JPH0340352A - Complex scan type tunnel microscope - Google Patents

Complex scan type tunnel microscope

Info

Publication number
JPH0340352A
JPH0340352A JP17479489A JP17479489A JPH0340352A JP H0340352 A JPH0340352 A JP H0340352A JP 17479489 A JP17479489 A JP 17479489A JP 17479489 A JP17479489 A JP 17479489A JP H0340352 A JPH0340352 A JP H0340352A
Authority
JP
Japan
Prior art keywords
stm
optical microscope
sample
microscope
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17479489A
Other languages
Japanese (ja)
Inventor
Masatoshi Yasutake
正敏 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP17479489A priority Critical patent/JPH0340352A/en
Publication of JPH0340352A publication Critical patent/JPH0340352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To have specification of the STM probe position by placing a standard specimen for alignment on a stage together with the measurement data. CONSTITUTION:There is a precision mount ring 3 at the stage part 2, and there are recessed mounts in the same shape at the tunnel unit part 1 and a small-sized metal microscope. The center of gravity in the plane direction of an optical microscope and the tunnel unit part 1 shall lie in the center of the support 3 point, and the load shall be equally dispersed at the support 3 point even though the tunnel unit 8 and optical microscope are replaced. Then the probe 10 position of STM is aligned with the cross cursor position of the optical microscope, and the standard specimen is measured by the STM, and coordinates are read from the image obtained from this measurement. Then the optical microscope is placed on the mount, and cross cursor of the optical microscope is moved to the place with the obtained coordinates of the STM image. Then the standard specimen is replaced with the measuring specimen, while the optical microscope unit is replaced with the STM unit, and thus STM measurement is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 走査型トンネル顕微鏡と光学顕微鏡を複合しSTMの探
針の指定を容易にした複合走査型トンネル顕微鏡に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compound scanning tunneling microscope that combines a scanning tunneling microscope and an optical microscope and facilitates the specification of an STM probe.

〔発明の概要〕[Summary of the invention]

STMをユニット部(Z粗動、PZT、探針)とステー
ジ部(xyステージ、除振台、試料ホルダー〉に分離で
きるような構成とし、ステージ部ユニソト部、接続部に
精密なマウント機構を有し、ユニット部の脱着による位
置再現性を±1μ程度とした。一方補助的観測手段とし
て光学顕微鏡を有し、ユニット部と同一のマウントを有
し、ユニットと光学顕微鏡を交換しても両者の位置再現
性は±1μ程度とした。又、光学S!i′i微鏡の接眼
部に、STM探針位置指定のためにクロスカーソルがX
The STM is structured so that it can be separated into a unit part (Z coarse movement, PZT, probe) and a stage part (xy stage, vibration isolating table, sample holder), and the stage part has a unilateral part and a precise mounting mechanism at the connection part. The position reproducibility due to attaching and detaching the unit part was set to about ±1μ.On the other hand, an optical microscope is used as an auxiliary observation means, and it has the same mount as the unit part, so even if the unit and optical microscope are replaced, the difference between the two The position repeatability was approximately ±1μ.Also, a cross cursor was placed on the eyepiece of the optical S!i'i microscope to specify the STM probe position.
.

yに移動可能な機構を設けた。一方、試料ステージ上に
STMの走査領域内(10μ程度)でその場所が同定で
きる。特異的パターンを持った標準サンプルを有する。
A movable mechanism was installed on the y. On the other hand, the location on the sample stage can be identified within the STM scanning area (approximately 10μ). It has a standard sample with a specific pattern.

〔従来の技術〕[Conventional technology]

従来のSTMは、試料と探針の位置関係を観測する手段
として、長動作距離(10efi程度)の実体顕微鏡を
用い、試料面を斜め上より観測していた。
Conventional STM uses a stereomicroscope with a long operating distance (approximately 10 efi) as a means of observing the positional relationship between the sample and the probe, and observes the sample surface from diagonally above.

試料面を斜方より観測するために試料全面を−度に結像
することができず、又実体顕微鏡を使用するため倍率も
200倍解像度10μ程度しか得られず、試料の微細な
場所への位置合わせが困難であった。
Since the sample surface is observed from an oblique angle, it is not possible to image the entire surface of the sample at a -degree angle, and since a stereomicroscope is used, the magnification is only 200 times and the resolution is only about 10μ, making it difficult to see the minute spots on the sample. It was difficult to align.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

37M装置は、原子レベルが観測できる分解能を持つ反
面、走査領域が狭く、最大でもIOμ程度である。この
ため試料の観察したい部分をSTMで測定するためには
、この10μの走査領域へ試料又は探針を位置合わせす
る必要がある。前述のように実体W4微鏡で斜方より試
料面をti31i11111した場合、試料面全面でピ
ントが合わず、又倍率、解像とも低いため、ステージ部
での探針と試料の位置合わせを10μ以下の精度で行う
のは難しいという問題点がある0本発明はかかる問題点
を解決するためになされたものであって、STMのトン
ネルユニット部と同一構造のマウントに光学顕微鏡を取
り付け、光学Bm鏡とトンネルユニットを交換しても、
ステージ部との位置再現性を±lμ程度とし、さらにS
TMの探針位置の指定を可能にした37M装置を提供す
ることを目的とする。
Although the 37M device has a resolution that allows observation at the atomic level, its scanning area is narrow, at most about IOμ. Therefore, in order to measure the part of the sample to be observed using STM, it is necessary to align the sample or the probe to this 10μ scanning area. As mentioned above, when the sample surface is viewed from an oblique angle using a solid W4 microscope, the entire surface of the sample is not in focus, and both magnification and resolution are low. The present invention has been made to solve this problem, and the optical microscope is attached to a mount having the same structure as the tunnel unit of the STM. Even if you replace the mirror and tunnel unit,
The positional repeatability with the stage part is about ±lμ, and S
The object of the present invention is to provide a 37M device that enables specification of the TM probe position.

〔課題を解決するための手段〕[Means to solve the problem]

本発明が上記目的を達成するために採用した主たる手段
は下記の通りである。即ち、 (1)  同型のマウント機構を備えた走査型トンネル
顕微鏡鏡筒と光学顕微鏡鏡筒、前記マウント機構に接合
するマウント機構を備えたステージ部からなり、上記ス
テージ部には位置合わせ用標準試料が測定試料とともに
併置されていることを特徴とする複合走査型トンネル顕
微鏡。
The main means adopted by the present invention to achieve the above object are as follows. That is, (1) It consists of a scanning tunneling microscope lens barrel and an optical microscope lens barrel equipped with the same type of mount mechanism, and a stage section equipped with a mount mechanism that connects to the mount mechanism, and the stage section is equipped with a standard sample for positioning. A compound scanning tunneling microscope characterized in that a compound scanning tunneling microscope is placed together with a measurement sample.

(2)  上記光学W4徽鏡鏡筒の接眼部にクロスカー
ソルxy移動機構を設けたことを特徴とする請求項l記
載の複合走査型トンネル顕微鏡。
(2) The compound scanning tunneling microscope according to claim 1, further comprising a cross cursor xy moving mechanism provided in the eyepiece section of the optical W4 lens barrel.

〔作用〕[Effect]

トンネルユニット部と同一構造のマウントに光学glI
微鏡を取り付け、光学顕微鏡とトンネルユニットを交換
しても、ステージ部との位置再現性を±lμ程度とし、
一方、光学顕微鏡の接眼部にクロスカーソルをx、yに
移動できる機構をもたせたのでSTMの探針位置の指定
が可能になった。
Optical glI mounted on a mount with the same structure as the tunnel unit.
Even if a microscope is attached and the optical microscope and tunnel unit are replaced, the positional repeatability with the stage part is about ±lμ,
On the other hand, the eyepiece of the optical microscope was equipped with a mechanism that could move the cross cursor in x and y directions, making it possible to specify the position of the STM probe.

上記手段を用いると、試料面を垂直方向より短動作距離
で観測できるため、光学顕微鏡として高倍率(1000
倍程度)高解像度(0,5μ)程度の物で試料面を観測
可能となる。又、試料全面でピントも合い1μ程度の精
細な試料形状まで観測できる。
By using the above method, the sample surface can be observed at a shorter working distance than in the vertical direction, so it can be used as an optical microscope at high magnification (1000
It becomes possible to observe the sample surface with a high resolution (approximately 0.5μ). In addition, the entire surface of the sample is in focus, allowing observation of sample shapes as fine as about 1 μm.

一方、37M探針と試料の位置合わせは、前述の標準試
料をSTMで10μ走査を行い、特徴的な形状の画像壱
表示しておく0次にトンネルユニット部と光学=na鏡
を交換して、標準サンプルのどの部分がSTM像で走査
されたか探し、その位置へ接眼部のクロスカーソルを移
動することによってSTMの探針位置が判明する0次に
測定試料を光学顕微鏡で観測し、クロスカーソル位置へ
測定箇所を移動する。光学顕微鏡とトンネルユニ7トを
再度交換しSTMの画像を得る。従って、光学顕微鏡と
トンネルユニット部を交換しても±1μ程度の位置再現
性を持つマウントが必要となる。
On the other hand, to align the 37M probe and the sample, perform a 10μ scan of the standard sample mentioned above with STM, display an image of the characteristic shape, and replace the tunnel unit and optical mirror. , find which part of the standard sample was scanned by the STM image, and move the cross cursor on the eyepiece to that position to find the STM probe position. Observe the zero-order measurement sample with an optical microscope, and Move the measurement point to the cursor position. Replace the optical microscope and tunnel unit 7 again to obtain an STM image. Therefore, a mount is required that has a positional reproducibility of approximately ±1 μ even when the optical microscope and tunnel unit are replaced.

〔実施例〕〔Example〕

第1図に本発明の実施例の概念図を示す。この装置は、
トンネルユニット部1、ステージ部2、及び小型金属顕
微鏡(第4図)よりなる、ステージ部2には、精密マウ
ントリング3があり、凸部4がある。トンネルユニット
部lと小型金属顕微鏡には図示しないが同形の凹部のマ
ウントを有する。第2図に精密マウント凸部の例を示す
、精密マウント凸部は精密マウントリング3の上に等配
に3ケの剛球の凸部受け4(第2図(b))を埋め込み
、この3点で荷重を支持する。一方、凹部は第3図+8
) 〜tc>に示す形状5.6. 7よりなる。5で垂
直方向の高さを規制し、6により回転方向を規制し、7
により動径方向を規制する。又、形状6のみを動径方向
に3ケ配しても同様の効果が得られた。又、より一層位
置合わせの精度を増すために、形状6をM径方向に配し
、リングの中心に向かってテーパーを持たせるように配
置した。当然のことながらマウントの凸部、凹部を入れ
替えても同様な効果が得られるが、垂直方向に装置を組
み上げる場合は、ステージ部2が凸部の方が塵等の蓄積
が少なく有利である。又、トンネルユニット部1と光学
’JA6’&鏡の平面方向の重心位置は、上記支持3点
の中心位置に来るようにし、トンネルユニノド8と、光
学顕微鏡を交換しても支持3点には等しく荷動が分散す
るようにした。上記マウント機構により、トンネルユニ
ノド8と光学顕微鏡をステージ部2に載せ変えた場合の
位置再現性は±1μ程度となり、STMの走査域が10
μあるので光学顕微鏡の視野下で指定した試料位置へS
TMの探針を導くことが可能になる。
FIG. 1 shows a conceptual diagram of an embodiment of the present invention. This device is
The stage section 2, which consists of a tunnel unit section 1, a stage section 2, and a small metallurgical microscope (FIG. 4), has a precision mount ring 3 and a convex section 4. Although not shown, the tunnel unit part 1 and the small metallurgical microscope have a recessed mount having the same shape. Fig. 2 shows an example of a precision mount protrusion. Support the load at a point. On the other hand, the recess is shown in Figure 3 +8
) ~tc> 5.6. Consists of 7. 5 regulates the vertical height, 6 regulates the rotation direction, and 7
The radial direction is restricted by Moreover, the same effect was obtained even when only three shapes 6 were arranged in the radial direction. In addition, in order to further increase the accuracy of alignment, the shapes 6 are arranged in the M radial direction and are arranged so as to taper toward the center of the ring. Naturally, the same effect can be obtained by replacing the convex and concave portions of the mount, but when assembling the apparatus in a vertical direction, it is advantageous for the stage section 2 to have a convex portion because less dust and the like will accumulate there. Also, the center of gravity of the tunnel unit 1 and the optical 'JA6'& mirror in the plane direction should be at the center of the three support points, so that even if the tunnel unit 8 and the optical microscope are replaced, the center of gravity in the plane direction will remain at the three support points. The load movement was distributed equally. With the above-mentioned mounting mechanism, the position repeatability is about ±1 μ when the tunnel unit 8 and the optical microscope are placed on the stage section 2, and the STM scanning area is 10
Since there is μ, S to the specified sample position under the field of view of the optical microscope.
It becomes possible to guide the TM probe.

第4図に光学ni微鏡接眼部につけたx、y移動機構付
きクロスカーソル9を示すクロスカーソルの移動分解能
は10μであり、対物レンズを40倍を使用すると、試
料面では0.25μまでの位置指定が可能になり、位置
合わせ梢度±1μから見て十分な桔度である。
Figure 4 shows the cross cursor 9 with an x and y movement mechanism attached to the eyepiece of an optical ni microscope.The movement resolution of the cross cursor is 10μ, and when a 40x objective lens is used, the resolution at the sample surface is 0.25μ. This makes it possible to specify the position, and the accuracy is sufficient considering the positioning accuracy of ±1μ.

次にSTMの探針10位置と光学顕微鏡のクロスカーソ
ル位置の合わせ方を示す。第5図に示す位置合わせ用標
エセ試料の一例を示す、IOμごとのメツシュによって
区切られていてその内部には、その場所の座標を示す。
Next, we will show how to align the STM probe 10 position with the optical microscope cross cursor position. An example of the alignment reference sample shown in FIG. 5 is divided by meshes for each IOμ, and the coordinates of the locations are shown inside the meshes.

文字又は数字が書かれている。この標準試料をSTMで
測定しての画像より座標を読み取る0次に光学顕微鏡を
マウントの上に載せSTM像の得られた座標の所へ光学
顕微鏡のクロスカーソルを移動する。このクロスカーソ
ル位置がS T Mの探針位置となる0次に標!1!試
料と測定試料を交換し、クロスカーソル位置へ試料の観
測域を一致するようにステージ等で送る0次に光学顕微
鏡ユニットとSTMユニントを交換してSTMの測定を
行う。
Written with letters or numbers. This standard sample is measured by STM, and the coordinates are read from the image.The zero-order optical microscope is placed on the mount and the cross cursor of the optical microscope is moved to the coordinates where the STM image is obtained. This cross cursor position is the 0th order mark which becomes the STM probe position! 1! The sample and the measurement sample are exchanged, and the 0-order optical microscope unit and the STM unit are exchanged, and the STM measurement is performed by sending the sample on a stage or the like so that the observation area of the sample coincides with the cross cursor position.

〔発明の効果〕〔Effect of the invention〕

前述のような構成にした結果、試料の任意位置へ±1μ
程度の猜度でSTMの探針を位置合わせすることが可能
になった。又、試料を垂直方向より観測できるため金属
顕微鏡で高倍率高解像度で試料を観測できるようになっ
た。
As a result of the configuration described above, it is possible to move the sample to any position within ±1μ.
It has become possible to align the STM probe with a certain degree of precision. In addition, since the sample can be observed from the vertical direction, it has become possible to observe the sample with high magnification and high resolution using a metallurgical microscope.

【図面の簡単な説明】[Brief explanation of drawings]

凸部の説明図、第3図は本発明の一実施例に用いる精密
マウント凹部受けの説明図、第4図は本発明の一実施例
に用いる光学顕微鏡を示す図、第5図は本発明の一実施
例に用いる位置合わせ用標準試料の一例を示す図である
。 ・トンネルユニノド部 ・ステージ部 ・桔密マウントリング ・凸部受け ・トンネルユニソト ・光学顕微鏡接眼部 ・探針 ・試料 猜密移動ステージ 以 上 出廓人 セイコー電子工業株式会社
FIG. 3 is an explanatory diagram of the convex part, FIG. 3 is an explanatory diagram of the precision mount concave receiver used in an embodiment of the present invention, FIG. 4 is a diagram showing an optical microscope used in an embodiment of the present invention, and FIG. It is a figure which shows an example of the standard sample for alignment used in one Example.・Tunnel uni-node section ・Stage section ・Tight mount ring ・Convex part receiver ・Tunnel uni-soto ・Optical microscope eyepiece ・Probe ・Sample tight movement stage and above Supplier Seiko Electronics Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)同型のマウント機構を備えた走査型トンネル顕微
鏡鏡筒と光学顕微鏡鏡筒、前記マウント機構に接合する
マウント機構を備えたステージ部からなり、上記ステー
ジ部には位置合わせ用標準試料が測定試料とともに併置
されていることを特徴とする複合走査型トンネル顕微鏡
(1) Consists of a scanning tunneling microscope barrel and an optical microscope barrel equipped with the same type of mount mechanism, and a stage section equipped with a mount mechanism that connects to the mount mechanism, and the stage section is equipped with a standard sample for positioning to be measured. A compound scanning tunneling microscope characterized by being placed together with a sample.
(2)上記光学顕微鏡鏡筒の接眼部にクロスカーソルx
y移動機構を設けたことを特徴とする請求項1記載の複
合走査型トンネル顕微鏡。
(2) Cross cursor x on the eyepiece of the optical microscope lens barrel above.
2. The compound scanning tunneling microscope according to claim 1, further comprising a y-moving mechanism.
JP17479489A 1989-07-05 1989-07-05 Complex scan type tunnel microscope Pending JPH0340352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17479489A JPH0340352A (en) 1989-07-05 1989-07-05 Complex scan type tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17479489A JPH0340352A (en) 1989-07-05 1989-07-05 Complex scan type tunnel microscope

Publications (1)

Publication Number Publication Date
JPH0340352A true JPH0340352A (en) 1991-02-21

Family

ID=15984787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17479489A Pending JPH0340352A (en) 1989-07-05 1989-07-05 Complex scan type tunnel microscope

Country Status (1)

Country Link
JP (1) JPH0340352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133806A (en) * 2007-11-30 2009-06-18 King Yuan Electronics Co Ltd Probe card correction facilities
JP2010506418A (en) * 2006-10-12 2010-02-25 ヴィステック・リソグラフィー・インコーポレーテッド Reduction of stage motion reaction force in an electron beam lithography machine.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506418A (en) * 2006-10-12 2010-02-25 ヴィステック・リソグラフィー・インコーポレーテッド Reduction of stage motion reaction force in an electron beam lithography machine.
JP2009133806A (en) * 2007-11-30 2009-06-18 King Yuan Electronics Co Ltd Probe card correction facilities

Similar Documents

Publication Publication Date Title
EP0331148B1 (en) Microscope apparatus
USRE35514E (en) Scanning force microscope having aligning and adjusting means
EP0406413B1 (en) Scanning type tunnel microscope
US5376790A (en) Scanning probe microscope
US5714756A (en) Scanning probe microscope having a single viewing device for on-axis and oblique angle views
EP0442630B1 (en) Combined scanning electron and scanning tunnelling microscope apparatus and method
EP1423677B1 (en) Apparatus for measuring a surface profile
van der Werf et al. Compact stand‐alone atomic force microscope
WO2006098123A1 (en) Scanning probe microscope and its measuring method
US20100031402A1 (en) Probe aligning method for probe microscope and probe microscope operated by the same
JPH0340352A (en) Complex scan type tunnel microscope
US5423514A (en) Alignment assembly for aligning a spring element with a laser beam in a probe microscope
US8832859B2 (en) Probe alignment tool for the scanning probe microscope
JP2003140053A (en) Scanning probe microscope integrated with shaft by each of optical microscope
JP3560095B2 (en) Scanning probe microscope
KR920005446B1 (en) Telescope apparatus
JPH08226926A (en) Scanning probe microscope and measurement method by the microscope
JPS63298951A (en) Scanning microscope
JPH07181030A (en) Interatomic force microscope
JPH01287403A (en) Scan type tunnel microscope
JP2003004620A (en) Scanning probe microscope
JP4575250B2 (en) Scanning probe microscope
JPH05118843A (en) Scanning type probe microscope
JPH0334250A (en) Optical microscope complex scanning type tunnel microscope
JP3250788B2 (en) Scanning probe microscope