JPH0220292B2 - - Google Patents

Info

Publication number
JPH0220292B2
JPH0220292B2 JP58050919A JP5091983A JPH0220292B2 JP H0220292 B2 JPH0220292 B2 JP H0220292B2 JP 58050919 A JP58050919 A JP 58050919A JP 5091983 A JP5091983 A JP 5091983A JP H0220292 B2 JPH0220292 B2 JP H0220292B2
Authority
JP
Japan
Prior art keywords
reaction
immobilized
reaction tower
shape
baffle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58050919A
Other languages
Japanese (ja)
Other versions
JPS59177127A (en
Inventor
Kyokazu Yamashita
Masakatsu Furui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP58050919A priority Critical patent/JPS59177127A/en
Publication of JPS59177127A publication Critical patent/JPS59177127A/en
Publication of JPH0220292B2 publication Critical patent/JPH0220292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は軟質性充填材が用いられる充填層型反
応塔に関する。。さらに詳しくは、軟質性充填材
が充填されてなる充填層中に、被処理液の流れ方
向と直角方向にバツフルが挿入されてなる充填層
型反応搭に関する。 近年、固定化酵素または固定化微生物などの固
定化生触媒を用いて有用物質を生産する方法が
種々研究され、工業的スケールで実施されるよう
になつてきている。 そうした工業的生産用の反応器として、充填層
型の反応塔がもつと広く使用されている。しかし
ながら、充填される固定化生触媒粒子の殆んどが
通常の固体触媒に比して機械的強度に劣る軟質性
物質であり、これらの生触媒では反応塔の大型化
や高流速操作に伴つて圧密現象が生じ、その結果
生触媒の有効係数が低下すると共に反応速度が著
しく小さくなり、ときには処理不能となるという
問題がある。 このような固定化生触媒に固有の問題を解決す
る方法の1つとして、反応塔の壁面効果を利用し
て圧密を防止する垂直多管型の反応塔が提案され
ている。しかし、その反応塔においては各管の圧
力損失をあらかじめ測定して一定にしておく必要
があり、その設定がまずいと被処理液のシヨート
パスを起して均一な通液操作が行なえない。また
自己荷重による圧密のため、充填層の高さにも限
度があり、操作時の流量充填物の粒径によつて異
なるが、通常2〜3mを超えるものは使用できな
い。 本発明者らは固定化生触媒などの軟質性充填材
が充填されている充填層中に、被処理液の流れ方
向と直角方向にバツフルを挿入するときは、バツ
フルと軟質性充填材粒子との摩擦により軟質性充
填材が圧密されることを防止できることを見出
し、本発明を完成した。 本発明におけるバツフルは、横断面形状が円
形、楕円形、三角形、四角形、菱形、L字形、T
字形、コ字形、I字形などの棒状または細長体状
のものが好ましく、とくにそうしたバツフルの下
方に死空間が生じにくい円形、楕円形、菱形など
が好ましい。また中空状のバツフルを用いてもよ
い。 バツフルは充填層中を完全に横切り、反応塔内
部を架け渡すように設けられる。バツフルの配列
は平行配列、千鳥配列、格子状配列などのいずれ
でもよい。 つぎに本発明の反応塔の実施態様を図面に基づ
いて説明するが、本発明はかかる実施態様のみに
限定されるものではない。 第1図は本発明の反応塔の一実施態様の概略平
面図、第2図は一部切欠き概略立面図、第3図は
第2図のX−X線断面図である。 反応塔1には被処理液が入口2から入れられ、
出口3から流出される。反応塔内部には横断面形
状円形のバツフル4が所定のピツチで挿入されて
いる。軟質性充填材5は反応塔1内のバツフル間
に充填されており、充填層を形成している。 第3図に示すように、この実施態様におけるバ
ツフル4の配列は平行配列である。 そのほか第4〜5図にそれぞれ示すごとく、千
鳥配列または格子配列にしてもよい。 本発明におけるバツフルの大きさは、バツフル
の全表面積(cm2)/反応塔容積(cm3)(以下、こ
の比をaとする)が約0.04〜0.5となるように選
ぶのが好ましい。aの値が約0.04より小さいとき
はバツフルが挿入されていない反応塔と同様に
徐々に圧密され、aの値が約0.5より大きいとき
はバツフル下部に死空間ができやすく充填が困難
となる。 バツフルの横ピツチは、バツフルの横間隔を
L1、軟質性充填材粒子の平均粒径をdpとすると
き、L1/dpの値が約2〜150、とくに約5〜40と
なるように選ぶのが好ましい。L1/dpの値が約
2より小さいときは空間密度が大きくなるため充
填効率が低下し、150より大きいときはバツフル
の効果が低下する。バツフルの縦ピツチは、バツ
フルの縦間隔をL2とするときL2/dpの値が約2
〜190、とくに約7〜70となるように選ぶのが好
ましい。L2/dpの値が約2より小さいときは空
間密度が大きくなるため充填効率が低下し、約
190より大きいときはバツフルの効果が低下する。 反応塔の形状はとくに限定されないが、製作上
の容易さから横断面形状が円形か四角形のいずれ
かのものが好ましい。反応塔内の充填層の高さは
軟質性充填材の機械的強度や粒子径、粒子形状な
どによつて異なるが、通常10m程度まで高くする
ことができる。 本発明の反応塔は固定化酵素や固定化微生物な
どの生触媒を用いる酵素反応用の反応塔として用
いられうるだけでなく、液体クロマトグラフイー
用やイオン交換用のカラムとしても使用すること
ができる。 本発明において使用される軟質性充填剤として
は、たとえば軟質性物質により各種の酵素や微生
物を固定した固定化酵素や固定化微生物の生触
媒、または液体クロマトグラフイー用やイオン交
換用の軟質性吸着剤があげられる。 軟質性物質としては、たとえばアガロース系担
体、デキストラン系担体、セルロース系担体、ポ
リアクリルアミド系担体、そのほか被処理液に不
溶なビニルポリマー、ナイロン、ポリスチレン、
アミノ酸共重合体などの酵素や微生物の固定用に
通常用いられている物質があげられる。 吸着剤としては、たとえば前記物質に化学修飾
を施した活性化吸着剤、イオン交換用吸着剤、疎
水性吸着剤、アフイニテイクロマトグラフイー用
吸着剤などがあげられる。 本発明の反応塔は、前記のごとく固定化酵素や
固定化微生物を使用する酵素反応にとくに好適に
使用できる。酵素反応は常温常圧という温和な条
件で反応を行なうことができる点に特徴の1つが
あるが、酵素反応といえども通常の化学反応にお
けるばあいまではいかないまでも反応時に熱の出
入りがある。たとえば固定化大腸菌を用いるアス
パルターゼ反応は、約6℃/molの発熱を伴う反
応である。ところが酵素反応に使用する生触媒の
多くは熱に弱く、したがつて長期間にわたつて反
応を行なうときは反応塔内の温度を常時一定にす
るための熱交換が必要となる。 しかしながら、固定化酵素や固定化微生物など
の軟質性物質を使用する生触媒は熱伝導率が比較
的小さいため、従来広く利用されている二重管型
反応塔を用いるときは均一な熱交換ができず、充
填層の半径方向に温度分布が生ずる。 そこで、充填層全体を均一な温度に保つため、
従来は反応塔径を小さくしたり、基質液の供給時
の温度を発熱量に応じて下げて非等温型の反応に
するか、または反応塔と熱交換器を直列に多段に
組合せた複雑な装置を用いるかしなければならな
かつた。しかし、そうした反応塔では処理量が制
限されたり、運転操作が複雑になつたり、設備コ
ストが増大したりしている。 本発明の反応塔では、充填層中に挿入されてい
るバツフルとして中空状のものを使用し、該バツ
フル内に冷媒体または熱媒体を通すことにより充
填層全体にわたつて均一な熱交換を行なうことが
でき、反応塔の半径方向においても常時所定の反
応温度に反応系を維持することができる。 熱交換を行なうばあい、バツフルの大きさおよ
び配列のピツチは、前記aとL/dpを圧密の防
止条件に加えて反応の発熱量、伝熱面積、固定化
生触媒の熱伝導率などを考慮して、反応ごとに適
宜選定すればよい。 第6図に中空状のバツフルを使用する本発明の
反応塔の一実施態様の一部切欠き概略立面図を示
す。 バツフル6は中空であり、熱媒体または冷媒体
が入口8から入れられ、出口7から導出される。
バツフル6は2段ごとに外套部分で仕切り壁9に
より区切られている。 つぎに本発明の反応塔を用いて行なつた通液実
験および酵素反応実験を示す。 実施例 1 横断面が一辺120mmの正方形の角塔(高さ1500
mm)を反応塔として用い、この内部に外径21mm、
長さ120mmの丸棒を千鳥配列(横ピツチ:38mm、
縦ピツチ:43mm)で48本挿入した。この反応塔に
K−カラギーナンゲル粒子(ゲル粒子の平均粒
径:1.89mm、ゲル濃度:3.4%)を約1mの高さ
まで充填した。このときのaは0.267cm2/cm3
L1/dpは9.0、L2/dpは11.6であつた。 これに2%KCl溶液を塔頂より下向流で通液
し、被処理液の流速(空塔速度)と圧力損失およ
び空間率(=充填層容積−ゲル体積/充填層容積、ただ
し充 填層容積=反応器容積−バツフル体積)との関係
を調べた。結果を第1表に示す。 比較例 1 バツフルを挿入しなかつたほかは実施例1と同
様にK−カラギーナンゲル粒子を充填し、2%
KCl溶液を通液して被処理液の流速と圧力損失お
よび空間率を調べた。結果を第1表に示す。
The present invention relates to a packed bed reaction column using a flexible packing material. . More specifically, the present invention relates to a packed bed reactor in which a baffle is inserted in a packed bed filled with a soft filler in a direction perpendicular to the flow direction of the liquid to be treated. In recent years, various methods for producing useful substances using immobilized biocatalysts such as immobilized enzymes or immobilized microorganisms have been studied and are being implemented on an industrial scale. A packed bed type reaction tower is widely used as a reactor for such industrial production. However, most of the immobilized biocatalyst particles packed are soft materials that have inferior mechanical strength compared to ordinary solid catalysts, and these biocatalysts have problems with increasing the size of the reaction tower and operating at high flow rates. As a result, a compaction phenomenon occurs, and as a result, the effective coefficient of the raw catalyst decreases and the reaction rate becomes extremely low, sometimes resulting in a problem that the process becomes impossible. As one method for solving the problems inherent to immobilized biocatalysts, a vertical multitubular reaction tower has been proposed that utilizes the wall effect of the reaction tower to prevent compaction. However, in the reaction tower, it is necessary to measure the pressure loss of each tube in advance and keep it constant, and if the setting is incorrect, a short pass of the liquid to be treated may occur, making it impossible to perform a uniform liquid passage operation. Furthermore, because of the consolidation by self-load, there is a limit to the height of the packed bed, and although it varies depending on the particle size of the flow rate filler during operation, it is usually not possible to use a bed exceeding 2 to 3 m. The present inventors believe that when inserting a buttful into a packed bed filled with a soft filler such as an immobilized biocatalyst in a direction perpendicular to the flow direction of the liquid to be treated, the buttful and the soft filler particles The inventors have discovered that it is possible to prevent the soft filler from being compacted due to friction, and have completed the present invention. Batsuful in the present invention has a circular, oval, triangular, quadrilateral, rhombic, L-shaped, or T-shaped cross-sectional shape.
A rod-like shape, a U-shape, an I-shape, etc., or an elongated body shape is preferable, and a circular, oval, rhombus, etc. shape, in which dead space is less likely to occur below the buffle, is particularly preferable. Alternatively, a hollow buttful may be used. The baffle is provided so as to completely cross the packed bed and span the inside of the reaction column. The arrangement of the baffle may be any of parallel arrangement, staggered arrangement, grid arrangement, etc. Next, embodiments of the reaction tower of the present invention will be described based on the drawings, but the present invention is not limited to such embodiments. FIG. 1 is a schematic plan view of an embodiment of the reaction tower of the present invention, FIG. 2 is a partially cutaway schematic elevational view, and FIG. 3 is a sectional view taken along the line X--X in FIG. 2. A liquid to be treated is introduced into the reaction tower 1 from an inlet 2,
