JPH02203204A - Method for measuring scanning type tunnel microscope - Google Patents

Method for measuring scanning type tunnel microscope

Info

Publication number
JPH02203204A
JPH02203204A JP2331489A JP2331489A JPH02203204A JP H02203204 A JPH02203204 A JP H02203204A JP 2331489 A JP2331489 A JP 2331489A JP 2331489 A JP2331489 A JP 2331489A JP H02203204 A JPH02203204 A JP H02203204A
Authority
JP
Japan
Prior art keywords
sample
stage
probe
fine movement
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2331489A
Other languages
Japanese (ja)
Other versions
JP2565392B2 (en
Inventor
Chikayoshi Miyata
宮田 千加良
Masaji Shigeno
雅次 繁野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1023314A priority Critical patent/JP2565392B2/en
Publication of JPH02203204A publication Critical patent/JPH02203204A/en
Application granted granted Critical
Publication of JP2565392B2 publication Critical patent/JP2565392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To freely select a measurement area and a follow-up area within the movement range of a sample stage by measuring a sample by utilizing the movement of a probe by a fine adjusting element and the movement of the sample by the movement of the sample stage. CONSTITUTION:When the ruggedness of a surface is measured by STM(scanning type tunnel microscope) by using a tunnel current, the probe 1 is moved by the fine adjusting element 4 in three axial directions to the surface of the sample 2 and the sample 2 is moved by X, Y, and Z stages 8, 9, and 7 in the three axial directions. Consequently, the movement of the probe 1 by the element 4 and the movement of the sample 2 by the movement of the stages 7, 8, and 9 are both utilized. Therefore, the sample can be measured while the follow-up area of the probe 1 and the observation scan area of the sample 2 are expanded by the movement of the stages 7, 8, and 9 even outside the movable range of the element 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、トンネル電流を用いて表面の凹凸や仕事関数
を測定する走査型トンネル顕微鏡(STM)の測定に関
し、特に大きな領域での測定や、凹凸の激しい表面のS
TM測定方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to measurement using a scanning tunneling microscope (STM) that uses tunneling current to measure surface irregularities and work functions, and is particularly applicable to measurements in large areas and , S on a highly uneven surface
This invention relates to a TM measurement method.

〔発明の概要〕[Summary of the invention]

本発明は、試料に対する探針の動作を微動素子とともに
ステージで行うことで、測定領域や高さ方向の追従領域
を拡大できるようにしたもので産業上非常に有益である
INDUSTRIAL APPLICABILITY The present invention is very useful industrially because it is possible to expand the measurement area and the follow-up area in the height direction by moving the probe relative to the sample on a stage together with a fine movement element.

〔従来の技術〕[Conventional technology]

第2図にSTMの原理を示す。探針1と試料2間にバイ
アス電圧3を印加し、両者を1u程度まで近づけるとト
ンネル電流と呼ばれる電流が流れる。この電流は両者の
距離の変化に対し指数関数的に変化する。この値が一定
になるように3輪駆動できる3軸駆動用の電極が設けら
れた圧電材からなる微動素子4で探針1を上下動させな
がら、X、Yスキャナー5で面内方向に探針lを走査さ
せる。これらの信号をコンピュータ6で処理することで
試料2表面の凹凸を表示することができる。
Figure 2 shows the principle of STM. When a bias voltage 3 is applied between the probe 1 and the sample 2 and the two are brought close to each other to about 1 μ, a current called a tunnel current flows. This current changes exponentially as the distance between the two changes. In order to keep this value constant, the probe 1 is moved up and down using a fine movement element 4 made of piezoelectric material equipped with electrodes for 3-axis drive that can be driven on 3 wheels, while the X and Y scanner 5 searches in the in-plane direction. Scan the needle l. By processing these signals with the computer 6, the irregularities on the surface of the sample 2 can be displayed.

