JPS59177127A - Packing layer type reaction tower packed with soft packing material - Google Patents

Packing layer type reaction tower packed with soft packing material

Info

Publication number
JPS59177127A
JPS59177127A JP58050919A JP5091983A JPS59177127A JP S59177127 A JPS59177127 A JP S59177127A JP 58050919 A JP58050919 A JP 58050919A JP 5091983 A JP5091983 A JP 5091983A JP S59177127 A JPS59177127 A JP S59177127A
Authority
JP
Japan
Prior art keywords
reaction tower
immobilized
reaction
baffle
baffles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58050919A
Other languages
Japanese (ja)
Other versions
JPH0220292B2 (en
Inventor
Kiyokazu Yamashita
山下 喜代和
Masakatsu Furui
古井 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP58050919A priority Critical patent/JPS59177127A/en
Publication of JPS59177127A publication Critical patent/JPS59177127A/en
Publication of JPH0220292B2 publication Critical patent/JPH0220292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed

Abstract

PURPOSE:The titled reaction material prevented from the compaction of a soft packing material while inhibiting the increase of pressure loss, characterized in that baffles are inserted into a packing layer comprising the soft packing material toward te direction at right angles to the stream of a liquid to be treated. CONSTITUTION:In a packing layer type reaction tower for producing a useful substance by using an immobilized bio-catalyst such as immobilized enzyme or an immobilized microorganism, baffles 4 are inserted into the reaction tower 1 toward the direction at right angles to the flow direction of a liquid to be treated at predetermined pitches. The spaces between the baffles are packed with the soft packing material 5 to form a packing layer. Each of the baffles 4 is formed into a circular, an oval, a triangular or a square shape or formed into a hollow shape and they are arranged in a parallel, zigzag or grid like state. When the liquid to be treated is flowed through this reaction tower 1, a desired void ratio is held and pressure loss is reduced and, therefore, a production amount per unit catalyst can be increased.

Description

【発明の詳細な説明】 本発明は軟質性充填材が用いられる充填層型反応塔に関
する。さらに詳しくは、軟質性充填材が充填されてなる
充填層中に、被処理液の流れ方向と直角方向にバッフル
が挿入されてなる充填層型反応塔に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a packed bed reaction column using a flexible packing material. More specifically, the present invention relates to a packed bed type reaction tower in which a baffle is inserted in a packed bed filled with a soft filler in a direction perpendicular to the flow direction of the liquid to be treated.

近年、固定化酵素または固定化微生物などの固定化生触
媒を用いて有用物質を生産する方法が種々研究され、工
業的スケールで実施されるようになってきている。
In recent years, various methods of producing useful substances using immobilized biocatalysts such as immobilized enzymes or immobilized microorganisms have been studied and are being implemented on an industrial scale.

そうした工業的生産用の反応器として、充填層型の反応
塔がもっと広く使用されている。しかしながら、充填さ
れる固定化生触媒粒子の殆んどが通常の固体触媒に比し
て機械的強度に劣る軟質性物質であり、これらの生触媒
では反応塔の大型化や高流速操作に伴って圧密現象が生
じ、その結果生触媒の有効係数が低下すると共に反応速
度が著しく小さくなり、ときには処理不能となるという
問題がある。
Packed bed reaction towers are more widely used as reactors for such industrial production. However, most of the immobilized biocatalyst particles that are packed are soft materials that have inferior mechanical strength compared to ordinary solid catalysts, and these biocatalysts are difficult to use as the reaction tower becomes larger and the flow rate increases. There is a problem that a compaction phenomenon occurs, and as a result, the effective coefficient of the raw catalyst decreases and the reaction rate becomes extremely low, sometimes making it impossible to process.

このような固定化生触媒に固有の問題を解決する方法の
1つとして、反応塔の壁面効果を利用して圧密を防止す
る垂直多管型の反応塔が提案されている。しかし、その
反応塔においては6管の圧力損失をあらかじめ測定して
一定にしておく必要があり、その設定がまずいと被処理
液のショートパスを起して均一な通液操作が行なえない
。また自己荷重による圧密のため、充填層の高さにも限
度があり、操作時の流量充填物の粒径によって異なるが
、通常約2〜6mを超えるものは使用できない。
As one method for solving the problems inherent to immobilized biocatalysts, a vertical multitubular reaction tower has been proposed that utilizes the wall effect of the reaction tower to prevent compaction. However, in the reaction tower, it is necessary to measure the pressure loss of the six pipes in advance and keep it constant, and if the settings are incorrect, a short path of the liquid to be treated will occur, making it impossible to perform a uniform liquid passage operation. Furthermore, due to the consolidation by self-load, there is a limit to the height of the packed bed, and although it varies depending on the particle size of the flow rate filler during operation, it is generally not possible to use a bed that exceeds about 2 to 6 m.

本発明者らは固定化生触媒などの軟質性充填材が充填さ
れている充填層中に、被処理液の流れ方向と直角方向に
バッフルを挿入するときは、バッフルと軟質性充填材粒
子との摩擦により軟質性充填材が王密哀れることを防止
できることを見出し、本発明を完成した。
The present inventors believe that when inserting a baffle in a direction perpendicular to the flow direction of the liquid to be treated into a packed bed filled with a soft filler such as an immobilized biocatalyst, the baffle and the soft filler particles The inventors have discovered that the soft filler can be prevented from becoming loose due to friction, and have completed the present invention.