It flows out from outlet 3. Inside the reaction tower, baffles 4 having a circular cross section are inserted at predetermined pitches. The soft filler 5 is filled between baffles in the reaction tower 1 to form a packed bed. As shown in FIG. 3, the arrangement of the baffles 4 in this embodiment is a parallel arrangement. In addition, a staggered arrangement or a lattice arrangement may be used, as shown in FIGS. 4 and 5, respectively. The size of the baffle in the present invention is preferably selected so that the ratio of the total surface area (cm 2 ) of the baffle to the reaction tower volume (cm 3 ) (hereinafter, this ratio is referred to as a) is about 0.04 to 0.5. When the value of a is less than about 0.04, the reaction tower is gradually consolidated like a reaction tower without a baffle inserted, and when the value of a is larger than about 0.5, dead space is likely to be formed at the bottom of the buffle, making filling difficult. The horizontal pitch of the full width is the horizontal spacing of the full width.
When L 1 and the average particle diameter of the soft filler particles are dp, the value of L 1 /dp is preferably selected to be about 2 to 150, particularly about 5 to 40. When the value of L 1 /dp is less than about 2, the filling efficiency decreases because the spatial density increases, and when it is greater than 150, the buffing effect decreases. The vertical pitch of Batsuful is approximately 2 when L 2 is the vertical spacing of Batsuful.
~190, particularly preferably about 7 to 70. When the value of L 2 /dp is less than about 2, the spatial density increases, so the filling efficiency decreases, and the
When it is greater than 190, the effect of Batsuful decreases. Although the shape of the reaction tower is not particularly limited, it is preferable to have a cross-sectional shape of either circular or square for ease of manufacture. The height of the packed bed in the reaction tower varies depending on the mechanical strength, particle size, particle shape, etc. of the flexible filler, but it can usually be increased to about 10 m. The reaction column of the present invention can be used not only as a reaction column for enzyme reactions using biocatalysts such as immobilized enzymes and immobilized microorganisms, but also as columns for liquid chromatography and ion exchange. can. Examples of the soft filler used in the present invention include immobilized enzymes and biocatalysts of immobilized microorganisms in which various enzymes and microorganisms are immobilized using soft substances, and flexible fillers for liquid chromatography and ion exchange. Examples include adsorbents. Examples of soft substances include agarose carriers, dextran carriers, cellulose carriers, polyacrylamide carriers, vinyl polymers insoluble in the liquid to be treated, nylon, polystyrene,
Examples include substances commonly used for immobilizing enzymes and microorganisms, such as amino acid copolymers. Examples of the adsorbent include activated adsorbents obtained by chemically modifying the above substances, adsorbents for ion exchange, hydrophobic adsorbents, and adsorbents for affinity chromatography. The reaction column of the present invention can be particularly suitably used for enzymatic reactions using immobilized enzymes or immobilized microorganisms as described above. One of the characteristics of enzymatic reactions is that they can be carried out under mild conditions such as room temperature and normal pressure, but even in enzymatic reactions, there is an exchange of heat during the reaction, although not to the same extent as in normal chemical reactions. . For example, an aspartase reaction using immobilized E. coli is a reaction that generates an exotherm of about 6° C./mol. However, many of the biocatalysts used in enzymatic reactions are sensitive to heat, and therefore, when carrying out reactions over a long period of time, heat exchange is required to keep the temperature inside the reaction tower constant at all times. However, biocatalysts that use soft substances such as immobilized enzymes and immobilized microorganisms have relatively low thermal conductivity, so when using the conventionally widely used double-tube reaction tower, uniform heat exchange is difficult. temperature distribution in the radial direction of the packed bed. Therefore, in order to maintain a uniform temperature throughout the packed bed,
Conventionally, the diameter of the reaction column was made smaller, the temperature during supply of the substrate liquid was lowered according to the calorific value, and a non-isothermal reaction was achieved, or a complex reaction was conducted in which a reaction column and a heat exchanger were combined in series in multiple stages. I had to use a device. However, such reaction towers have limited throughput, complicated operation, and increased equipment costs. In the reaction tower of the present invention, a hollow baffle is used as the baffle inserted in the packed bed, and by passing a cooling medium or a heating medium through the baffle, uniform heat exchange is performed throughout the packed bed. The reaction system can be maintained at a predetermined reaction temperature at all times even in the radial direction of the reaction tower. When performing heat exchange, the size and arrangement pitch of the buffers should be determined by considering the above a and L/dp as conditions for preventing compaction, as well as the calorific value of the reaction, heat transfer area, thermal conductivity of the immobilized biocatalyst, etc. It may be selected appropriately for each reaction. FIG. 6 shows a partially cutaway schematic elevational view of an embodiment of the reaction tower of the present invention using a hollow baffle. The baffle 6 is hollow, and a heating medium or a cooling medium is introduced through an inlet 8 and taken out through an outlet 7.
The battle-full 6 is divided into two stages by a partition wall 9 at the mantle portion. Next, a liquid passage experiment and an enzyme reaction experiment conducted using the reaction tower of the present invention will be shown. Example 1 A square tower with a cross section of 120 mm on a side (height 1500 mm)
mm) is used as a reaction tower, and inside this is an outer diameter of 21 mm,
Staggered arrangement of round bars with a length of 120 mm (horizontal pitch: 38 mm,
48 tubes were inserted with a vertical pitch of 43 mm). This reaction tower was filled with K-carrageenan gel particles (average particle size of gel particles: 1.89 mm, gel concentration: 3.4%) to a height of about 1 m. At this time, a is 0.267cm 2 /cm 3 ,
L 1 /dp was 9.0 and L 2 /dp was 11.6. A 2% KCl solution was passed through this in a downward flow from the top of the column, and the flow rate (superficial velocity) of the liquid to be treated, pressure loss, and void ratio (=packed bed volume - gel volume / packed bed volume, The relationship between volume (volume = reactor volume - bulk volume) was investigated. The results are shown in Table 1. Comparative Example 1 K-carrageenan gel particles were filled in the same manner as in Example 1 except that Batsuful was not inserted, and 2%
A KCl solution was passed through the chamber to examine the flow rate, pressure drop, and void ratio of the liquid to be treated. The results are shown in Table 1.