次に従来用いられていた走査方法を第3図に示す。探針
1は試料2表面上をトンネル電流が一定になるようにサ
ーボが掛かった状態、即ち両者の距離が一定に保たれた
状態で走査し、各測定位置7でZ軸情報がサンプリング
される。Z軸情報及び各測定位置7は微動素子4に印加
される電圧として取り込まれ、微動素子4の電圧−変位
特性から変位量に換算される。
Next, a conventionally used scanning method is shown in FIG. The probe 1 scans the surface of the sample 2 with the servo applied so that the tunneling current is constant, that is, the distance between the two is kept constant, and Z-axis information is sampled at each measurement position 7. . The Z-axis information and each measurement position 7 are taken in as a voltage applied to the fine movement element 4, and converted into a displacement amount from the voltage-displacement characteristic of the fine movement element 4.

第4図に他の従来例を示す。各測定位置でのみある定め
られたトンネル電流値になるように探針1を上下動させ
、この点でのZ軸情報(微動素子4の印加電圧)をサン
プリングする。それ以外の点、即ち、測定点間の移動時
は微動素子4で探針lを引き上げた状態にする。この手
法は測定領域が広くなると測定点間の移動を高速に行え
る利点がある。
FIG. 4 shows another conventional example. The probe 1 is moved up and down so that a predetermined tunneling current value is reached only at each measurement position, and Z-axis information (voltage applied to the fine movement element 4) at this point is sampled. At other points, that is, when moving between measurement points, the fine movement element 4 keeps the probe l in a raised state. This method has the advantage of being able to move quickly between measurement points when the measurement area is wide.

以上従来例を示したが、探針の走査や試料表面への追従
に対して微動素子だけを用いているため微動素子の移動
領域より大きなものや段差の大きなものは測定すること
はできなかった。なお、Z軸追従領域に対しては、第5
図に示す如く、この量をフルに活用することはできなか
った。例えば同図に示すように、微動素子4がZ軸サー
ボにより伸縮できる範囲lの中央で試料2の表面201
 との間である定められたトンネル電流が流れている状
態にあったとする。即ち探針1はこの状態から上下へ1
2/2 Lか追従できないことになる。そのため202
側へ走査する場合は、段差しが1/2より大きいと追従
できなくなる。通常試料2と探針lとをトンネル電流の
流れる領域(トンネル領域)まで近づけた場合、まわり
の凹凸状況が不明なため、上述の通りZ軸サーボによる
伸縮範囲の中央にもってきていた。つまり、Z軸サーボ
電圧に床上げ用電圧(フローティング電圧)を加えフロ
ーティング電圧をコントロールしていた。
The conventional example shown above is that only the fine movement element is used for scanning the probe and tracking the sample surface, so it is not possible to measure objects larger than the movement area of the fine movement element or objects with large steps. . Note that for the Z-axis tracking area, the fifth
As shown in the figure, this amount could not be fully utilized. For example, as shown in the same figure, the surface 201 of the sample 2 is located at the center of the range l in which the fine movement element 4 can be expanded and contracted by the Z-axis servo.
Suppose that a certain tunnel current is flowing between the That is, the probe 1 moves up and down 1 from this state.
2/2 L will not be able to follow. Therefore 202
When scanning to the side, if the step difference is larger than 1/2, it becomes impossible to follow. Normally, when the sample 2 and the probe l are brought close to a region where a tunnel current flows (tunnel region), the surrounding unevenness is unknown, so as described above, the sample 2 and the probe l are brought to the center of the expansion/contraction range by the Z-axis servo. In other words, the floating voltage was controlled by adding a floor raising voltage (floating voltage) to the Z-axis servo voltage.

〔発明が解決しようとする!18) 以上述べたように、従来の方式では走査領域(試料の面
方向領域)、追従領域(試料の高さ方向領域)を微動素
子の可動範囲以上にすることはできず、このため走査領
域は最大101程度、追従領域は数−程度しかなかった
。このため、更に大きな領域(例えば数1)からのズー
ムアツプによる位置決めや、表面粗さ等の大きな段差は
測定することができなかった。
[Invention tries to solve! 18) As mentioned above, in the conventional method, the scanning area (area in the plane direction of the sample) and the tracking area (area in the height direction of the sample) cannot be made larger than the movable range of the fine movement element. was about 101 at maximum, and the follow-up area was only about a few. For this reason, it was not possible to perform positioning by zooming up from a larger area (for example, Equation 1) or to measure large differences in surface roughness or the like.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するため、本発明では試料の測定に際
し、微動素子による探針の移動と、試料ステージの移動
による試料の移動とを併用して試料の測定を行う測定方
法である。
In order to solve the above problems, the present invention provides a measurement method in which a sample is measured using both movement of a probe using a fine movement element and movement of a sample by movement of a sample stage.