本発明におけるバッフルは、横断面形状が円形、楕円形
、三角形、四角形、菱形、L字形、7字形、口字形、工
学形などの棒状または細長体状のものが好ましく、とく
にそうしたバッフルの下方に死空間が生じにくい円形、
楕円形、菱形などが好ましい。また中空状のバッフルを
用いてもよい。
The baffle in the present invention preferably has a rod-like or elongated cross-sectional shape, such as a circular, elliptical, triangular, square, diamond, L-shape, 7-shape, mouth-shape, or engineering shape. A circular shape that prevents dead spaces.
Oval, diamond, etc. are preferred. Alternatively, a hollow baffle may be used.

バッフルは充填層中を完全に横切り、反応塔内部を架は
渡すように設けられる。バッフルの配列は平行配列、千
鳥配列、格子状配列などのいずれでもよい。
The baffle is provided so as to completely traverse the packed bed and span the inside of the reaction column. The baffles may be arranged in a parallel arrangement, a staggered arrangement, a lattice arrangement, or the like.

つぎに本発明の反応塔の実施態様を図面に基づいて説明
するが、本発明はかかる実施態様のみに限定されるもの
ではない。
Next, embodiments of the reaction tower of the present invention will be described based on the drawings, but the present invention is not limited to such embodiments.

第1図は本発明の反応塔の一実施態様の概略平面図、第
2図は一部切欠き概略立面図、第3図は第2図の(X)
 −(X)線断面図である。
Fig. 1 is a schematic plan view of an embodiment of the reaction tower of the present invention, Fig. 2 is a partially cutaway schematic elevational view, and Fig. 3 is (X) in Fig. 2.
- (X) line sectional view.

反応塔(1)には被処理液が入口(2)から入れられ、
出口(8)から流出される。反応塔内部には横断面形状
円形のバッフル(4)が所定のピッチで挿入されている
。軟質性充填材(5)は反応塔(1)内のバッフル(4
)間に充填されており、充填層を形成している。
A liquid to be treated is introduced into the reaction tower (1) from the inlet (2),
It flows out from the outlet (8). Inside the reaction tower, baffles (4) having a circular cross section are inserted at a predetermined pitch. The soft filler (5) is attached to the baffle (4) in the reaction column (1).
), forming a packed layer.

第6図に示すように、この実施態様におけるバッフル(
4)の配列は平行配列である。
As shown in FIG. 6, the baffle (
The arrangement 4) is a parallel arrangement.

そのほか第4〜5図にそれぞれ示すごとく、千鳥配列ま
たは格子配列にしてもよい。
In addition, a staggered arrangement or a lattice arrangement may be used, as shown in FIGS. 4 and 5, respectively.

本発明におけるバッフルの大きさは、バッフルの全表面
積(Cm )/反応塔容積(om3) (以下、この比
をaとする)が約0.04〜0.5となるように選ぶの
が好ましい。aの値が約0.04より小さいときはバッ
フルが挿入されていない反応塔と同様に徐々に圧密され
、aの値が約0.5より大きいときはバッフル下部に死
空間ができやすく充填が困難となる。
The size of the baffle in the present invention is preferably selected so that the total surface area (Cm) of the baffle/reaction column volume (om3) (hereinafter, this ratio is referred to as a) is about 0.04 to 0.5. . When the value of a is less than about 0.04, the reaction tower is gradually consolidated, similar to a reaction column without baffles, and when the value of a is larger than about 0.5, dead space is likely to be formed under the baffle and the filling is difficult. It becomes difficult.

バッフルの横ピッチは、バッフルの横間隔をLl、軟質
性充填材粒子の平均粒径をdpとするとき、L工/dp
の値が約2〜15o1とくに約5〜4oとなるように選
ぶのが好ましい。L工/dpの値が約2より小さいとき
は空間密度が大きくなるため充填効率が低下し、150
より大きいときはバッフルの効果が低下する。バッフル
の縦ピツチは、バッフルの縦間隔をL2とするときL2
/dpの値が約2〜190、とくに約7〜7oとなるよ
うに選ぶのが好ましい。b2/apの値が約2より小さ
いときは空間密度が大きくなるため充填効率が低下し、
約190より大きいときはバッフルの効果が低下する。
The lateral pitch of the baffles is L/dp, where the lateral spacing of the baffles is Ll, and the average particle diameter of the soft filler particles is dp.
It is preferable to select a value of about 2 to 15o1, particularly about 5 to 4o. When the value of L/dp is less than about 2, the spatial density increases and the filling efficiency decreases.
When it is larger, the effectiveness of the baffle decreases. The vertical pitch of the baffle is L2 when the vertical spacing of the baffle is L2.
It is preferable to select the value of /dp to be about 2 to 190, particularly about 7 to 7o. When the value of b2/ap is less than about 2, the spatial density increases and the filling efficiency decreases.
When it is greater than about 190, the effectiveness of the baffle is reduced.

反応塔の形状はとくに限定されないが、製作上の容易さ
から横断面形状が円形か四角形のいずれかのものが好ま
しい。反応塔内の充填層の高さは軟質性充填材の機械的
強度や粒子径、粒子形状などによって異なるが、通常1
0m程度まで高くすることができる。
Although the shape of the reaction tower is not particularly limited, it is preferable to have a cross-sectional shape of either circular or square for ease of manufacture. The height of the packed bed in the reaction tower varies depending on the mechanical strength, particle size, particle shape, etc. of the soft packing material, but is usually 1.
It can be raised up to about 0m.

本発明の反応塔は固定化酵素や固定化微生物などの生触
媒を用いる酵素反応用の反応塔として用いられうるだけ
でなく、液体クロマトグラフィー用やイオン交換用のカ
ラムとしても使用することができる。
The reaction column of the present invention can be used not only as a reaction column for enzyme reactions using biocatalysts such as immobilized enzymes and immobilized microorganisms, but also as columns for liquid chromatography and ion exchange. .