【表】 第1表から明らかなように、バツフルを挿入し
た実施例1では、圧力損失および空間率の両者と
も比較例1に比してきわめて小さい増加しか示さ
ない。 実施例 2〜10 種々の形状のバツフルを種々の配列で挿入した
ほかは実施例1と同様にK−カラギーナンゲル粒
子を充填し、2%KCl溶液を流速0.7cm/秒(空
塔速度)で通液して圧力損失と空間率を調べた。
結果を第2表に示す。 各実施例におけるバツフルの形状および配列を
つぎに示す。 実施例 2 形状:外径21mmの丸棒 配列:横ピツチ38mm、縦ピツチ43mmの千鳥配列
(48本) a:0.267cm2/cm3 L1/dp:9.0 L2/dp:11.6 実施例 3 形状:外径21mmの丸棒 配列:横ピツチ38mm、縦ピツチ43mmの平行配列
(42本) a:0.250cm2/cm3 L1/dp:9.0 L2/dp:11.6 実施例 4 形状:外径21mmの丸棒 配列:横ピツチ38mm、縦ピツチ135mmの平行配列
(16本) a:0.105cm2/cm3 L1/dp:9.0 L2/dp:11.6 実施例 5 形状:外径9mmの円形パイプ 配列:横ピツチ38mm、縦ピツチ49mmの千鳥配列
(48本) a:0.125cm2/cm3 L1/dp:15.3 L2/dp:21.2 実施例 6 形状:外径9mmの円形パイプ 配列:横ピツチ38mm、縦ピツチ98mmの平行配列
(18本) a:0.049cm2/cm3 L1/dp:15.3 L2/dp:47.1 実施例 7 形状:一辺20mmの角パイプ 配列:横ピツチ38mm、縦ピツチ142mmの平行配列
(16本) a:0.113cm2/cm3 L1/dp:9.5 L2/dp:64.5 実施例 8 形状:一辺20mmの菱形パイプ 配列:横ピツチ38mm、縦ピツチ115mmの平行配列
(16本) a:0.118cm2/cm3 L1/dp:5.1 L2/dp:45.4 実施例 9 形状:18mm×3mmの板 配列:各板を水平に横ピツチ38mm、縦ピツチ125
mmで平行配列(16本) a:0.065cm2/cm3 L1/dp:10.5 L2/dp:64.6 実施例 10 形状:18mm×3mmの板 配列:各板を垂直に横ピツチ38mm、縦ピツチ125
mmで平行配列(16本) a:0.065cm2/cm3 L1/dp:18.5 L2/dp:56.6
[Table] As is clear from Table 1, in Example 1 in which the buttful was inserted, both the pressure loss and the void ratio showed only a very small increase compared to Comparative Example 1. Examples 2 to 10 K-carrageenan gel particles were filled in the same manner as in Example 1, except that bubbles of various shapes were inserted in various arrangements, and a 2% KCl solution was added at a flow rate of 0.7 cm/sec (superficial velocity). The pressure drop and void ratio were examined by passing liquid through the tube.
The results are shown in Table 2. The shape and arrangement of the buffs in each example are shown below. Example 2 Shape: Round bar arrangement with outer diameter of 21 mm: Staggered arrangement with horizontal pitch of 38 mm and vertical pitch of 43 mm (48 rods) a: 0.267 cm 2 /cm 3 L 1 /dp: 9.0 L 2 /dp: 11.6 Example 3 Shape: Round bar array with outer diameter of 21 mm: Parallel array with horizontal pitch of 38 mm and vertical pitch of 43 mm (42 bars) a: 0.250 cm 2 / cm 3 L 1 / dp: 9.0 L 2 / dp: 11.6 Example 4 Shape: Outside Arrangement of round bars with a diameter of 21 mm: Parallel arrangement (16 pieces) with a horizontal pitch of 38 mm and a vertical pitch of 135 mm. Circular pipe array: Staggered array with horizontal pitch of 38 mm and vertical pitch of 49 mm (48 pieces) a: 0.125 cm 2 / cm 3 L 1 / dp: 15.3 L 2 / dp: 21.2 Example 6 Shape: Circular pipe array with outer diameter of 9 mm : Parallel array with horizontal pitch of 38 mm and vertical pitch of 98 mm (18 pieces) a: 0.049 cm 2 / cm 3 L 1 / dp: 15.3 L 2 / dp: 47.1 Example 7 Shape: Square pipe array of 20 mm on a side: Horizontal pitch of 38 mm , parallel array with a vertical pitch of 142 mm (16 pipes) a: 0.113 cm 2 / cm 3 L 1 / dp: 9.5 L 2 / dp: 64.5 Example 8 Shape: Rhombic pipe array with a side of 20 mm: horizontal pitch 38 mm, vertical pitch 115 mm Parallel array (16 pieces) a: 0.118 cm 2 / cm 3 L 1 / dp: 5.1 L 2 / dp: 45.4 Example 9 Shape: 18 mm x 3 mm plate array: Each plate horizontally with a horizontal pitch of 38 mm and a vertical pitch of 125
Parallel array in mm (16 pieces) a: 0.065 cm 2 / cm 3 L 1 / dp: 10.5 L 2 / dp: 64.6 Example 10 Shape: 18 mm x 3 mm plate array: Each plate is arranged vertically with a horizontal pitch of 38 mm and a vertical pitch of 38 mm. Pituchi 125
Parallel arrangement in mm (16 pieces) a: 0.065cm 2 /cm 3 L 1 /dp: 18.5 L 2 /dp: 56.6