〔作用〕[Effect]

本発明の方法によれば、微動素子の移動可能範囲外でも
試料ステージの移動により、探針の追従領域および試料
の観察走査領域を拡大して測定が可能である。
According to the method of the present invention, by moving the sample stage even outside the movable range of the fine movement element, measurement can be performed by enlarging the probe tracking area and the sample observation scanning area.

〔実施例〕〔Example〕

第1図に本実施例としてフロー図を示す。STlで位置
情報をコンピュータ等で取り込む。Sr2ではその位置
へ試料をX、Yステージを用いて移動させる。Sr3で
は定められたトンネル電流が流れるまでZ軸ステージを
用いて探針、試料間を近づけていく (オートアプロー
チ)。5T4ST5でZ軸ステージの変位量及び微動素
子のZ軸変位量を取り込む。Sr6で試料探針間を試料
の凹凸に比べ十分に離し、Sr1で測定位置を更新する
。Sr8で全ての測定点で測定が終了するまで繰り返す
。その後ST9でデータ処理を行う。
FIG. 1 shows a flow diagram of this embodiment. Use STl to capture position information using a computer, etc. In Sr2, the sample is moved to that position using the X and Y stages. In Sr3, the probe and sample are brought closer using the Z-axis stage until a specified tunnel current flows (auto approach). At 5T4ST5, the amount of displacement of the Z-axis stage and the amount of Z-axis displacement of the fine movement element are taken in. Sr6 separates the sample probes from each other sufficiently compared to the unevenness of the sample, and Sr1 updates the measurement position. Repeat at Sr8 until measurement is completed at all measurement points. Thereafter, data processing is performed in ST9.

これは、Zステージの変位量と微動素子による変位量を
加えてZ軸の変位量とし、位置データとともに3次元デ
ータにすることである。なお、位置データはあらかじめ
設定されているため、測定ポイント毎に位置データを取
り込まない方法もある。
This means adding the displacement amount of the Z stage and the displacement amount due to the fine movement element to obtain the Z-axis displacement amount, and converting it into three-dimensional data together with the position data. Note that since the position data is set in advance, there is also a method in which the position data is not taken in for each measurement point.

第6図に第1図に示した本実施例で用いる移動手段の一
覧を示す。
FIG. 6 shows a list of transportation means used in this embodiment shown in FIG. 1.

−1は走査領域、追従領域とも最大ステージ移動量まで
拡大することができる。
-1, both the scanning area and the following area can be expanded to the maximum stage movement amount.

即ち、走査領域についてはX、Yステージにより試料を
移動させることで拡大ができる。
That is, the scanning area can be enlarged by moving the sample using the X and Y stages.

追従領域について第7図を用いて説明する。第7図1a
lは試料2と探針1とが離れた状態である。
The following region will be explained using FIG. 7. Figure 7 1a
1 is a state in which the sample 2 and the probe 1 are separated from each other.

この場合、Z軸サーボによりトンネル電流が流れるまで
探針1を試料2に近づけようと、供給可能な最大電圧が
微動素子4に加わっている。つまり微動素子4は伸び切
った状態である。なお、試料2はZ軸ステージ7、Xス
テージ8、Yステージ9で支持されている。同図山)は
、Zステージ7で試料2を探針1へ近接させ、規定のト
ンネル電流が流れている状態を示す、この場合、Z軸ス
テージの移動量をt、、zl、a動素子の縮み量をLP
Iとする0次にZ軸ステージ7、あるいは微動素子4で
試料2、探針1間を離し、試料2を次の測定点まで移動
させ同様にアプローチさせる。この状態でZ軸ステージ
の移動量をLZ2、微動素子の縮み量をLP2とすると
、試料の段差は(LZ2−LZI)+  (LP2−L
PI)  ・・・ (11で求めることができる。
In this case, the maximum voltage that can be supplied is applied to the fine movement element 4 in order to bring the probe 1 closer to the sample 2 until a tunnel current flows by the Z-axis servo. In other words, the fine movement element 4 is in a fully extended state. Note that the sample 2 is supported by a Z-axis stage 7, an X-stage 8, and a Y-stage 9. The figure shows a state in which the sample 2 is brought close to the probe 1 on the Z stage 7, and a specified tunnel current is flowing.In this case, the amount of movement of the Z-axis stage is expressed as The amount of shrinkage is LP
The sample 2 and the probe 1 are separated by the zero-order Z-axis stage 7 or the fine movement element 4, which is denoted by I, and the sample 2 is moved to the next measurement point and approached in the same manner. In this state, if the amount of movement of the Z-axis stage is LZ2 and the amount of contraction of the fine movement element is LP2, the step difference in the sample is (LZ2-LZI) + (LP2-L
PI) ... (It can be found using 11.

このように試料表面の凹凸の差が、微動素子に装着され
た探針の移動範囲を越える場合でも、探針の移動可能範
囲内までステージにより試料を移動させることで、その
凹凸面を測定することができる。
In this way, even if the difference in the unevenness of the sample surface exceeds the moving range of the probe attached to the fine movement element, the uneven surface can be measured by moving the sample using the stage to within the movable range of the probe. be able to.

磁2は試料の凹凸が微動素子の追従領域に比べ十分率さ
い場合、最初のアプローチはZ軸ステージで行い、各測
定点への移動やアプローチは微動素子だけで行う場合で
ある。Z軸移動が微動素子だけの変位で行えるため、l
1hlより高速に測定することができる。この場合の試
料の凹凸は(微動素子Z軸移動量−マージン)/2以下
であれば本例を用いることができる。なおマージンは、
探針を試料最大凸部からどれだけ隔すかという量であり
、0以上の値である。
Magnetic 2 is a case in which when the unevenness of the sample is sufficiently large compared to the tracking area of the fine movement element, the first approach is performed with the Z-axis stage, and the movement and approach to each measurement point is performed only with the fine movement element. Since Z-axis movement can be performed by displacement of only the fine movement element, l
Measurements can be made faster than 1 hl. In this case, this example can be used if the unevenness of the sample is less than (fine movement element Z-axis movement amount - margin)/2. The margin is
This is the distance between the probe and the largest convex part of the sample, and is a value of 0 or more.

−3は試料をX、Yステージで移動するかわりに探計を
微動素子で走査し、追従手段にZ軸ステージを併用した
ものである。走査領域は微動素子の走査領域程度で十分
であるが、段差の激しい試料を測定することができる。
In -3, instead of moving the sample with X and Y stages, the probe is scanned with a fine movement element, and a Z-axis stage is also used as a tracking means. The scanning area is sufficient to be the scanning area of a fine movement element, but it is possible to measure a sample with large steps.

走査を微動素子で行うため隘1の方式に比べ高速に測定
することができる。
Since scanning is performed using a fine movement element, measurement can be performed at a higher speed than in the method described in Part 1.

隘4は走査手段に微動素子とX、Yステージを併用した
もので、追従方式は患1と同じである。
In case 4, a fine movement element and an X and Y stage are used together as a scanning means, and the tracking method is the same as in case 1.