本発明において使用される軟質性充填剤としては、たと
えば軟質性物質により各種の酵素や微生物を固定した固
定化酵素や固定化微生物の生触媒、または液体クロマト
グラフィー用やイオン交換用の軟質性吸着剤があげられ
る。
Examples of the soft packing material used in the present invention include immobilized enzymes and biocatalysts of immobilized microorganisms in which various enzymes and microorganisms are immobilized using soft substances, and soft adsorbents for liquid chromatography and ion exchange. Medications can be given.

軟質性物質としては、たとえばアガロース系担体、デキ
ストラン系担体、セルロース系担体、ポリアクリルアミ
ド系担体、そのほか被処理液に不溶なビニルポリマー、
ナイロン、ポリスチレン、アミノ酸共重合体などの酵素
や微生物の固定用に通常用いられている物質があげられ
る。
Examples of soft substances include agarose carriers, dextran carriers, cellulose carriers, polyacrylamide carriers, and other vinyl polymers that are insoluble in the liquid to be treated.
Examples include materials commonly used for immobilizing enzymes and microorganisms, such as nylon, polystyrene, and amino acid copolymers.

吸着剤としては、たとえば前記物質に化学修飾を施した
活性化吸着剤、イオン交換用吸着剤、疎水性吸着剤、ア
ワイニテイクロマトグラフイー用吸着剤などがあげられ
る。
Examples of the adsorbent include activated adsorbents obtained by chemically modifying the above substances, adsorbents for ion exchange, hydrophobic adsorbents, and adsorbents for Awainite chromatography.

本発明の反応塔は、前記のごとく固定化酵素や固定化微
生物を使用する酵素反応にとくに好適に使用できる。酵
素反応は常温常圧という温和な条件で反応を行なうこと
ができる点に特徴の1つがあるが、酵素反応といえども
通常の化学反応におけるばあいまではいかないまでも反
応時に熱の出入りがある。たとえば固定化大腸菌を用い
るアスパルターゼ反応は、約6°c/mopの発熱を伴
う反応である。ところが酵素反応に使用する生触媒の多
くは熱に弱く、シたがって長期間にわたって反応を行な
うときは反応塔内の温度を常時一定にするための熱交換
が必要となる。
The reaction column of the present invention can be particularly suitably used for enzymatic reactions using immobilized enzymes or immobilized microorganisms as described above. One of the characteristics of enzymatic reactions is that they can be carried out under mild conditions such as room temperature and normal pressure, but even in enzymatic reactions, there is an exchange of heat during the reaction, although not to the same extent as in normal chemical reactions. . For example, an aspartase reaction using immobilized E. coli is a reaction that generates an exotherm of about 6°C/mop. However, many of the biocatalysts used in enzymatic reactions are sensitive to heat, and therefore, when carrying out reactions over a long period of time, heat exchange is required to keep the temperature inside the reaction tower constant at all times.

しかしながら、固定化酵素や固定化微生物などの軟質性
物質を使用する生触媒は熱伝導率が比較的小さいため、
従来広く利用されている二重背型反応塔を用いるときは
均」な熱交換ができず、充填層の半径方向に温度分布が
生ずる。
However, biocatalysts that use soft substances such as immobilized enzymes and immobilized microorganisms have relatively low thermal conductivity;
When using a conventionally widely used double back type reaction tower, uniform heat exchange is not possible, and temperature distribution occurs in the radial direction of the packed bed.

そこで、充填層全体を均一な温度に保つため、従来は反
応塔径を小さくしたり、基質液の供給時の温度を発熱量
に応じて下げて非等温型の反応にするか、または反応塔
と熱交換器を直列に多段に組合せた複雑な装置を用いる
かしなければならなかった。しかし、そうした反応塔で
は処理爪が制限されたり、運転操作が複雑になったり、
設備コストが増大したりしている。
Therefore, in order to keep the entire packed bed at a uniform temperature, conventional methods have been to reduce the diameter of the reaction column, lower the temperature when supplying the substrate liquid according to the calorific value to make the reaction non-isothermal, or This required the use of complex equipment that combined heat exchangers and heat exchangers in multiple stages in series. However, such reaction towers have limited processing capacity, complicated operation,
Equipment costs are increasing.

本発明の反応塔では、充填層中に挿入されているバッフ
ルとして中空状のものを使用し、該バッフル内に冷媒体
または熱媒体を通すことにより充填層全体にわたって均
一な熱交換を行なうことができ、反応塔の半径方向にお
いても常時所定の反応温度に反応系を維持することがで
きる。
In the reaction tower of the present invention, a hollow baffle is used as the baffle inserted in the packed bed, and by passing a cooling medium or a heating medium through the baffle, uniform heat exchange can be performed throughout the packed bed. The reaction system can be maintained at a predetermined reaction temperature at all times even in the radial direction of the reaction tower.

熱交換を行なうばあい、バッフルの太きさおよび配列の
ピッチは、前記aとL / dpを圧密の防止条件に加
えて反応の発熱量、伝熱面積、固定化生触媒の熱伝導率
などを考慮して、反応ごとに適宜選定すればよい。
When performing heat exchange, the thickness of the baffles and the pitch of the baffles are determined based on the above a and L/dp as conditions for preventing compaction, as well as the calorific value of the reaction, heat transfer area, thermal conductivity of the immobilized biocatalyst, etc. may be selected appropriately for each reaction.

第6図に中空状のバッフルを使用する本発明の反応塔の
一実施態様の一部切欠き概略立面図を示す。
FIG. 6 shows a partially cutaway schematic elevational view of an embodiment of the reaction column of the present invention using hollow baffles.

バッフル(6)は中空であり、熱媒体または冷媒体が入
口(8)から入れられ、出口(ア)から導出される。バ
ッフル(6)は2段ごとに外套部分で仕切り壁(9)に
より区切られている。
The baffle (6) is hollow, and a heating or cooling medium is introduced through the inlet (8) and taken out through the outlet (a). The baffles (6) are separated every two stages by a partition wall (9) at the mantle portion.

つぎに本発明の反応塔を用いて行なった通液実験および
酵素反応実験を示す。
Next, a liquid passage experiment and an enzyme reaction experiment conducted using the reaction tower of the present invention will be shown.

実施例1 横断面が一辺120mmの正方形の角塔(高さ1500
mm)を反応塔として用い、この内部に外径21mm、
長さ120mmの丸棒を千鳥配列(横ピッチ:58mm
、縦ピツチ’ 43mm)で48本挿入した。この反応
塔にに一カラギーナンゲル粒子(ゲル粒子の平均粒径:
 1.89mm、ゲル濃度=6.4%)を約1mの高さ
まで充填した。このときのaは0 、2670m /a
m 。
Example 1 A square tower with a cross section of 120 mm on a side (height: 1500 mm)
mm) is used as a reaction tower, and inside this is an outer diameter of 21 mm,
Staggered arrangement of round bars with a length of 120 mm (horizontal pitch: 58 mm)
, 48 pieces were inserted with a vertical pitch of 43 mm). This reaction column contains one carrageenan gel particle (average particle size of gel particles:
1.89 mm, gel concentration = 6.4%) was filled to a height of approximately 1 m. At this time a is 0, 2670m/a
m.

L工/dpは9.0 、L2/dpは11.6であった
L engineering/dp was 9.0, and L2/dp was 11.6.

これに2%KO/溶液を塔頂より下向流で通液し、被処
理液の流速(空塔速度)と圧力損失および一充填層容積
−ゲル体積 空間率1−、−、、、ただし充填層容 積−反応器容積−バッフ/L’体積)との関係を調べた
。結果を第1表に示す。
A 2% KO/solution was passed through this in a downward flow from the top of the column, and the flow rate (superficial velocity) of the liquid to be treated and the pressure loss and the volume of one packed bed - gel volume porosity 1-, -, , but The relationship between packed bed volume - reactor volume - buff/L' volume) was investigated. The results are shown in Table 1.

比較例1 バッフルを挿入しなかったほかは実施例1と同様にに一
カラギーナンゲル粒子を充填し、2%KO1溶液を通液
して被処理液の流速と圧力損失および空間率を調べた。
Comparative Example 1 Carrageenan gel particles were filled in the same manner as in Example 1, except that no baffle was inserted, and a 2% KO1 solution was passed through to examine the flow rate, pressure loss, and void ratio of the liquid to be treated.

結果を第1表に示す。The results are shown in Table 1.

第    1    表 第1表から明らかなように、バッフルを挿入した実施例
1では、圧力損失および空間率の両者とも比較例1に比
してきわめて小さい増加しか示さない。
Table 1 As is clear from Table 1, in Example 1 in which the baffle was inserted, both the pressure loss and the void ratio show only a very small increase compared to Comparative Example 1.

実施例2〜10 種々の形状のバッフルを種々の配列で挿入したほかは実
施例1と同様にに一カラギーナンゲル粒子を充填し、2
%KO/溶液を流速0.7cm/秒(空塔速度)で通液
して圧力損失と空間率を調べた。結果を第2表に示す。
Examples 2 to 10 One carrageenan gel particle was filled in the same manner as in Example 1, except that baffles of various shapes were inserted in various arrangements, and two
% KO/solution was passed through the tube at a flow rate of 0.7 cm/sec (superficial velocity), and the pressure drop and void ratio were investigated. The results are shown in Table 2.

各実施例におけるバッフルの形状および配列をつぎに示
す。
The shape and arrangement of the baffles in each example are shown below.

実施例2 形状:外径21mmの丸棒 配列:横ピツチ38m1縦ピツチ43mmの千鳥配列(
48本)a  :  0.267 am2/am3L工
/(11;l:9.O L2/dp’  11.6 実施例6 形状:外径21mmの丸棒 配列:横ピツチ68皿、縦ピツチ4江の平行配列(42
本)1L: 0.250cm27cm3 L工/dp’9.0 L2/ap :  11.6 実施例4 形状:外径21mmの丸棒 配列:横ピッチ38−1縦ピツチ135mmの平行配列
(16本)IIL  : 0.105cm”/am3L
工/dp:9.Q L2/ap:  11.6 実施例5 形状:外径9mの円形パイプ 配列:横ピッチ38m+t・縦ピツチ49mmの千鳥配
列(48本)a    :  [1、125cm27a
m3L1/dp:  15.3 L2/dp : 21.2 実施例6 形状:外径9馴の円形パイプ 配列:横ピツチ68謳、縦ピツチ98naの平行配列(
18本)a  : D、049cm27cm3 L工/dp:  15.ろ L2/dp:  47.1 実施例7 形状ニー辺20mmの角パイプ 配列:横ピッチ68mm、縦ピツチ142Nnの平行配
列(16本)a  ’  0.113 cm2/C+n
3L工/dp:  9.5 L2/ap:  64.5 実施例8 形状ニー辺20mmの菱形バイブ 配列:横ピツチ68閾、縦ピツチ115馴の平行配列(
16本)a  :  0.118cm27am3L工/
dp:5.I L27’dp :  45.4 実施例9 形状:  18mm X 3Trnの仮配列:各板を水
平に横ピッチ38mm 、縦ピツチ125mmで平行配
列(16本) a  ’ 0.065 am27cm3L工/dp: 
10.5 L、/dp ! 64.6 実施例10 形状: 18mm X 5mmの板 配列:各板を垂直に横ピッチ38mm、縦ピツチ125
mmで平行配列(16本) tL  : 0.065am”70m3L工/ap: 
18.5 L2/dp : 56.6 第   2   表 第2表から明らかなごとく、バッフルを挿入するときは
、圧力損失をバッフルを挿゛入しないはあい(比較例1
)の26〜40%に抑えることができる。
Example 2 Shape: Round bar arrangement with an outer diameter of 21 mm: Staggered arrangement with a horizontal pitch of 38 m and a vertical pitch of 43 mm (
48 pieces) a: 0.267 am2/am3L/(11; l: 9.O L2/dp' 11.6 Example 6 Shape: Round bar with outer diameter of 21 mm Arrangement: 68 horizontal pitches, 4 vertical pitches parallel array (42
Book) 1L: 0.250cm27cm3 L work/dp'9.0 L2/ap: 11.6 Example 4 Shape: Round bar arrangement with outer diameter of 21mm: Parallel arrangement with horizontal pitch of 38-1 and vertical pitch of 135mm (16 bars) IIL: 0.105cm”/am3L
Engineering/dp:9. Q L2/ap: 11.6 Example 5 Shape: Circular pipe arrangement with outer diameter of 9 m: Staggered arrangement (48 pipes) with horizontal pitch of 38 m + t and vertical pitch of 49 mm a: [1, 125 cm 27 a
m3L1/dp: 15.3 L2/dp: 21.2 Example 6 Shape: Circular pipe arrangement with outer diameter of 9 mm: Parallel arrangement with horizontal pitch of 68 na and vertical pitch of 98 na
18 pieces) a: D, 049cm27cm3 L work/dp: 15. L2/dp: 47.1 Example 7 Square pipe arrangement with knee side 20mm: Parallel arrangement (16 pipes) with horizontal pitch 68mm and vertical pitch 142Nn a' 0.113 cm2/C+n
3L work/dp: 9.5 L2/ap: 64.5 Example 8 Diamond shape vibrator array with knee side 20 mm: Parallel array with horizontal pitch 68 threshold and vertical pitch 115 threshold (
16 pieces) a: 0.118cm27am3L/
dp:5. I L27'dp: 45.4 Example 9 Shape: Temporary arrangement of 18mm x 3Trn: Each plate is arranged horizontally in parallel with a horizontal pitch of 38mm and a vertical pitch of 125mm (16 pieces) a' 0.065 am27cm3L/dp:
10.5 L,/dp! 64.6 Example 10 Shape: 18 mm x 5 mm plate arrangement: each plate vertically with a horizontal pitch of 38 mm and a vertical pitch of 125
Parallel array in mm (16 pieces) tL: 0.065am”70m3L/ap:
18.5 L2/dp: 56.6 Table 2 As is clear from Table 2, when inserting a baffle, the pressure loss is lower than when no baffle is inserted (comparative example 1).
) can be suppressed to 26-40%.

実施例11 横断面が一辺260mmの正方形の角塔(高さ700m
m )に外!20mmの円形パイプ96本を千鳥配列(
横ピッチ’40rnm、縦ピッチ: 34.6mm )
した反応塔(A)、横断面が200mm X 260m
mの長方形の反応塔(高さ700mm)の角塔に外径6
4mm、長さ200mmの円形パイプ10本を千鳥配列
(横ピッチN20mm、縦ピッチ: 104mm した
反応塔(B〕、および反応塔(B)においてパイプとし
て外径60mmのものを用いた反応塔(0)に、それぞ
れカラギーナンゲル法によってX−カラギーナン粒子(
ゲニューゲルWG ) km 大1%菌を固定した固定
化大腸菌粒子(平均粒径s、56mm )を充填し、2
%KO1溶液を流速(空塔速度) 0.060m/秒で
連続10日間通液した。
Example 11 A square tower with a cross section of 260 mm on a side (700 m in height)
m) outside! 96 20mm circular pipes arranged in a staggered arrangement (
Horizontal pitch '40rnm, vertical pitch: 34.6mm)
reaction tower (A), cross section 200mm x 260m
m rectangular reaction tower (height 700 mm) with an outer diameter of 6
A reaction tower (B) in which 10 circular pipes of 4 mm and a length of 200 mm were arranged in a staggered manner (horizontal pitch N 20 mm, vertical pitch: 104 mm), and a reaction tower (B) in which pipes with an outer diameter of 60 mm were used as pipes (0 ) and X-carrageenan particles (
Geneugel WG) km Filled with immobilized E. coli particles (average particle size s, 56 mm) on which 1% bacteria were immobilized, 2
% KO1 solution was passed through the tube at a flow rate (superficial velocity) of 0.060 m/sec for 10 consecutive days.

その結果、いずれの反応塔においても殆んど圧密は生じ
ず、連続通液処理できた。
As a result, almost no compaction occurred in any of the reaction towers, and continuous liquid flow treatment was possible.

なお、充填高さは反応塔(A) 、、 (E)および(
c)ではそれぞれ0.56m 、 0.56mおよび0
.56mであり、a、 L、/dpおよびり、/dpは
反応塔(A)でそれぞれ0 、41 am2/am3.
6.6および2.6、反応塔(B)でそれぞれ0 、0
7 am2/Qm3.15.5および12.6、反応@
(C)でそれぞれ0 、13 am27cm3.10.
8および7.9であった。
The filling heights are as follows: reaction towers (A), , (E) and (
c) respectively 0.56m, 0.56m and 0
.. 56 m, and a, L, /dp and RI, /dp are 0 and 41 am2/am3. in the reaction column (A), respectively.
6.6 and 2.6, respectively 0 and 0 in the reaction column (B)
7 am2/Qm3.15.5 and 12.6, reaction @
(C) respectively 0, 13 am27cm3.10.
8 and 7.9.

実施例12 横断面が640mm X 780mmの長方形の角塔(
高さ2000mm )に外径60mmの円形パイプ96
本を千鳥配列(横ピッチ: 120mm 、縦ピツチ1
Q4mm ) した反応塔に実施例11で用いたのと同
じ固定化大腸菌を6001(見掛充填容積)充填した(
am0 、15 am”/am”、L 1/dp =1
0.8、L2/dp = 7−9 ) oこれに基質液
である7マル酸アンモニア溶液(初濃度1.22M 、
、pH8,5)を3601/時で通液してアスパルター
ゼ反応を行なった。
Example 12 A rectangular square tower with a cross section of 640 mm x 780 mm (
A circular pipe 96 with an outer diameter of 60 mm and a height of 2000 mm.
Staggered arrangement of books (horizontal pitch: 120mm, vertical pitch: 1)
The same immobilized E. coli as used in Example 11 was packed into a reaction column (Q4 mm) with an apparent filling volume of 6001 (apparent filling volume).
am0, 15 am"/am", L 1/dp = 1
0.8, L2/dp = 7-9) o Add ammonia 7-malate solution (initial concentration 1.22M,
, pH 8.5) at a rate of 3601/hour to perform an aspartase reaction.

パイプには常時34°Cの温水を通し、基質液は67°
0に予熱してから通液した。
34°C hot water is constantly passed through the pipe, and the substrate liquid is kept at 67°C.
After preheating to 0, the solution was passed through.

第6表に流出液の温度、破過するまでの操作日数および
流出液中の総生産L−アスパラギン酸量を示す。
Table 6 shows the temperature of the effluent, the number of days of operation until breakthrough, and the total amount of L-aspartic acid produced in the effluent.

比較例2 バッフルを挿入しなかった反応塔を使用したほかは実施
例12と同様に通液処理してアスパルターゼ反応を行な
い、L−アスパラギン酸をえた。
Comparative Example 2 Aspartase reaction was carried out in the same manner as in Example 12, except that a reaction tower without a baffle was used, and L-aspartic acid was obtained.

結果を第6表に示す。The results are shown in Table 6.

第    6    表 第6表に示すごとく、バッフルを挿入しかつそれにより
熱交換を行なうときは、流出液の温度がほぼ一定であり
、破過日数が倍増し、単位生触媒あたりのL−アスパラ
ギン酸の生産量を大幅に増大せしめることができる。
Table 6 As shown in Table 6, when a baffle is inserted and heat exchange is performed by it, the temperature of the effluent is almost constant, the number of breakthrough days is doubled, and the amount of L-aspartic acid per unit of biocatalyst is increased. The production amount can be significantly increased.

実施例16 固定化大腸菌に代えてカラギーナンゲル法でに一カラギ
ーナン粒子(ゲニューゲルWG)にブレビバクテリウム
・フラバムを固定した固定化ブレビバクテリウム・フラ
バム粒子(平均粒径5.56mm )を用い(am0.
15cmシm3、L、/dl) = 10.8、r、+
2/4p= 7.9)、基質液としてフマル酸ソーダ溶
液(初濃度IM、 pH7,0)を用いて流速(空塔速
度)1201!/時で通液し、フマラーゼ反応を行なわ
せたほかは実施例12と同様に処理して、L−リンゴ酸
を生産せしめた。
Example 16 Instead of immobilized E. coli, immobilized Brevibacterium flavum particles (average particle size 5.56 mm) in which Brevibacterium flavum was immobilized on carrageenan particles (Genyugel WG) by the carrageenan gel method were used (am0 ..
15cm cm3, L, /dl) = 10.8, r, +
2/4p = 7.9), using a sodium fumarate solution (initial concentration IM, pH 7.0) as the substrate liquid, the flow rate (superficial velocity) was 1201! L-malic acid was produced in the same manner as in Example 12, except that the flask was passed through the flask at a rate of 1/2 hour and the fumarase reaction was carried out.

第4表に流出液の温度、破過するまでの操作日数および
流出液中の総生産L−リン酸量を示す。
Table 4 shows the temperature of the effluent, the number of days of operation until breakthrough, and the total amount of L-phosphoric acid produced in the effluent.

なお、操作中、反応温度を50°Cにまで上昇せしめた
が、そのばあいでも軸方向の温度分布は均一であった。
Although the reaction temperature was raised to 50° C. during the operation, the temperature distribution in the axial direction was uniform even in that case.

比較例3 バッフルが挿入されていない反応塔を使用したほかは実
施例13と同様に通液処理してフマラーゼ反応を行ない
、L−リンゴ酸をえた。
Comparative Example 3 A fumarase reaction was carried out in the same manner as in Example 13, except that a reaction tower without a baffle was used, and L-malic acid was obtained.

結果を第4表に示す。The results are shown in Table 4.

第   4    表 第4表に示すごとく、バッフルを挿入しかつそれにより
熱交換を行なうときは、流出液の温度がほぼ一定であり
、:l、−IJンゴ酸の生産量を大幅に増大せしめるこ
とができる。
Table 4 As shown in Table 4, when inserting a baffle and thereby performing heat exchange, the temperature of the effluent remains almost constant, greatly increasing the production of :l,-IJ malic acid. I can do it.

実施例14 ブレビバクテリウム・フラバムに代えてブレビバクテリ
ウム・アンモニアゲネスをに一カラギーナン粒子に固定
化した固定化ブレビバクテリウム・アンモニアゲネスを
用いたほかは実施例16と同様にして(amQ、15c
m”/am3、L、/+ITI = 118、L〆1i
p=7.9)、フマル酸ソーダ溶液を用いてL−リンゴ
酸を生産せしめた。
Example 14 The procedure was repeated in the same manner as in Example 16, except that instead of Brevibacterium flavum, immobilized Brevibacterium ammoniagenes, in which Brevibacterium ammoniagenes was immobilized on carrageenan particles, was used (amQ, 15c).
m”/am3, L, /+ITI = 118, L〆1i
p=7.9), L-malic acid was produced using a sodium fumarate solution.

第5表に流出液の温度、破過するまでの操作日数および
流出液中の総生産I、−IJンゴ酸量を示す。
Table 5 shows the temperature of the effluent, the number of operating days until breakthrough and the amount of total produced I, -IJ malic acid in the effluent.

比較例4 バッフルが挿入されていない反応塔を用いたほかは実施
例14と同様に通液し、L−リンゴ酸をえた。
Comparative Example 4 L-malic acid was obtained by passing liquid in the same manner as in Example 14, except that a reaction tower without a baffle was used.

結果を第5表に示す。The results are shown in Table 5.

第5表 実施例15 実施例1で使用した反応塔と同じ反応塔に、化アミノア
シラーゼを約1mの高さまで充填した( a = 0.
267 am2/am3、L、/dp = 40.0、
L2/dp = 5l−8)。
Table 5 Example 15 The same reaction tower as used in Example 1 was filled with aminoacylase to a height of about 1 m (a = 0.
267 am2/am3, L, /dp = 40.0,
L2/dp = 5l-8).

この反応塔に0 、38Mのアセチル−匪−フェニルア
ラニン溶液を空塔速度0.11cm/秒で通液して圧力
損失を測定したところ、42.5cm−a2o/m−b
eaであった。
When a 0.38 M acetyl-a2o-phenylalanine solution was passed through this reaction column at a superficial velocity of 0.11 cm/sec and the pressure drop was measured, it was found to be 42.5 cm-a2o/m-b.
It was ea.

一方、バッフルが挿入されていない反応塔で同様の通液
試験を行なったところ、その圧力損失は50 am−H
2o/m−bedと大きいものであツタ。
On the other hand, when a similar flow test was conducted in a reaction tower without baffles, the pressure drop was 50 am-H.
It's a large 2o/m-bed and it's ivy.

実施例16 実施例1で使用した反応塔と同じ反応塔に、DEAE−
セファデックスA−25(ファルマシア社製のデキスト
ラン系ゲル)を約1mの高さまで充填した( a = 
0.267cm2/am3、Lx/dp= 141、L
2/dp = 186)。
Example 16 DEAE-
Sephadex A-25 (dextran gel manufactured by Pharmacia) was filled to a height of about 1 m (a =
0.267cm2/am3, Lx/dp=141, L
2/dp = 186).

この反応塔に水を0.08+cm/秒の空塔速度で通液
して圧力損失を調べたところ、755cm−H20/m
−bedであった。
When water was passed through this reaction tower at a superficial velocity of 0.08+cm/sec and the pressure loss was investigated, it was found to be 755cm-H20/m
-bed.

一方、バッフルが挿入されていない反応塔を用いて同様
の通液試験を行なったところ、その圧力損失は888c
m−H20/m−beaと大きなものであった。
On the other hand, when a similar liquid flow test was conducted using a reaction tower without baffles, the pressure loss was 888c.
It was as large as m-H20/m-bea.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の反応塔の一実施態様の概略平面図、第
2図は第1図の実施態様の一部切欠き概略立面図、第6
図は第2図の(X) −(X)線断面図、第4〜5図は
それぞれ本発明におけるバッフルの配列の実施態様の概
略縦断面図および概略平面図、第6図は本発明の反応塔
の別の実施態様の一部切欠き概略立面図である。 (図面の主要符号) (1戸反応塔 (4)、(6):バツフル (5):軟質性充填剤 (7);熱交換用媒体出口 (8)!熱交換用媒体入口 :A′2区 オ6図
FIG. 1 is a schematic plan view of an embodiment of the reaction column of the present invention, FIG. 2 is a partially cutaway schematic elevational view of the embodiment of FIG.
The figure is a sectional view taken along the line (X)-(X) of FIG. FIG. 3 is a partially cutaway schematic elevational view of another embodiment of a reaction column. (Main symbols in the drawing) (Single-door reaction tower (4), (6): Full (5): Soft filler (7); Heat exchange medium outlet (8)! Heat exchange medium inlet: A'2 Ward O 6 map

Claims (1)

