the particle size of the sample particle group is large, which is of great significance in promoting both cost reduction and performance improvement of the apparatus.

【図面の簡単な説明】 第1図から第3図にかけては本発明にかかる粒度分布測
定装置の一実施例を説明するための図であって、第1図
は粒度分布測定装置の構成図、第2図は扇状デテクタの
平面図、第3図は扇状デテクタの製造方法を説明するた
めの半導体ウェハの正面図である。第4図及び第5図は
従来の粒度分布測定装置を説明するための図であって、
第4図は第1図に対応する図、第5図はリングデテクタ
の正面図である。 lO・ ・ 11・ ・ 12・ ・ 13・ ・ 20・ ・ 30・ ・ 31・ ・ 32・ ・ 321a。 40・ ・  l l ・レーザ光照射部 ・半導体レーザ ・円偏向板 ・コリメータレンズ ・フローセル ・レーザ光受光部 ・フーリエ変換レンズ ・扇状デテクタ 322a、 323a・・ ・供試粒子群 ・平行レーザ光 ・受光エレメント
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 to 3 are diagrams for explaining an embodiment of the particle size distribution measuring device according to the present invention, and FIG. 1 is a configuration diagram of the particle size distribution measuring device; FIG. 2 is a plan view of the fan-shaped detector, and FIG. 3 is a front view of a semiconductor wafer for explaining a method of manufacturing the fan-shaped detector. FIG. 4 and FIG. 5 are diagrams for explaining a conventional particle size distribution measuring device,
FIG. 4 is a diagram corresponding to FIG. 1, and FIG. 5 is a front view of the ring detector. lO・ ・ 11・ ・ 12・ ・ 13・ ・ 20・ ・ 30・ ・ 31・ ・ 32・ ・ 321a. 40... l l - Laser light irradiation section, semiconductor laser, circular polarizing plate, collimator lens, flow cell, laser light receiving section, Fourier transform lens, fan-shaped detectors 322a, 323a... - Sample particle group, parallel laser light, light reception element

Claims (1)

【特許請求の範囲】[Claims] (1)平行レーザ光線を円偏向板を介して分散飛しょう
状態の供試粒子群に照射するレーザ光照射部と、前記供
試粒子群にて回折又は散乱された平行レーザ光線をビー
ム中心部から半径方向にかけて受光面積が大きく各々複
数の受光素子を有する複数のフォトセンサから構成され
る扇状デテクタ上にフーリエ変換レンズにより集光させ
、前記平行レーザ光線の回折光強度或いは散乱光強度を
前記扇状デテクタにより検出するレーザ光受光部とを具
備していることを特徴とする粒度分布測定装置。
(1) A laser beam irradiation unit that irradiates a parallel laser beam to a group of test particles in a dispersed flying state via a circular deflection plate, and a beam center that irradiates the parallel laser beam diffracted or scattered by the test particle group. The light is focused by a Fourier transform lens onto a fan-shaped detector consisting of a plurality of photosensors each having a large light-receiving area and a plurality of light-receiving elements in the radial direction, and the diffracted light intensity or scattered light intensity of the parallel laser beam is converted into the fan-shaped A particle size distribution measuring device comprising: a laser beam receiving section that detects the particle size using a detector.
JP1023462A 1989-01-31 1989-01-31 Particle size distribution measuring device Expired - Fee Related JPH0675029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023462A JPH0675029B2 (en) 1989-01-31 1989-01-31 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023462A JPH0675029B2 (en) 1989-01-31 1989-01-31 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JPH02203246A true JPH02203246A (en) 1990-08-13
JPH0675029B2 JPH0675029B2 (en) 1994-09-21

Family

ID=12111187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023462A Expired - Fee Related JPH0675029B2 (en) 1989-01-31 1989-01-31 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JPH0675029B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294410A (en) * 1994-04-26 1995-11-10 Shimadzu Corp Grain size distribution measuring device
JP2005539209A (en) * 2002-01-22 2005-12-22 ヴィジョンゲイト,インコーポレーテッド Optical projection imaging system and method for automatically detecting nucleated cells and cytoplasm density features involved in disease
CN106908360A (en) * 2017-04-11 2017-06-30 珠海真理光学仪器有限公司 A kind of laser particle size analyzer with annular measuring cell
CN109975186A (en) * 2019-04-18 2019-07-05 无锡豪帮高科股份有限公司 A kind of PM2.5 laser sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294410A (en) * 1994-04-26 1995-11-10 Shimadzu Corp Grain size distribution measuring device
JP2005539209A (en) * 2002-01-22 2005-12-22 ヴィジョンゲイト,インコーポレーテッド Optical projection imaging system and method for automatically detecting nucleated cells and cytoplasm density features involved in disease
JP4718777B2 (en) * 2002-01-22 2011-07-06 ヴィジョンゲイト,インコーポレーテッド Optical projection imaging system and method for automatically detecting nucleated cells and cytoplasm density features involved in disease
CN106908360A (en) * 2017-04-11 2017-06-30 珠海真理光学仪器有限公司 A kind of laser particle size analyzer with annular measuring cell
CN109975186A (en) * 2019-04-18 2019-07-05 无锡豪帮高科股份有限公司 A kind of PM2.5 laser sensor

Also Published As

Publication number Publication date
JPH0675029B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
CN104089855B (en) A kind of polarized light scatter measures the method and device of particulate matter
CN207408276U (en) A kind of air concentration of suspended particles measuring device of high-precision wholegrain footpath covering
EP0424934B1 (en) Apparatus for counting particles suspended in a fluid
US4053229A (en) 2°/90° Laboratory scattering photometer
US6118532A (en) Instrument for determining static and/or dynamic light scattering
CN106124166B (en) A kind of measuring device and measurement method of heavy-caliber optical grating diffraction efficiency
CN104919301A (en) Systems and methods for measuring a profile characteristic of a glass sample
JP5263783B2 (en) Optical characteristic measuring apparatus and measuring method
US5028135A (en) Combined high spatial resolution and high total intensity selection optical train for laser spectroscopy
JPH02203246A (en) Grain size distribution measuring instrument
US6268915B1 (en) Micropolarimeter
Asmail et al. Instrumentation at the National Institue of Standards and Technology for bidirectional reflectance distribution function (BRDF) measurements
GB1298658A (en) Photometer for measuring total radiant energy at selected angles
CN107991209B (en) Centering adjustment method and mechanism for laser particle analyzer
JPH05172730A (en) Measurement of particle-size distribution
JPS5970944A (en) Apparatus for measuring particle diameter
US11255796B2 (en) Region prober optical inspector
JPH04184241A (en) Particle analyser
JPH04168347A (en) Method and apparatus for detecting parallax refractive index for liquid chromatography
KR102492803B1 (en) A polarization analysis apparatus and method for adjusting an angle of incidence or numerical aperture using an aperture
JP7203006B2 (en) Flow cell and particle counter
JPH02304333A (en) Flowing cell analyzing instrument
US20200278192A1 (en) Scattered radiation defect depth detection
JPS62151742A (en) Analyzing and selecting device for corpuscle
JPH0442621B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees