JPS63298951A - Scanning microscope - Google Patents
Scanning microscopeInfo
- Publication number
- JPS63298951A JPS63298951A JP62132858A JP13285887A JPS63298951A JP S63298951 A JPS63298951 A JP S63298951A JP 62132858 A JP62132858 A JP 62132858A JP 13285887 A JP13285887 A JP 13285887A JP S63298951 A JPS63298951 A JP S63298951A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- observation
- sample
- microscope
- stm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 36
- 239000002245 particle Substances 0.000 claims description 16
- 230000005641 tunneling Effects 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 2
- 241001422033 Thestylus Species 0.000 abstract 2
- 230000000007 visual effect Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 2
- 241000287462 Phalacrocorax carbo Species 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
@)産業上の利用分野
本発明は試料表面の構造を分析する之めに用いらnる、
走査電子顕微鏡(8canning Electron
Microscope、以下SEM)、走査オージェ分
析装置(8canningAuger B Iectr
on Microanalyzer 、以下8AM)、
走査イオン顕微鏡(Scanning ion Mic
ro −5cope 、以下8IM)などの粒子線を用
いた顕微鏡(粒子線走査型顕微鏡とする)、及び走査ト
ンネル電子顕微鏡(8canning Tunnel
ing Microscope 。[Detailed Description of the Invention] @) Industrial Application Field The present invention is used for analyzing the structure of a sample surface.
Scanning electron microscope (8canning Electron)
Microscope (hereinafter referred to as SEM), scanning Auger analyzer (8canning Auger B Iectr)
on Microanalyzer (hereinafter referred to as 8AM),
Scanning ion microscope
Microscopes using particle beams (referred to as particle beam scanning microscopes) such as RO-5cope (hereinafter referred to as 8IM), and scanning tunneling electron microscopes (8canning tunnel electron microscopes).
ing Microscope.
以下8TM)に関し、さらて詳しくは、粒子線走査型顕
微鏡と走査トンネ/!/電子顕微鏡(8TM)を組合わ
せ九装置に関する。8TM below), for more details, please refer to Particle Beam Scanning Microscope and Scanning Tunnel/! / Concerning nine devices in combination with an electron microscope (8TM).
(ロ)従来の技術
走査トンネ/l’電子顕微鏡(STM)は、鋭く尖らせ
次針(走査針、STMチップ)と観察試料を近付けて、
両者の間に流れるトンネ/L’電流を捕え、こ鵜の針を
試料表面上で走査して画像を作り出す。(b) Conventional technology Scanning tunnel/l' In an electron microscope (STM), a sharply pointed needle (scanning needle, STM chip) is brought close to the observation sample.
The tunnel/L' current flowing between the two is captured, and the cormorant needle is scanned over the sample surface to create an image.
笥2図は走査トンネル電子顕微鏡の要部(STMユニッ
ト)を示すものであり、走査針13は剛体15に支持さ
nた圧τ素子14 x、 14 y、 14 zにより
試料12に対して3 NX、 y、 z 各方向に走査
さnる。STM観察は、圧電素子14Zによって走査針
13をある量のトンネIVE流が流nるまで試料に近付
けつつ、圧電素子14X、14ylcより試料表面を2
次元走査し、走査針のZ方向駆動量を出力信号として取
出し、画像を構成する。Figure 2 shows the main part of the scanning tunneling electron microscope (STM unit), in which the scanning needle 13 is supported by a rigid body 15 and has three pressure τ elements 14 x, 14 y, and 14 z for the sample 12. NX, y, z Scan in each direction. In STM observation, the scanning needle 13 is brought close to the sample by the piezoelectric element 14Z until a certain amount of tunnel IVE flows, and the surface of the sample is moved 2 times by the piezoelectric elements 14X and 14ylc.
Dimensional scanning is performed, and the Z-direction drive amount of the scanning needle is extracted as an output signal to construct an image.
この走査トンネル電子顕微鏡は、例えば米国特許第43
43993号公報(1982年8月10日)や「サイエ
ンス」誌Vol 、15. No、 10. pplo
へ17(1985年10月1日)に記載さnておジ、1
人あるいはそれ以下という非常に高い分解能を持ち試料
面の原子の配列まで観察できる特長を有する。しかしこ
のような高分解能を得るため走査針を動かす機構に圧電
素子を用いており、両速で広い領域を走査できないので
、低倍率の像を得ることが困難である。This scanning tunneling electron microscope is described in US Pat. No. 43, for example.
Publication No. 43993 (August 10, 1982) and "Science" magazine Vol. 15. No, 10. pplo
17 (October 1, 1985), 1
It has an extremely high resolution of human or better, and has the advantage of being able to observe even the arrangement of atoms on the sample surface. However, in order to obtain such high resolution, a piezoelectric element is used in the mechanism for moving the scanning needle, and since it is not possible to scan a wide area at both speeds, it is difficult to obtain images at low magnification.
一方、粒子線走置型顕微鏡、例えば走査電子顕微鏡(S
BM)は試料表面を細く絞り比重子線ビームで走査し、
試料から放出される二次電子−の信号を検出して試料の
表面観察等を行う装置であり数倍乃至10万倍の倍率を
有する実体顕微鏡として有用さnているが、1人の分解
能を得るのは困難である。On the other hand, particle beam scanning microscopes, such as scanning electron microscopes (S
BM) scans the sample surface with a narrow aperture specific gravity beam,
It is a device that detects signals of secondary electrons emitted from the sample to observe the surface of the sample, and is useful as a stereomicroscope with magnifications ranging from several times to 100,000 times. It is difficult to obtain.
以上のような理由から走査電子顕微鏡と走査トンネル[
子顕微鏡を組合わせてSTM像とSBM像の両方を観察
するため、例えば8EMの試料ステージに8TMユニッ
ト(走査針及び走査針の走査機構)を載せ九装置が考案
されている。For the above reasons, scanning electron microscopes and scanning tunnels [
In order to observe both STM images and SBM images by combining a submicroscope, nine devices have been devised, in which an 8TM unit (scanning needle and scanning mechanism for the scanning needle) is mounted on an 8EM sample stage, for example.
(ハ)発明が解決すべき問題点
SEM試料ステージにSTMユニットを取付けた装置で
は、試料ステージを駆動して8EM観察領域を移動させ
ても8TM観察領域Fiiわらず、従って単にSTMの
観察領域の付近をSEMにより観察できるだけである。(c) Problems to be solved by the invention In an apparatus in which an STM unit is attached to a SEM sample stage, even if the sample stage is driven and the 8EM observation area is moved, the 8TM observation area Fii does not change; The vicinity can only be observed by SEM.
本発叫は、このような問題点?糎決して、粒子線走査型
顕微鏡とSTMの特徴を組合わせた走査顕微鏡1[現し
、広領域(低倍率)観察により任意の視野を選択して次
にその視野を高倍率のSTMにより観察できるようにす
ることを主九る目的とする。Is this the problem with this shout? Finally, the scanning microscope 1 combines the features of a particle beam scanning microscope and STM [currently, it is a scanning microscope that can select an arbitrary field of view through wide-area (low-magnification) observation and then observe that field of view with a high-magnification STM. The main purpose is to
に)問題点を解決する手段
本発明においては、走査トンネ/I/[子顕微鏡の走査
針走査機構と試料粗動機構とを粒子線走査型顕微鏡の対
物レンズに取付ける。In the present invention, the scanning tunnel/I/[scanning needle scanning mechanism and sample coarse movement mechanism of the child microscope are attached to the objective lens of the particle beam scanning microscope.
(ホ)作 用
粒子線走査型顕微鏡による広領域像観察を行いSTMに
より観察する領域を選定し、試料粗動機構を用いてその
領域を中央に位置させ、次にSTM走査による観察を行
うと、目的とするSTM像が得られる。(e) Observe a wide-area image using a working particle beam scanning microscope, select the area to be observed using STM, position the area in the center using the sample coarse movement mechanism, and then perform observation using STM scanning. , the desired STM image is obtained.
(へ)実施例
」\1下、粒子線走査型顕微鏡として走査電子顕微fi
(SEM)を例にとって説明する。(To) Example"\1 Bottom, Scanning electron microscope fi as a particle beam scanning microscope
(SEM) will be explained as an example.
第1図は、本発明の一実施例である8113Mと8TM
vi−組合わせた装置の要部を示す。本図において1は
8EM対物レンズ、2は試料、3は走査電子顕微鏡の走
査針である。4は走査針走査機構であフ第2図同様3軸
x、 y、 zに対応する3個の圧電素子から構成され
る。5は走査針及び走査ja構を支持する剛体であって
、試料ステージ(試料粗動機構)6の基台7も支持して
いる。試料ステージ6は試料2をx、 y、 zの各方
向に移動する駆動装置6x、6y、 6zを含む。3a
、8bは試料ステージ6の動きを基台7(又は剛体5)
に対して固定するロック機構である。9は防振材であっ
て、弾性体の板と剛性の板を交互に重ねて構成されてお
り、STM観察の際に外部からの振動が対物レンズ1を
介して走査針及び試料に伝わるのを防止している。この
防振材9があることによって、8EM対物レンズ1と試
料2の間即ち電子ビームの軸と試料の間に振動が生じる
こともあるので、SBM観察のときには剛体5と8gM
対物レンズ1の間を防振ロック(図示せず)により締結
固定する。Figure 1 shows 8113M and 8TM, which are one embodiment of the present invention.