【特許請求の範囲】 1 軟質性充填材が充填さされている充填層中に、被処
理液の流れ方向と直角方向にバッフルが挿入されてなる
充填層型反応塔。 2 前記バッフルが、横断面形状が円形、楕円形、三角
形、四角形、菱形、L字形、7字形、L字形または工学
形の棒状または細長体状のバッフルである特許請求の範
囲第1項記載の反応塔。 6 前記バッフルが中空体である特許請求の範囲第1項
または第2項記載の反応塔。 4 前記バッフルの中空部が冷媒体または熱媒体の通路
を構成してなる特許請求の範囲第6項記載の反応塔。 5 前記軟質性充填材が固定化酵素である特許請求の範
囲第1項、第2項、第6項または第4項記載の反応塔。 6 前記軟質性充填材が固定化微生物である特許請求の
範囲第1項、第2項、第6項または第4項記載の反応塔
。 7 前記軟質性充填材が液体クロマトグラフィー用吸着
材である特許請求の範囲第1項、第2項、第6項または
第4項記載の反応塔。 8 前記固定化微生物が、L−アスパラギン酸生産用の
固定化大腸菌である特許請求の範囲第6項記載の反応塔
。 9 前記固定化微生物が 1−リンゴ酸生産用の固定化
ブレビバクテリウム・フラバムまたは固定化ブレビバク
テリウム・アンモニアゲネスである特許請求の範囲第6
項記載の反応塔。
[Scope of Claims] 1. A packed bed reaction tower in which a baffle is inserted in a packed bed filled with a soft filler in a direction perpendicular to the flow direction of a liquid to be treated. 2. The baffle according to claim 1, wherein the baffle is a bar-shaped or elongated baffle having a circular, elliptical, triangular, quadrangular, diamond-shaped, L-shaped, 7-shaped, L-shaped, or engineered cross-sectional shape. reaction tower. 6. The reaction tower according to claim 1 or 2, wherein the baffle is a hollow body. 4. The reaction tower according to claim 6, wherein the hollow part of the baffle constitutes a passage for a cooling medium or a heating medium. 5. The reaction column according to claim 1, 2, 6 or 4, wherein the flexible packing material is an immobilized enzyme. 6. The reaction column according to claim 1, 2, 6, or 4, wherein the flexible filler is an immobilized microorganism. 7. The reaction column according to claim 1, 2, 6, or 4, wherein the flexible packing material is an adsorbent for liquid chromatography. 8. The reaction column according to claim 6, wherein the immobilized microorganism is an immobilized E. coli for producing L-aspartic acid. 9. Claim 6, wherein the immobilized microorganism is immobilized Brevibacterium flavum or immobilized Brevibacterium ammoniagenes for the production of 1-malic acid.
Reaction tower described in section.
JP58050919A 1983-03-25 1983-03-25 Packing layer type reaction tower packed with soft packing material Granted JPS59177127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58050919A JPS59177127A (en) 1983-03-25 1983-03-25 Packing layer type reaction tower packed with soft packing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58050919A JPS59177127A (en) 1983-03-25 1983-03-25 Packing layer type reaction tower packed with soft packing material

Publications (2)

Publication Number Publication Date
JPS59177127A true JPS59177127A (en) 1984-10-06
JPH0220292B2 JPH0220292B2 (en) 1990-05-08

Family

ID=12872197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58050919A Granted JPS59177127A (en) 1983-03-25 1983-03-25 Packing layer type reaction tower packed with soft packing material

Country Status (1)

Country Link
JP (1) JPS59177127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199032A (en) * 1983-04-26 1984-11-12 Asahi Chem Ind Co Ltd Pressure absorbing mechanism
JPS6261628A (en) * 1985-09-10 1987-03-18 Agency Of Ind Science & Technol Tubular reaction system
JPS63296806A (en) * 1987-05-28 1988-12-02 Shimadzu Corp Industrially separating chromatocolumn
CN102755866A (en) * 2012-07-02 2012-10-31 魏治中 Stripper with multiple layers of stacked grids

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199032A (en) * 1983-04-26 1984-11-12 Asahi Chem Ind Co Ltd Pressure absorbing mechanism
JPH0372338B2 (en) * 1983-04-26 1991-11-18 Asahi Chemical Ind
JPS6261628A (en) * 1985-09-10 1987-03-18 Agency Of Ind Science & Technol Tubular reaction system
JPH0525534B2 (en) * 1985-09-10 1993-04-13 Kogyo Gijutsuin
JPS63296806A (en) * 1987-05-28 1988-12-02 Shimadzu Corp Industrially separating chromatocolumn
CN102755866A (en) * 2012-07-02 2012-10-31 魏治中 Stripper with multiple layers of stacked grids

Also Published As

Publication number Publication date
JPH0220292B2 (en) 1990-05-08

Similar Documents

Publication Publication Date Title
CA1304215C (en) Method of carrying out heterogeneous catalytic chemical processes
US4599174A (en) Submerged fixed film biological treatment system
EP1813346B1 (en) Multitubular reaction apparatus for contact gas-phase reaction
CA2241112A1 (en) Catalytic distillation structure
Podgornik et al. Convective Interaction Media®(CIM)–short layer monolithic chromatographic stationary phases
CA2428761A1 (en) Carbon monoxide conversion process and reactor
CN1819869A (en) Oxidation process and reactor with modified feed system
de Lathouder et al. Structured reactors for enzyme immobilization: advantages of tuning the wall morphology
JPS59177127A (en) Packing layer type reaction tower packed with soft packing material
JPH0695929B2 (en) Enzyme-immobilized bioreactor
CN1675161A (en) Method of vapor phase catalytic oxidation using multitubular reactor
JPH08157206A (en) Production of phosgene
CN1958146B (en) Multiple stage fluidized-bed reactor and method for synthesizing chloroethylene
US3732078A (en) Flow redistributor for a fixed bed down flow reactor
JPH09173821A (en) Fluidized bed reactor
JPS6182804A (en) Large specific area material and substrate containing in physical and/or chemical and/or biological phenomenon and application thereof to available contact between said substrate and reagent
CA1192383A (en) Device and method for forming a fluidized bed
JP2563364B2 (en) Ethylene oxide production method
JPH0141101B2 (en)
JPS60225632A (en) Reactor
JPH01104156A (en) Organism catalyst reactor for fixed organism catalyst of gel-like or other types
US2382371A (en) Hydrocarbon conversion process
JPS6258985A (en) Continuous operation type tank fermentation apparatus
JP2984290B2 (en) Equipment for catalytic reaction
CN216260661U (en) Double-helix heat exchange reactor