併用した走査手段とは第8図に示す如く微動素子で移動
できる範囲は微動素子を用い(破線)、ステージの移動
ステップ量を大きくしてステージ移動回数を減らしたも
の(−点鎖IJil)である。同図は1ライン50賜、
微動素子の面内最大変位量10−1測定点100/ライ
ンとした場合の例を示したものであり、ステージは10
.5umステップで移動する例である。本手段を用いる
とステージ移動回数が減らせるので高速に測定すること
ができる。なお、x、yに本方式を用いた場合、第9図
に示す如く微動素子を用いて走査したブロック毎に、微
動素子の非直線性を補正することもできる。非直線性と
は第10図に示す如く、微動素子に加える電圧−変位特
性が直線にならないことであり、この特性を測定してお
き補正することを非直線性の補正と呼んでいる。
As shown in Fig. 8, the scanning means used in combination is one in which a fine movement element is used for the range of movement (dotted line), and the stage movement step amount is increased to reduce the number of stage movements (-dot chain IJil). be. The figure shows 50 lines per line.
This is an example where the maximum in-plane displacement of the fine movement element is 10-1 and the measurement point is 100/line, and the stage is 10
.. This is an example of moving in 5um steps. By using this means, the number of times the stage is moved can be reduced, allowing high-speed measurement. Note that when this method is used for x and y, the nonlinearity of the fine movement element can be corrected for each block scanned using the fine movement element as shown in FIG. As shown in FIG. 10, nonlinearity means that the voltage-displacement characteristic applied to the fine movement element is not linear, and measuring and correcting this characteristic is called nonlinearity correction.

隘5は魚4で示した走査方法を用い、磁2で説明した追
従方式を用いた方法である。
A.5 uses the scanning method shown in Fish 4 and uses the tracking method described in Magnetic.2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本方式によれば測定領域や追従領
域をステージ移動範囲内で自由に選ぶことができる。こ
のため、大領域を走査して測定したい場所をさがし、ズ
ームアツプしていくことができる。この場合、微動素子
だけで走査、追従して行うSTM測定と併用すると効果
的である。
As explained above, according to this method, the measurement area and the tracking area can be freely selected within the stage movement range. For this reason, it is possible to scan a large area, find the place you want to measure, and then zoom in. In this case, it is effective to use it in combination with STM measurement, which is performed by scanning and tracking using only the fine movement element.

又、本方式によれば段差の大きな試料も測定することが
できる。
Furthermore, according to this method, it is possible to measure samples with large steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例を示すフロー図、第2図はSTMの原
理を示す説明図、第3図は従来技術による走査方法を示
す説明図、第4図は従来技術による他の走査方法を示す
説明図、第5図はZ軸追従領域を示す説明図、第6図は
本実施例の移動手段を示す図、第7図は追従開城の説明
図、第8図は併用した走査手段の説明図、第9図は非直
線性補正ブロックを示す説明図、第1O図は非直線性を
示す説明図である。 ■ ・探針 ・試料 4 ・ ・微動素子 ・Z軸ステージ 以 上
FIG. 1 is a flow diagram showing this embodiment, FIG. 2 is an explanatory diagram showing the principle of STM, FIG. 3 is an explanatory diagram showing a scanning method according to the prior art, and FIG. 4 is an explanatory diagram showing another scanning method according to the prior art. FIG. 5 is an explanatory diagram showing the Z-axis tracking area, FIG. 6 is an explanatory diagram showing the moving means of this embodiment, FIG. 7 is an explanatory diagram of follow-up opening, and FIG. 8 is an explanatory diagram of the scanning means used together. FIG. 9 is an explanatory diagram showing a nonlinearity correction block, and FIG. 10 is an explanatory diagram showing nonlinearity. ■ ・Probe/sample 4 ・・Fine movement element/Z-axis stage or higher

Claims (4)