vi - Shows the main parts of the combined device. In this figure, 1 is an 8EM objective lens, 2 is a sample, and 3 is a scanning needle of a scanning electron microscope. Reference numeral 4 denotes a scanning needle scanning mechanism, which is composed of three piezoelectric elements corresponding to the three axes x, y, and z, as in Fig. 2. Reference numeral 5 denotes a rigid body that supports the scanning needle and the scanning jaw mechanism, and also supports the base 7 of the sample stage (sample rough movement mechanism) 6. The sample stage 6 includes drive devices 6x, 6y, and 6z that move the sample 2 in each of the x, y, and z directions. 3a
, 8b is the base 7 (or rigid body 5) that controls the movement of the sample stage 6.
This is a locking mechanism that fixes the Reference numeral 9 denotes a vibration isolating material, which is composed of alternating layers of elastic plates and rigid plates, and prevents external vibrations from being transmitted to the scanning needle and sample through the objective lens 1 during STM observation. is prevented. Due to the presence of this vibration isolating material 9, vibration may occur between the 8EM objective lens 1 and the sample 2, that is, between the electron beam axis and the sample, so during SBM observation, the rigid body 5 and the 8gM
The space between the objective lenses 1 is fastened and fixed by an anti-vibration lock (not shown).
本実施例装置による観察は例えば次のように行う。まず
SEM観察を行うときはロック機構8a、8bを解除し
次状態にする。駆動装置6zにより走査針3と試料2t
−少し離して電子ビームにより試料2の表面を走査し、
駆動装fi 6X、 6 yにによフ視野を移動させな
がらSBM観察を行う、8EM観察によりSTM観察領
域を選定すnば駆動装置6X、 6)’の駆動を止め、
駆t!I装置6zにより試料2を走査針3に除徐に近付
ける。このとき試料と走査針?ぶつけないようにする必
要があるが、SEM観察を継続することにより走査針と
試料の位置関係も観察できるので操作が容易である。図
のように走査針3の先端が対物レンズ1の光軸付近に位
置するように8TM走査機構を対物レンズに取付けてお
り、走査針の走査により勧<iは僅かであるので、走査
針がどのような走査位置にありてもその先端をSEXで
観ることができる。次にロック機構8a、8bによって
試料ステージ6を固定し、試料と走査針の相対振動を止
める。このとき試料(視野)が若干勧い九場合は、SE
M観察を続けながら必要に応じて視野補正(一旦ロツク
機構を解除して試料ステージの駆動によ)視野を再度設
定)する。このようにして8TM視野が選定さn、試料
ステージをロックす九ば、走査機構4によって走査針を
走査してSTM観察を行うことができる。STM観察に
ついては従来技術と同様であるので省略する。Observation using the apparatus of this embodiment is performed, for example, as follows. First, when performing SEM observation, the locking mechanisms 8a and 8b are released and set to the next state. The scanning needle 3 and the sample 2t are moved by the driving device 6z.
-Scan the surface of sample 2 with the electron beam at a slight distance;
Perform SBM observation while moving the field of view using the drive devices fi 6X, 6y, select the STM observation area by 8EM observation, stop driving the drive devices 6X, 6)',
Kakut! The sample 2 is gradually brought closer to the scanning needle 3 using the I device 6z. At this time, the sample and the scanning needle? Although it is necessary to avoid collisions, the operation is easy because the positional relationship between the scanning needle and the sample can be observed by continuing SEM observation. The 8TM scanning mechanism is attached to the objective lens so that the tip of the scanning needle 3 is located near the optical axis of the objective lens 1 as shown in the figure. No matter what scanning position it is in, the tip can be seen during SEX. Next, the sample stage 6 is fixed by the lock mechanisms 8a and 8b, and the relative vibration between the sample and the scanning needle is stopped. At this time, if the sample (field of view) is slightly narrow, SE
While continuing M observation, correct the field of view as necessary (by once releasing the lock mechanism and driving the sample stage), set the field of view again). After 8 TM fields of view are selected in this way and the sample stage is locked, the scanning needle can be scanned by the scanning mechanism 4 to perform STM observation. STM observation is the same as the conventional technique, so a description thereof will be omitted.
前述のようにS ’l’ Mは1Å以下の分解能を有す
るものであるから、走査針と試料相互の振動は87M走
査中は1Å以下でなくてはならない。ところが数mmへ
1cm程度試料を移動させる試料粗動機構による試料と
試料粗動機構の基台との相互振動は数10Å以上になっ
てしまう。そn数本実施例では試料粗動機構の基台7と
走査針走査機構を剛体で結合し、87M走査中はロック
機構8によって試料ステージ6を基台7 、 Jai1
体5に固定しているのである。As mentioned above, since S 'l' M has a resolution of 1 Å or less, the mutual vibration between the scanning needle and the sample must be 1 Å or less during the 87M scan. However, the mutual vibration between the sample and the base of the sample coarse movement mechanism due to the sample coarse movement mechanism that moves the sample by about 1 cm to several mm becomes several tens of angstroms or more. In this embodiment, the base 7 of the sample coarse movement mechanism and the scanning needle scanning mechanism are connected by a rigid body, and during 87M scanning, the sample stage 6 is locked to the base 7 and Jai1 by the lock mechanism 8.
It is fixed to the body 5.
(ト)効 果
本発明の走貸顕微鏡では、単にSEMのような粒子線走
査型顕微鏡による観察とSTM観察の双方ができるだけ
でなく、粒子顕微鏡による観察で任意の視野を選択して
その視野をSTMにより観察することが簡単かつ確夾に
でき、非常に便利である。(G) Effects The scanning microscope of the present invention not only allows for both observation using a particle beam scanning microscope such as SEM and STM observation, but also allows for selecting any field of view for observation using a particle microscope. Observation using STM is easy and reliable, and is very convenient.
コンパクトな構造であフ、1次、試料を広領域に移動可
能な粗動機構を有しながら防振性に優れているので、高
性能STM像を得ることが可能となる。It has a compact structure, a rough movement mechanism that can move the primary sample over a wide area, and excellent vibration damping properties, making it possible to obtain high-performance STM images.
第1図は本発明の走査顕微鏡の一実施例の要部を示す図
であり、第2図は走査トンネIv電子顕微鏡の要部を示
す図(従来技術を説明するための図)である。
1・・・走査電子顕微鏡の対物レンズ
2.12・・・試料 3,13・・・走査針4・・・走
査針走査機構
14X? 14y+ 14z・・・圧電素子 5,15
・・・剛体6・・・試料ステージ 7・・・試料ステー
ジの基台8a、8b・・・ロック機構 9・・・防振材
第1図
第2園FIG. 1 is a diagram showing a main part of an embodiment of a scanning microscope of the present invention, and FIG. 2 is a diagram showing a main part of a scanning tunnel IV electron microscope (a diagram for explaining the prior art). 1... Objective lens of a scanning electron microscope 2. 12... Sample 3, 13... Scanning needle 4... Scanning needle scanning mechanism 14X? 14y+ 14z...Piezoelectric element 5,15
...Rigid body 6...Sample stage 7...Sample stage base 8a, 8b...Lock mechanism 9...Vibration isolation material Figure 1, Figure 2
Claims (4)
を得る粒子線走査型顕微鏡と走査トンネル電子顕微鏡を
組合わせた装置において、走査トンネル電子顕微鏡の走
査針走査機構と試料粗動機構の基台とを前記粒子線走査
型顕微鏡の対物レンズに取付けたことを特徴とする走査
顕微鏡。(1) In a device that combines a particle beam scanning microscope and a scanning tunneling electron microscope to obtain a two-dimensional image of the sample surface by scanning the sample surface with a particle beam, the scanning needle scanning mechanism of the scanning tunneling electron microscope and the sample coarse movement are used. A scanning microscope characterized in that a base of the mechanism is attached to the objective lens of the particle beam scanning microscope.
たことを特徴とする、特許請求の範囲第1項記載の走査
顕微鏡。(2) The scanning microscope according to claim 1, further comprising a locking mechanism for fixing the movement of the sample coarse movement mechanism.
粗動機構の基台とを、防振部材を介して粒子走査型顕微
鏡の対物レンズに取付けたことを特徴とする、特許請求
の範囲第1項記載の走査顕微鏡。(3) The scanning needle scanning mechanism and the base of the sample coarse movement mechanism of a scanning tunneling electron microscope are attached to the objective lens of a particle scanning microscope via a vibration isolating member. The scanning microscope according to item 1.
走査型顕微鏡の対物レンズの光軸付近に位置するように
、走査針及び走査針走査機構を前記対物レンズに取付け
たことを特徴とする、特許請求の範囲第1項記載の走査
顕微鏡。(4) A scanning needle and a scanning needle scanning mechanism are attached to the objective lens of the particle beam scanning microscope so that the tip of the scanning needle of the scanning tunneling electron microscope is located near the optical axis of the objective lens of the particle beam scanning microscope. , a scanning microscope according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62132858A JPH0833405B2 (en) | 1987-05-28 | 1987-05-28 | Scanning microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62132858A JPH0833405B2 (en) | 1987-05-28 | 1987-05-28 | Scanning microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63298951A true JPS63298951A (en) | 1988-12-06 |
JPH0833405B2 JPH0833405B2 (en) | 1996-03-29 |
Family
ID=15091174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62132858A Expired - Lifetime JPH0833405B2 (en) | 1987-05-28 | 1987-05-28 | Scanning microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0833405B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0264401A (en) * | 1988-08-31 | 1990-03-05 | Seiko Instr Inc | Scanning tunneling microscope |
JPH02203204A (en) * | 1989-02-01 | 1990-08-13 | Seiko Instr Inc | Method for measuring scanning type tunnel microscope |
JPH02288058A (en) * | 1989-04-27 | 1990-11-28 | Shimadzu Corp | Sample surface analyzing device |
JPH0413904A (en) * | 1990-05-08 | 1992-01-17 | Hitachi Ltd | Scanning-type tunnel microscope |
JPH1021863A (en) * | 1996-06-27 | 1998-01-23 | Kawasaki Steel Corp | Local analyzer |
JP2005209658A (en) * | 2005-03-18 | 2005-08-04 | Jfe Steel Kk | Local analysis instrument |
-
1987
- 1987-05-28 JP JP62132858A patent/JPH0833405B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0264401A (en) * | 1988-08-31 | 1990-03-05 | Seiko Instr Inc | Scanning tunneling microscope |
JPH02203204A (en) * | 1989-02-01 | 1990-08-13 | Seiko Instr Inc | Method for measuring scanning type tunnel microscope |
JPH02288058A (en) * | 1989-04-27 | 1990-11-28 | Shimadzu Corp | Sample surface analyzing device |
JPH0413904A (en) * | 1990-05-08 | 1992-01-17 | Hitachi Ltd | Scanning-type tunnel microscope |
US5256876A (en) * | 1990-05-08 | 1993-10-26 | Hitachi Ltd. | Scanning tunnel microscope equipped with scanning electron microscope |
JPH1021863A (en) * | 1996-06-27 | 1998-01-23 | Kawasaki Steel Corp | Local analyzer |
JP2005209658A (en) * | 2005-03-18 | 2005-08-04 | Jfe Steel Kk | Local analysis instrument |
Also Published As
Publication number | Publication date |
---|---|
JPH0833405B2 (en) | 1996-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5705878A (en) | Flat scanning stage for scanned probe microscopy | |
US6967335B1 (en) | Manipulation system for manipulating a sample under study with a microscope | |
US6891170B1 (en) | Modular manipulation system for manipulating a sample under study with a microscope | |
WO1989001603A1 (en) | Scanning type tunnel microscope | |
JPH0340355A (en) | Complex scan type tunnel microscope | |
JP3133307B2 (en) | electronic microscope | |
JPS63298951A (en) | Scanning microscope | |
US5256876A (en) | Scanning tunnel microscope equipped with scanning electron microscope | |
JP2580352B2 (en) | Raster electron microscope | |
JP2003140053A (en) | Scanning probe microscope integrated with shaft by each of optical microscope | |
JPS619614A (en) | Microscope | |
JPH07181030A (en) | Interatomic force microscope | |
JPH03142301A (en) | Scanning tunnel microscope | |
JPH034102A (en) | Scanning type tunnel microscope | |
Lee et al. | Versatile low-temperature atomic force microscope with in situ piezomotor controls, charge-coupled device vision, and tip-gated transport measurement capability | |
JP3404913B2 (en) | Optical path splitting device for microscope | |
JP3250788B2 (en) | Scanning probe microscope | |
JP3333111B2 (en) | Scanning probe microscope and unit used for scanning probe microscope | |
JPH1054834A (en) | Measuring method of scan probe microscope | |
JP2568385B2 (en) | Scanning probe microscope | |
JP2002098906A (en) | Microscope | |
JPH05118843A (en) | Scanning type probe microscope | |
JPH09229943A (en) | Scanning-type probe microscope | |
JPH0340352A (en) | Complex scan type tunnel microscope | |
JP4575250B2 (en) | Scanning probe microscope |