【表】 第2表から明らかなごとく、バツフルを挿入す
るときは、圧力損失をバツフルを挿入しないばあ
い(比較例1)の23〜40%に抑えることができ
る。 実施例 11 横断面が一辺260mmの正方形の角塔(高さ700
mm)に外径20mmの円形パイプ96本を千鳥配列(横
ピツチ:40mm、縦ピツチ:34.6mm)した反応塔
A、横断面が200×260mmの長方形の反応塔(高さ
700mm)の角塔に外径34mm、長さ200mmの円形パイ
プ10本を千鳥配列(横ピツチ:120mm、縦ピツ
チ:104mm)した反応塔B、および反応塔Bにお
いてパイプとして外径60mmのものを用いた反応塔
Cに、それぞれカラギーナンゲル法によつてK−
カラギーナン粒子(ゲニユーゲルWG)に大腸菌
を固定した固定化大腸菌粒子(平均粒径5.56mm)
を充填し、2%KCl溶液を流速(空塔速度)0.03
cm/秒で連続10日通液した。 その結果、いずれの反応塔においても殆んど圧
密は生じず、連続通液処理できた。 なお、充填高さは反応塔A,BおよびCではそ
れぞれ0.56m、0.56mおよび0.56mであり、a、
L1/dpおよびL2/dpは反応塔Aでそれぞれ0.41
cm2/cm3、3.6および2.6、反応塔Bでそれぞれ0.07
cm2/cm3、15.5および12.6、反応塔Cでそれぞれ
0.13cm2/cm3、10.8および7.9であつた。 実施例 12 横断面が640mm×780mmの長方形の角塔(高さ
2000mm)に外径60mmの円形パイプ96本を千鳥配列
(横ピツチ:120mm、縦ピツチ104mm)した反応塔
に実施例11で用いたのと同じ固定化大腸菌を600
(見掛充填容積)充填した(a=0.15cm2/cm3
L1/dp=10.8、L2/dp=7.9)。これに基質液であ
るフマル酸アンモニア溶液(初濃度1.22M、PH
8.5)を360/時で通液してアスパルターゼ反応
を行なつた。 パイプには常時34℃の温水を通し、基質液は37
℃に予熱してから通液した。 第3表に流出液の温度、破過するまでの操作日
数および流出液中の総生産L−アスパラギン酸量
を示す。 比較例 2 バツフルを挿入しなかつた反応塔を使用したほ
かは実施例12と同様に通液処理してアスパルター
ゼ反応を行ない、L−アスパラギン酸をえた。 結果を第3表に示す。
[Table] As is clear from Table 2, when the buffle is inserted, the pressure loss can be suppressed to 23 to 40% of that when the buffle is not inserted (Comparative Example 1). Example 11 A square tower with a cross section of 260 mm on a side (height 700 mm)
Reaction tower A has 96 circular pipes with an outer diameter of 20 mm arranged in a staggered arrangement (horizontal pitch: 40 mm, vertical pitch: 34.6 mm), a rectangular reaction tower with a cross section of 200 x 260 mm (height
Reaction tower B has 10 circular pipes with an outer diameter of 34 mm and a length of 200 mm in a staggered arrangement (horizontal pitch: 120 mm, vertical pitch: 104 mm) in a rectangular tower with an outer diameter of 700 mm, and a pipe with an outer diameter of 60 mm in reaction tower B. K- was added to each reaction column C using the carrageenan gel method.
Immobilized E. coli particles (average particle size 5.56 mm) with E. coli immobilized on carrageenan particles (Genyugel WG)
Filled with 2% KCl solution at a flow rate (superficial velocity) of 0.03
The solution was passed at a rate of cm/sec for 10 consecutive days. As a result, almost no compaction occurred in any of the reaction towers, and continuous liquid flow treatment was possible. The filling heights of reaction towers A, B, and C are 0.56 m, 0.56 m, and 0.56 m, respectively, and a,
L 1 /dp and L 2 /dp are each 0.41 in reaction column A.
cm 2 /cm 3 , 3.6 and 2.6, respectively 0.07 in reaction column B
cm 2 /cm 3 , 15.5 and 12.6, respectively in reaction column C.
They were 0.13cm 2 /cm 3 , 10.8 and 7.9. Example 12 A rectangular square tower with a cross section of 640 mm x 780 mm (height
The same immobilized E. coli as used in Example 11 was placed in a reaction tower in which 96 circular pipes with an outer diameter of 60 mm were arranged in a staggered manner (horizontal pitch: 120 mm, vertical pitch: 104 mm).
(Apparent filling volume) Filled (a=0.15cm 2 /cm 3 ,
L 1 /dp = 10.8, L 2 /dp = 7.9). Add to this ammonia fumarate solution (initial concentration 1.22M, PH
8.5) was passed at a rate of 360/hour to perform an aspartase reaction. 34°C hot water is constantly passed through the pipe, and the substrate liquid is kept at 37°C.
After preheating to ℃, the solution was passed through. Table 3 shows the temperature of the effluent, the number of days of operation until breakthrough, and the total amount of L-aspartic acid produced in the effluent. Comparative Example 2 Aspartase reaction was carried out in the same manner as in Example 12, except that a reaction tower without a buffer was used, and L-aspartic acid was obtained. The results are shown in Table 3.

【表】 第3表に示すごとく、バツフルを挿入しかつそ
れにより熱交換を行なうときは、流出液の温度が
ほぼ一定であり、破過日数が倍増し、単位生触媒
あたりのL−アスパラギン酸の生産量を大幅に増
大せしめることができる。 実施例 13 固定化大腸菌に代えてカラギーナンゲル法でで
K−カラギーナン粒子(ゲニユーゲルWG)にブ
レビバクテリウム・フラバムを固定した固定化ブ
レビバクテリウム・フラバム粒子(平均粒径5.56
mm)を用い(a=0.15cm2/cm3、L1/dp=10.8、
L2/dp=7.9)、基質液としてフマル酸ソーダ溶液
(初濃度1M、PH7.0)を用いて流速(空塔速度)
120/時で通液し、フマラーゼ反応を行なわせ
たほかは実施例12と同様に処理して、L−リンゴ
酸を生産せしめた。 第4表に流出液の温度、破過するまでの操作日
数および流出液中の総生産L−リン酸量を示す。 なお、操作中、反応温度50℃にまで上昇せしめ
たが、そのばあいでも軸方向の温度分布は均一で
あつた。 比較例 3 バツフルが挿入されていない反応塔を使用した
ほかは実施例13と同様に通液処理してフマラーゼ
反応を行ない、L−リンゴ酸をえた。 結果を第4表に示す。
[Table] As shown in Table 3, when the Batsuful is inserted and heat exchange is performed by it, the temperature of the effluent is almost constant, the number of breakthrough days is doubled, and the amount of L-aspartic acid per unit biocatalyst is increased. The production amount can be significantly increased. Example 13 Instead of immobilized E. coli, immobilized Brevibacterium flavum particles (average particle size 5.56
mm) using (a=0.15cm 2 /cm 3 , L 1 /dp=10.8,
L 2 /dp=7.9), flow rate (superficial velocity) using sodium fumarate solution (initial concentration 1M, PH7.0) as the substrate liquid.
L-malic acid was produced in the same manner as in Example 12, except that the solution was passed at a rate of 120/hour and the fumarase reaction was carried out. Table 4 shows the temperature of the effluent, the number of days of operation until breakthrough, and the total amount of L-phosphoric acid produced in the effluent. Incidentally, during the operation, the reaction temperature was raised to 50°C, but even in that case, the temperature distribution in the axial direction remained uniform. Comparative Example 3 A fumarase reaction was carried out in the same manner as in Example 13, except that a reaction tower without a buffer was used, and L-malic acid was obtained. The results are shown in Table 4.

【表】 第4表に示すごとく、バツフルを挿入しかつそ
れにより熱交換を行なうときは、流出液の温度が
ほぼ一定であり、L−リンゴ酸の生産量を大幅に
増大せしめることができる。 実施例 14 ブレビバクテリウム・フラバムに代えてブレビ
バクテリウム・アンモニアゲネスをK−カラギー
ナン粒子に固定化した固定化ブレビバクテリウ
ム・アンモニアゲネスを用いたほかは実施例13と
同様にして(a=0.15cm2/cm3、L1/dp=10.8、
L2/dp=7.9)、フマル酸ソーダ溶液を用いてL−
リンゴ酸を生産せしめた。 第5表に流出液の温度、破過するまでの操作日
数および流出液中の総生産L−リンゴ酸量を示
す。 比較例 4 バツフルが挿入されていない反応塔を用いたほ
かは実施例14と同様に通液し、L−リンゴ酸をえ
た。 結果を第5表に示す。
[Table] As shown in Table 4, when a buffer is inserted and heat exchange is performed thereby, the temperature of the effluent remains almost constant, and the production amount of L-malic acid can be greatly increased. Example 14 The procedure was carried out in the same manner as in Example 13, except that immobilized Brevibacterium ammoniagenes in which Brevibacterium ammoniagenes was immobilized on K-carrageenan particles was used instead of Brevibacterium flavum (a = 0.15). cm 2 /cm 3 , L 1 /dp=10.8,
L 2 /dp=7.9), L- using sodium fumarate solution
produced malic acid. Table 5 shows the temperature of the effluent, the number of operating days until breakthrough, and the total amount of L-malic acid produced in the effluent. Comparative Example 4 L-malic acid was obtained by passing liquid in the same manner as in Example 14, except that a reaction tower without a buffer was used. The results are shown in Table 5.

【表】 実施例 15 実施例1で使用した反応塔と同じ反応塔に、ダ
イヤイオンHPA−25(三菱化成工業(株)製のイオン
交換樹脂)に吸着法によりアミノアシラーゼを固
定した固定化アミノアシラーゼを約1mの高さま
で充填した(a=0.267cm2/cm3、L1/dp=40.0、
L2/dp=51.8)。 この反応塔に0.38Mのアセチル−DL−フエル
アラニン溶液を空塔速度0.11cm/秒で通液して圧
力損失を測定したところ、42.5cm−H2O/m−
bedであつた。 一方、バツフルが挿入されていない反応塔で同
様の通液試験を行なつたところ、その圧力損失は
50cm−H2O/m−bedと大きいものであつた。 実施例 16 実施例1で使用した反応塔と同じ反応塔に、
DEAE−セフアデツクスA−25(フアルマシア社
製のデキストラン系ゲル)を約1mの高さまで充
填した(a=0.267cm2/cm3、L1/dp=141、L2
dp=183)。 この反応塔に水を0.083cm/秒の空塔速度で通
液して圧力損失を調べたところ、455cm−H2O/
m−bedでであつた。 一方、バツフルが挿入されていない反応塔を用
いて同様の通液試験を行なつたところ、その圧力
損失は888cm−H2O/m−bedと大きなものであ
つた。
[Table] Example 15 Immobilized amino acylase was immobilized on Diaion HPA-25 (ion exchange resin manufactured by Mitsubishi Chemical Industries, Ltd.) by an adsorption method in the same reaction tower as that used in Example 1. Acylase was filled to a height of about 1 m (a = 0.267 cm 2 /cm 3 , L 1 /dp = 40.0,
L2 /dp=51.8). When a 0.38M acetyl-DL-phelalanine solution was passed through this reaction column at a superficial velocity of 0.11 cm/sec and the pressure drop was measured, it was found to be 42.5 cm-H 2 O/m-
It was hot in bed. On the other hand, when a similar liquid flow test was conducted in a reaction tower without a buffer inserted, the pressure loss was
It was large, 50cm-H 2 O/m-bed. Example 16 In the same reaction tower as used in Example 1,
DEAE-Sephadex A-25 (dextran gel manufactured by Pharmacia) was filled to a height of about 1 m (a = 0.267 cm 2 /cm 3 , L 1 /dp = 141, L 2 /
dp=183). When water was passed through this reaction tower at a superficial velocity of 0.083 cm/sec and the pressure drop was examined, it was found that 455 cm-H 2 O/
It was on m-bed. On the other hand, when a similar liquid passage test was conducted using a reaction tower without a buffer inserted, the pressure loss was as large as 888 cm-H 2 O/m-bed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の反応塔の一実施態様の概略平
面図、第2図は第1図の実施態様の一部切欠き概
略立面図、第3図は第2図のX−X線断面図、第
4〜5図はそれぞれ本発明におけるバツフルの配
列の実施態様の概略縦断面図および概略平面図、
第6図は本発明の反応塔の別の実施態様の一部切
欠き概略立面図である。 (図面の主要符号)、1:反応塔、4,6:バ
ツフル、5:軟質性充填剤、7:熱交換用媒体出
口、8:熱交換用媒体入口。
FIG. 1 is a schematic plan view of an embodiment of the reaction column of the present invention, FIG. 2 is a partially cutaway schematic elevational view of the embodiment of FIG. 1, and FIG. 3 is taken along the line X-X of FIG. The cross-sectional view and FIGS. 4 and 5 are a schematic vertical cross-sectional view and a schematic plan view, respectively, of an embodiment of the baffle arrangement in the present invention,
FIG. 6 is a partially cutaway schematic elevational view of another embodiment of the reaction column of the present invention. (Main symbols in the drawing), 1: reaction tower, 4, 6: buffer, 5: soft filler, 7: heat exchange medium outlet, 8: heat exchange medium inlet.

Claims (1)

【特許請求の範囲】 1 軟質性充填材が充填さされている充填層中
に、被処理液の流れ方向と直角方向にバツフルが
挿入されてなる充填層型反応塔。 2 前記バツフルが、横断面形状が円形、楕円
形、三角形、四角形、菱形、L字形、T字形、コ
字形またはI字形の棒状または細長体状のバツフ
ルである特許請求の範囲第1項記載の反応塔。 3 前記バツフルが中空体である特許請求の範囲
第1項または第2項記載の反応塔。 4 前記バツフルの中空部が冷媒体または熱媒体
の通路を構成してなる特許請求の範囲第3項記載
の反応塔。 5 前記軟質性充填材が固定化酵素である特許請
求の範囲第1項、第2項、第3項または第4項記
載の反応塔。 6 前記軟質性充填材が固定化微生物である特許
請求の範囲第1項、第2項、第3項または第4項
記載の反応塔。 7 前記軟質性充填材が液体クロマトグラフイー
用吸着材である特許請求の範囲第1項、第2項、
第3項または第4項記載の反応塔。 8 前記固定化微生物が、L−アスパラギン酸生
産用の固定化大腸菌である特許請求の範囲第6項
記載の反応塔。 9 前記固定化微生物が、L−リンゴ酸生産用の
固定化ブレビバクテリウム・フラバムまたは固定
化ブレビバクテリウム・アンモニアゲネスである
特許請求の範囲第6項記載の反応塔。
[Scope of Claims] 1. A packed bed type reaction tower in which a baffle is inserted in a packed bed filled with a soft filler in a direction perpendicular to the flow direction of the liquid to be treated. 2. The baffle according to claim 1, wherein the buttful is a bar-shaped or elongated buttful whose cross-sectional shape is circular, elliptical, triangular, square, rhombus, L-shape, T-shape, U-shape, or I-shape. reaction tower. 3. The reaction tower according to claim 1 or 2, wherein the buffer is a hollow body. 4. The reaction tower according to claim 3, wherein the hollow part of the baffle constitutes a passage for a cooling medium or a heating medium. 5. The reaction column according to claim 1, 2, 3, or 4, wherein the flexible packing material is an immobilized enzyme. 6. The reaction column according to claim 1, 2, 3, or 4, wherein the flexible filler is an immobilized microorganism. 7 Claims 1 and 2, wherein the soft filler is an adsorbent for liquid chromatography.
The reaction column according to item 3 or 4. 8. The reaction column according to claim 6, wherein the immobilized microorganism is an immobilized E. coli for producing L-aspartic acid. 9. The reaction column according to claim 6, wherein the immobilized microorganism is immobilized Brevibacterium flavum or immobilized Brevibacterium ammoniagenes for L-malic acid production.
JP58050919A 1983-03-25 1983-03-25 Packing layer type reaction tower packed with soft packing material Granted JPS59177127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58050919A JPS59177127A (en) 1983-03-25 1983-03-25 Packing layer type reaction tower packed with soft packing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58050919A JPS59177127A (en) 1983-03-25 1983-03-25 Packing layer type reaction tower packed with soft packing material

Publications (2)

Publication Number Publication Date
JPS59177127A JPS59177127A (en) 1984-10-06
JPH0220292B2 true JPH0220292B2 (en) 1990-05-08

Family

ID=12872197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58050919A Granted JPS59177127A (en) 1983-03-25 1983-03-25 Packing layer type reaction tower packed with soft packing material

Country Status (1)

Country Link
JP (1) JPS59177127A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199032A (en) * 1983-04-26 1984-11-12 Asahi Chem Ind Co Ltd Pressure absorbing mechanism
JPS6261628A (en) * 1985-09-10 1987-03-18 Agency Of Ind Science & Technol Tubular reaction system
JPS63296806A (en) * 1987-05-28 1988-12-02 Shimadzu Corp Industrially separating chromatocolumn
CN102755866A (en) * 2012-07-02 2012-10-31 魏治中 Stripper with multiple layers of stacked grids

Also Published As

Publication number Publication date
JPS59177127A (en) 1984-10-06

Similar Documents

Publication Publication Date Title
EP2336346B1 (en) Method for producing acrylamide
Cheryan et al. Continuous coagulation of milk using immobilized enzymes in a fluidized‐bed reactor
CA2428761A1 (en) Carbon monoxide conversion process and reactor
SU607555A3 (en) Fermentation vessel
JPH08239397A (en) Method and apparatus for producing polynucleotide on solid support
KR20110038183A (en) Process for producing amide compound
JPH0220292B2 (en)
US5939294A (en) Immobilization of microogranisms on weakly basic anion exchange substance for producing isomaltulose
Colby et al. Immobilization of Rhodococcus AJ270 and Useof Entrapped Biocatalyst for the Productionof Acrylic Acid
JPS6055177B2 (en) catalyst diluent
CN106669757A (en) Method for preparing catalyst of vinylidene chloride by gas phase catalytic cracking
JPH0141101B2 (en)
US4613489A (en) Process for the disproportionation of chlorosilanes
JP2563364B2 (en) Ethylene oxide production method
CN216419330U (en) Novel falling film reactor
GB2078734A (en) Process for purifying an aqueous solution of acrylamide
JPH0667478B2 (en) Method for producing bifunctional anion exchange resin, novel bifunctional anion exchange resin, and use thereof
CN214681631U (en) Anti-caking U-shaped tube organic silicon fluidized bed reactor
Lee et al. Continuous production of glucose from dextrin by glucoamylase immobilized on porous silica
SU374332A1 (en) METHOD OF OBTAINING POLYETHYLENE
JP3417256B2 (en) Regeneration method of anion exchange resin
CN214514555U (en) Stainless steel macroporous ion exchange resin polymerization reaction kettle
JP3642590B2 (en) Method for purifying acrylonitrile
JPS6343381B2 (en)
CN111974463A (en) Amphoteric coexisting ionic exchange resin, preparation method and application thereof in treatment of electroplating wastewater