【特許請求の範囲】[Claims] (1)探針を試料表面に対して3軸方向に駆動する微動
素子と、試料を3軸方向に移動するステージとから成る
走査型トンネル顕微鏡の測定方法であって、微動素子に
よる探計の移動と、試料ステージの移動による試料の移
動とを併用して、試料の測定を行うことを特徴とする走
査型トンネル顕微鏡の測定方法。
(1) A scanning tunneling microscope measurement method consisting of a fine movement element that drives the probe in three axes relative to the sample surface and a stage that moves the sample in three axes. A measurement method for a scanning tunneling microscope characterized by measuring a sample by using a combination of movement and movement of the sample by movement of a sample stage.
(2)高さ方向は微動素子で、面内方向はステージを用
いて試料の測定を行うことを特徴とする請求項1記載の
走査型トンネル顕微鏡(STM)の測定方法。
(2) The method for measuring a scanning tunneling microscope (STM) according to claim 1, characterized in that the sample is measured using a fine movement element in the height direction and a stage in the in-plane direction.
(3)高さ方向は微動素子、及びステージ、面内方向は
ステージを用いて試料の測定を行うことを特徴とする請
求項1記載の走査型トンネル顕微鏡の測定方法。
(3) The method for measuring a scanning tunneling microscope according to claim 1, wherein the sample is measured using a fine movement element and a stage in the height direction and a stage in the in-plane direction.
(4)高さ方向は微動素子及びステージ、面内方向は微
動素子及びステージを用いて試料の測定を行うことを特
徴とする請求項1記載の走査型トンネル顕微鏡の測定方
法。
(4) The method for measuring a scanning tunneling microscope according to claim 1, wherein the sample is measured using a fine movement element and a stage in the height direction, and a fine movement element and a stage in the in-plane direction.
JP1023314A 1989-02-01 1989-02-01 Measuring method of scanning tunneling microscope Expired - Fee Related JP2565392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023314A JP2565392B2 (en) 1989-02-01 1989-02-01 Measuring method of scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023314A JP2565392B2 (en) 1989-02-01 1989-02-01 Measuring method of scanning tunneling microscope

Publications (2)

Publication Number Publication Date
JPH02203204A true JPH02203204A (en) 1990-08-13
JP2565392B2 JP2565392B2 (en) 1996-12-18

Family

ID=12107130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023314A Expired - Fee Related JP2565392B2 (en) 1989-02-01 1989-02-01 Measuring method of scanning tunneling microscope

Country Status (1)

Country Link
JP (1) JP2565392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019130A1 (en) * 2004-08-18 2006-02-23 Hitachi Kenki Fine Tech Co., Ltd Probe scan control method and probe scan control device for scanning probe microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153404A (en) * 1986-07-14 1988-06-25 Olympus Optical Co Ltd Scanning type tunnel microscope
JPS63298951A (en) * 1987-05-28 1988-12-06 Shimadzu Corp Scanning microscope
JPH01127903A (en) * 1987-11-12 1989-05-19 Jeol Ltd Scanning tunnel microscope provided with sample moving mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153404A (en) * 1986-07-14 1988-06-25 Olympus Optical Co Ltd Scanning type tunnel microscope
JPS63298951A (en) * 1987-05-28 1988-12-06 Shimadzu Corp Scanning microscope
JPH01127903A (en) * 1987-11-12 1989-05-19 Jeol Ltd Scanning tunnel microscope provided with sample moving mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019130A1 (en) * 2004-08-18 2006-02-23 Hitachi Kenki Fine Tech Co., Ltd Probe scan control method and probe scan control device for scanning probe microscope

Also Published As

Publication number Publication date
JP2565392B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
JP3450349B2 (en) Cantilever probe
US4902892A (en) Method of measurement by scanning tunneling microscope
JP2966189B2 (en) Scanning probe microscope
US5323003A (en) Scanning probe microscope and method of observing sample by using such a microscope
US5001409A (en) Surface metrological apparatus
EP0383323A1 (en) Tunneling acoustic microscope
JP2005069972A (en) Method for controlling travel in probe in scanning probe microscope
JP4727499B2 (en) Scanning probe microscope and operation method thereof
JP2001033373A (en) Scanning probe microscope
JPH02203204A (en) Method for measuring scanning type tunnel microscope
JPH04212001A (en) Scanning tunnel microscope
JP3118108B2 (en) Scanning probe microscope and its measuring method
JP2713717B2 (en) Scanning probe microscope
JPH05203443A (en) Scanning probemicroscope and observation method of sample using the same
JP3473937B2 (en) Scanning probe microscope and its scanning method
JP2624008B2 (en) Scanning tunnel microscope
JP3359181B2 (en) Scanning probe microscope and image measurement method using the same
JP3078352B2 (en) Scanning tunnel microscope measurement method
JPH01187402A (en) Scan tunnel microscope
JPH0293304A (en) Microscopic device
JPH0814481B2 (en) Object surface condition access system
JP3957446B2 (en) Scanning probe microscope
JPH04125403A (en) Determining method of operating point of scanning tunneling microscope
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JPH05296712A (en) Scanning type tunnel microscope

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees