JPH0525534B2 - - Google Patents

Info

Publication number
JPH0525534B2
JPH0525534B2 JP60200316A JP20031685A JPH0525534B2 JP H0525534 B2 JPH0525534 B2 JP H0525534B2 JP 60200316 A JP60200316 A JP 60200316A JP 20031685 A JP20031685 A JP 20031685A JP H0525534 B2 JPH0525534 B2 JP H0525534B2
Authority
JP
Japan
Prior art keywords
reaction
fluid
flow
control
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60200316A
Other languages
Japanese (ja)
Other versions
JPS6261628A (en
Inventor
Kaoru Oobuchi
Hidekatsu Maeda
Hideo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20031685A priority Critical patent/JPS6261628A/en
Publication of JPS6261628A publication Critical patent/JPS6261628A/en
Publication of JPH0525534B2 publication Critical patent/JPH0525534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はマイクロカプセル生体触媒のような人
工細胞、生物細胞、固定化生体触媒ゲルなどのよ
うな柔軟性粒子を充填した管型反応器の制御方法
に関するものである。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a tubular reactor filled with flexible particles such as artificial cells such as microcapsule biocatalysts, biological cells, and immobilized biocatalyst gels. The present invention relates to a control method.

(ロ) 従来の技術 従来、硬質系の例えば酵素をゲル包括法等によ
り固定化処理された反応性粒子は柔軟性粒子に対
し、反応効率において劣るため最近は柔軟性粒子
が用いられるようになつてきた。
(b) Conventional technology In the past, rigid reactive particles, such as enzymes immobilized by a gel entrapment method, were inferior to flexible particles in reaction efficiency, so flexible particles have recently come to be used. It's here.

しかしながら、柔軟性粒子は反応効率は高い
が、管型反応器に充填した場合、柔軟性が災い
し、反液の連続供給によつて粒子が変形しやすく
変形圧密を生じ目詰りを起し圧力損失の著しい上
昇をもたらすという欠点がある。
However, although flexible particles have a high reaction efficiency, when packed in a tubular reactor, their flexibility is a problem, and the particles are easily deformed by continuous supply of counterliquid, causing deformation and compaction, causing clogging, and increasing pressure. The disadvantage is that it leads to a significant increase in losses.

(ハ) 発明が解決しようとする問題点 そこで、本発明者らは、反応効率の優れた柔軟
性粒子の変形・圧密を事前に防止することに着目
し、研究を進めた結果、本発明を関係させたもの
である。
(c) Problems to be Solved by the Invention Therefore, the present inventors focused on preventing the deformation and compaction of flexible particles with excellent reaction efficiency, and as a result of conducting research, the present invention has been developed. It is related.

すなわち、マイクロカプセルなどのような人工
細胞、生物細胞、固定化生体触媒ゲルなどのよう
な柔軟性粒子を充填した管型反応システムにおい
て、該反応器の出入口に圧力損失を検出する圧力
センサー、順逆両方向に流速を付加するポンプ及
びこれらを結ぶパイプラインを設け且つ圧力セン
サーとポンプをコンピユータと連結して設け、あ
らかじめ制御されたコンピユータプログラムに従
つてポンプの流速を付加することからなる管型反
応制御方法 を開発するに至つたものである。
That is, in a tubular reaction system filled with flexible particles such as artificial cells such as microcapsules, biological cells, and immobilized biocatalyst gel, a pressure sensor that detects pressure loss at the inlet and outlet of the reactor, forward and reverse. Pipe-type reaction control consists of providing a pump that applies flow velocity in both directions and a pipeline connecting these, and connecting the pressure sensor and pump to a computer, and adding the flow velocity of the pump according to a pre-controlled computer program. This led to the development of the method.

(ニ) 問題点を解決するための手段 反応液の連続供給によつて柔軟性粒子が変形し
やすく変形圧密を生じる現象を利用して、管型反
応器の出入口付近に圧力センサーを設け、圧力損
失の上昇をモニタリングし、通常は変形、圧密の
始まる以前の圧力損失初期に、ポンプを逆回転さ
せ反応液を逆流させるかまたは反応液の供給経路
は別に逆流経路を設けポンプにより逆流させるこ
とにより管内粒子の変形圧密を未然に防ぎ、この
操作を繰り返し行うことにより常に管内の粒子の
反応条件は最良に保たれ連続反応に供することが
できる。
(d) Measures to solve the problem Utilizing the phenomenon that flexible particles are easily deformed due to continuous supply of reaction liquid and cause deformation consolidation, a pressure sensor is installed near the entrance and exit of the tubular reactor to measure the pressure. By monitoring the increase in loss, and usually at the initial stage of pressure loss before deformation or compaction begins, the pump is reversely rotated to cause the reaction liquid to flow backwards, or a separate reverse flow path is provided for the reaction liquid supply route and the pump is used to reverse the flow. By preventing deformation and compaction of the particles in the tube and repeating this operation, the reaction conditions for the particles in the tube can always be maintained at their best, allowing for continuous reaction.

本発明制御方法を稼動させるにはコンピユータ
制御プログラムが不可欠であるが、本プログラム
は(1)変数の初期値設定(2)制御変数の修正(3)運転及
び経過出力の4つのルーチンより構成され(図
1)制御は制御変数の修正ルーチン2と運転ルー
チン3の部分を繰り返すことにより実行され、こ
の二つのルーチンが必須の部分である。制御変数
の修正ルーチン2は更に2−1制御方式設定、2
−2制御変数変換の二つのサブルーチンからなり
反応管の特性に応じて制御変数の最適化を効率的
に行うためにオペレーターの判断を介在させる。
制御方式設定ルーチン2−1が有効であるが制御
変数変換ルーチン2−2のみが必須である。
A computer control program is essential to operate the control method of the present invention, and this program consists of four routines: (1) initial value setting of variables, (2) modification of control variables, and (3) operation and progress output. (FIG. 1) Control is executed by repeating control variable correction routine 2 and operation routine 3, and these two routines are essential parts. Control variable modification routine 2 further includes 2-1 control method setting, 2
-2 Consists of two subroutines for converting control variables, and involves operator judgment in order to efficiently optimize control variables according to the characteristics of the reaction tube.
Although the control method setting routine 2-1 is effective, only the control variable conversion routine 2-2 is essential.

運転ルーチン3は3−1流路切換、3−2圧損
測定、3−3データ平均化の三つのサブルーチン
からなり、すべて必須である。
Operation routine 3 consists of three subroutines: 3-1 flow path switching, 3-2 pressure drop measurement, and 3-3 data averaging, all of which are essential.

流路切換サブルーチン3−1では、バルブ
(valve)と(pump)ポンプ1,2のいずれかを
所定流速で起動の動作が実行される圧損測定サブ
ルーチン3−2では圧力損出の値が測定される。
測定は所定の操作時間だけ繰返えされる。操作時
間は流路切換えサブルーチン3−1と制御計測サ
ブルーチン3−2の実行時間に相当する。
In the flow path switching subroutine 3-1, the operation of starting either the valve or the pump 1 or 2 at a predetermined flow rate is executed.In the pressure loss measurement subroutine 3-2, the value of pressure loss is measured. Ru.
The measurements are repeated for a predetermined operating time. The operation time corresponds to the execution time of the flow path switching subroutine 3-1 and the control measurement subroutine 3-2.

データ処理サブルーチン3−3では操作時間分
の測定値が所定の方式に従つて平均化され、この
サイクルにおける観測値として登録される。
In the data processing subroutine 3-3, the measured values for the operation time are averaged according to a predetermined method and are registered as the observed values for this cycle.

流路切換サブルーチン3−1、制御計測サブル
ーチン3−2、データ処理サブルーチン3−3を
一組として1回のサイクルでは順方向、逆方向の
各1回繰返される。
The flow path switching subroutine 3-1, the control measurement subroutine 3-2, and the data processing subroutine 3-3 are made into a set and are repeated once each in the forward direction and the reverse direction in one cycle.

各サイクルにおける圧力損失をその前における
圧力損失と比較しその増加を緩和するように制御
変数変換サブルーチン2−2において制御変換が
変換される。
Control conversion is performed in the control variable conversion subroutine 2-2 so as to compare the pressure loss in each cycle with the pressure loss in the previous cycle and alleviate the increase.

制御変数変換サブルーチン2−2において有効
流速が最適になるように変換すべき制御変数が決
定される。
In the control variable conversion subroutine 2-2, control variables to be converted are determined so as to optimize the effective flow velocity.

本発明制御方法の具体的操作例を図1のフロー
チヤートおよび図2の運転系統図を参照して説明
する。
A specific example of the operation of the control method of the present invention will be explained with reference to the flowchart of FIG. 1 and the operation system diagram of FIG. 2.

制御システムを稼働させるためには、(1)に
おいて変数の初期値を設定してコンピユータに入
力する。変動初期値としては、反応液の流速
(cm3/min.)制御間隔(s)が採用される。次いで図
2のポンプ1(実線部分)が始動(2)され、反
応が開始される。(3)の変数修正は定められた
数式と実測値に従つて常時コンピユータからの指
示により、前述初期値として入力した変数の修正
を行いながら反応が進行する。この段階において
は反応系は正の方向の流れ(J=1)である。制
御間隔(s)が経過した時点で(4)の終了?の半数をコ
ンピユータが行い、制御不能(yes)の信号が出
たときは(13)経過出力においてコンピユータから運
転経過が出力され、システムは停止される。
In order to operate the control system, initial values of variables are set and input to the computer in step (1). The flow rate (cm 3 /min.) of the reaction solution and the control interval (s) are used as the initial value of the fluctuation. Next, the pump 1 (solid line part) in FIG. 2 is started (2) to start the reaction. In (3), variable modification, the reaction proceeds while modifying the variables input as the initial values in accordance with predetermined formulas and actual measured values under constant instructions from the computer. At this stage, the reaction system is in a positive flow (J=1). Does (4) end when the control interval (s) elapses? The computer performs half of the operations, and when an uncontrollable (yes) signal is issued, the computer outputs the operating progress in (13) progress output and the system is stopped.

(4)の終了?(制御不能)判定がnoである
と、逆の流れ(J=2)の信号がコンピユータか
ら出力され、(6)の流路切換えがなされ、図2
のポンプ2(点線部分)が稼働し、反応液は逆に
流れるようになる。この段階(J=3−J:それ
までの変数Jの値を用いて3−Jの値を新たな変
数Jの値とする)でパラメータがJ=2に切換え
られる。
End of (4)? (Uncontrollable) If the judgment is no, a signal for the reverse flow (J=2) is output from the computer, and the flow path switching in (6) is performed, as shown in FIG.
Pump 2 (dotted line) is activated, and the reaction liquid begins to flow in the opposite direction. At this stage (J=3-J: the previous value of variable J is used and the value of 3-J is set as the new value of variable J), the parameter is switched to J=2.

流路切換え後(8)の圧旅損失の計測が行わ
れ、圧力差が(9)許容?では、圧力差が許容範
囲内(yes)では計測が続けられ、許容値の範囲
を越えると平均値を求めるステツプ(11)平均に移
る。そして、圧力差が許容値を越えると反応液の
流れ方向を変更し、圧損の回復をはかるため、再
び流路切換えが行なわれる。
After switching the flow path (8), the pressure travel loss was measured and the pressure difference was (9) acceptable? If the pressure difference is within the allowable range (yes), measurement continues; if it exceeds the allowable value range, the process moves to step (11) averaging to obtain the average value. Then, when the pressure difference exceeds an allowable value, the flow direction of the reaction liquid is changed and the flow path is switched again in order to recover the pressure loss.

前記圧力差の測定のフイードバツグおよび圧力
差が許容値を越えて平均値をとり圧損回復のため
の流路切換えのフイードバツクは、システム稼働
中、くり換し行なわれる。
The feedback of the measurement of the pressure difference and the feedback of the flow path switching to recover the pressure loss when the pressure difference exceeds the allowable value and takes the average value are repeatedly performed while the system is in operation.

(12)の終了?は操作者からのプロセス終了
の指示が入力されているか否かを判定し、noの
場合には、変数修正の信号が出力され、所定の反
応条件が維持できるようにフイードバツクされ
る。そして、修正された変数が(3)の終了にお
けるコンピユータの判断で、操業を継続するか、
システムを停止するかを決定する。
End of (12)? determines whether an instruction to end the process has been input from the operator, and if no, a signal for modifying the variable is output and feedback is provided so that predetermined reaction conditions can be maintained. Then, based on the computer's judgment at the end of (3), whether the modified variables continue operation or not.
Decide whether to stop the system.

(ホ) 実施例 本実施例で使用する信号は、次のように定義す
る。
(E) Example The signals used in this example are defined as follows.

W/V:重量÷体積で表した濃度 W1:水相1 W1/O:油相に水相1を乳化した1次乳化液 (W1/0)/W2:1次乳化液をさらに水相2に
乳化した2次乳化液 ヘモグロビン水溶液(2%(W/V)、W1)10
mlを1%(W/V)ポリ(N,N−ジメチル−p
−ビニルベンジルアミン)のベンゼン溶液(1%
(W/V)、0)20mlに乳化して一次乳化液
(W1/0)を得る。N/20NaOH水溶液を用いて
PHを8.5にした2%ゼラチン水溶液(W2)300ml
中に、一次乳化液を再乳化して二次乳化液
((W1/0)/W2)を得る。この二次乳化液を、
室温で攪拌してベンゼンを大気中に蒸発させるこ
とによつてポリ(N,N−ジメチル−p−ビニル
ベンジルアミン)を殻皮とするマイクロカプセル
の懸濁液を得る。この懸濁液に1%(W/V)ポ
リビニル硫酸カリウム水溶液20mlを加え、氷冷下
攪拌しながらN/10塩酸を用いてPHを6.5にする。
マイクロカプセルを遠心で集め、蒸留水で洗浄し
40〜120μmφの高分子電解質マイクロカプセル
を調製した。このカプセル2mlに水を加えスラリ
ー状にして8mmφ×100mmのガラスカラムに充填
したものを、カプセル充填カラムと称する。カプ
セル充填カラムを流路(図2)に組込み、制御系
(図1)で制御した。
W/V: Concentration expressed as weight ÷ volume W 1 : Water phase 1 W 1 /O: Primary emulsion of water phase 1 in oil phase (W 1 /0)/W 2 : Primary emulsion Further, a secondary emulsion liquid emulsified in aqueous phase 2 Hemoglobin aqueous solution (2% (W/V), W 1 ) 10
ml to 1% (W/V) poly(N,N-dimethyl-p
-vinylbenzylamine) in benzene solution (1%
(W/V), 0) Emulsify to 20 ml to obtain a primary emulsion (W 1 /0). Using N/20NaOH aqueous solution
300ml of 2% gelatin aqueous solution (W 2 ) with pH 8.5
In the process, the primary emulsion is re-emulsified to obtain a secondary emulsion ((W 1 /0)/W 2 ). This secondary emulsion,
By stirring at room temperature and evaporating benzene into the atmosphere, a suspension of microcapsules having poly(N,N-dimethyl-p-vinylbenzylamine) as a shell is obtained. Add 20 ml of 1% (W/V) polyvinyl potassium sulfate aqueous solution to this suspension, and adjust the pH to 6.5 using N/10 hydrochloric acid while stirring under ice cooling.
Microcapsules were collected by centrifugation and washed with distilled water.
Polyelectrolyte microcapsules with a diameter of 40 to 120 μm were prepared. A slurry made by adding water to 2 ml of the capsules and filling it in a glass column of 8 mmφ x 100 mm is called a capsule packed column. A capsule-filled column was installed in the flow path (Figure 2) and controlled by a control system (Figure 1).

流路の反転を行なわない場合3ml/minの流速
で1分、2ml/minで45秒程度で圧損か4Kg/cm2
を超えるのに対し、流路の反転を行つた場合流速
2.5ml/minで圧損がおおむね1〜0Kg/cm2の範
囲で連続運転が可能であつた。この場合約15分後
に圧損の異常上昇が認められたが本発明制御系は
自動的に圧損を緩和することができた。変数は
(1)、(2)式を用いて圧損の変動によつて自動設定さ
れた。
If the flow path is not reversed, the pressure drop will be 4 Kg/cm 2 in 1 minute at a flow rate of 3 ml/min and 45 seconds at 2 ml/min .
When the flow path is reversed, the flow velocity exceeds
Continuous operation was possible at 2.5 ml/min with a pressure loss in the range of approximately 1 to 0 kg/cm 2 . In this case, an abnormal increase in pressure drop was observed after about 15 minutes, but the control system of the present invention was able to automatically alleviate the pressure drop. The variable is
It was automatically set based on the fluctuation of pressure drop using equations (1) and (2).

なお式(1)、(2)は次のとおりである。 Note that equations (1) and (2) are as follows.

終了したサイクルにおける圧損をPi その前のサイクルにおける圧損をPi−1 初期値として設定された圧損の限界値をPlim としたとき(1)式で与えられるnに応じて(2)のよう
に流速の場合△fを求め、次のサイクルの流速
fi+1を終了したサイクルの流速fiと△fの和(3
式)として与える。eは自然対数の底である。
When the pressure drop in the completed cycle is Pi, the pressure drop in the previous cycle is Pi−1, and the limit value of pressure drop set as the initial value is Plim, the flow rate is calculated as shown in (2) according to n given by equation (1). In the case of , find △f and calculate the flow rate for the next cycle.
The sum of the flow velocity fi and △f ( 3
Expression). e is the base of natural logarithm.

n=P1in−Pi-1/Pi+Pi-1 (1) −e<n0のとき △f=0.6 0<neのと
き △f=0.6 −e2<n−e △f=0.4 e<ne2 △f=
−0.4 (2) −e3<n−e2 △f=0.2 e<ne3 △f=
−0.2 n−e3又はe3<nのとき △f=0 fi+1=fi+△f (3) (ヘ) 発明の効果 管内粒子の変形、圧密に圧損の上昇が認められ
ても自動的に圧損を緩和ができ連続運転が可能と
なる。
n=P 1in −P i-1 /P i +P i-1 (1) When −e<n0 △f=0.6 When 0<ne △f=0.6 −e 2 <n−e △f=0.4 e <ne 2 △f=
−0.4 (2) −e 3 <n−e 2 △f=0.2 e<ne 3 △f=
-0.2 When n-e 3 or e 3 <n △f=0 f i+1 = f i +△f (3) (F) Effect of the invention An increase in pressure loss was observed during deformation and consolidation of particles inside the pipe. Pressure loss can also be automatically alleviated, allowing continuous operation.

従つて、反応効率を大巾に向上できる。 Therefore, reaction efficiency can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明のコンピユータ制御プログラムの
フロチヤートの図例を示す。図2は本発明を実施
する管型反応装置の運転系統図例を示す。
FIG. 1 shows an example flowchart of a computer control program of the present invention. FIG. 2 shows an example of an operation system diagram of a tubular reactor implementing the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 柔軟性の反応粒子を充填した管型反応器を使
用して流体を流通させながら反応を行うにあた
り、該反応器の流体出入口に流体の圧力損失を検
出する圧力センサーを設置し、反応器への流入流
体通路に順逆両方向に作動する流速加速ポンプを
取付け、前記圧力センサーを予め制御プログラム
を組込んだコンピユータに入力し、その結果得ら
れるコンピユータの出力によつて前記ポンプを作
動し、流体の順逆両方向の流れを制御することを
特徴とする管型反応器における圧力損失を解消す
る反応制御方法。
1. When performing a reaction while flowing a fluid using a tubular reactor filled with flexible reaction particles, a pressure sensor is installed at the fluid inlet and outlet of the reactor to detect the pressure loss of the fluid. A flow acceleration pump that operates in both forward and reverse directions is attached to the inflow fluid passageway of the fluid, and the pressure sensor is inputted into a computer in which a control program is installed in advance, and the resulting computer output operates the pump to increase the flow of fluid. A reaction control method for eliminating pressure loss in a tubular reactor, which is characterized by controlling flow in both forward and reverse directions.
JP20031685A 1985-09-10 1985-09-10 Tubular reaction system Granted JPS6261628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20031685A JPS6261628A (en) 1985-09-10 1985-09-10 Tubular reaction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20031685A JPS6261628A (en) 1985-09-10 1985-09-10 Tubular reaction system

Publications (2)

Publication Number Publication Date
JPS6261628A JPS6261628A (en) 1987-03-18
JPH0525534B2 true JPH0525534B2 (en) 1993-04-13

Family

ID=16422279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20031685A Granted JPS6261628A (en) 1985-09-10 1985-09-10 Tubular reaction system

Country Status (1)

Country Link
JP (1) JPS6261628A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112575A (en) * 1988-12-16 1992-05-12 Eastman Kodak Company Polynucleotide synthesizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119671A (en) * 1975-04-14 1976-10-20 Sumitomo Chem Co Ltd A method for removing dust deposited inside a fixed filler column to t reat dust-containing gas
JPS5721928A (en) * 1980-06-02 1982-02-04 Basf Ag Method and device for inserting granular solid matter into tubular reactor
JPS59177127A (en) * 1983-03-25 1984-10-06 Tanabe Seiyaku Co Ltd Packing layer type reaction tower packed with soft packing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119671A (en) * 1975-04-14 1976-10-20 Sumitomo Chem Co Ltd A method for removing dust deposited inside a fixed filler column to t reat dust-containing gas
JPS5721928A (en) * 1980-06-02 1982-02-04 Basf Ag Method and device for inserting granular solid matter into tubular reactor
JPS59177127A (en) * 1983-03-25 1984-10-06 Tanabe Seiyaku Co Ltd Packing layer type reaction tower packed with soft packing material

Also Published As

Publication number Publication date
JPS6261628A (en) 1987-03-18

Similar Documents

Publication Publication Date Title
CN106552577B (en) A kind of multilayer guide shell bubbling reactor and its application method
CN206701242U (en) A kind of pipeline reactor for fine chemistry industry production
JPH0525534B2 (en)
EP2484438A1 (en) Loop reactor for emulsion polymerisation
JPS63218702A (en) Production of highly water-absorbing polymer
JP3197447B2 (en) Polymerization apparatus and method for producing vinyl chloride polymer using the same
JP3129154B2 (en) Method for producing vinyl chloride polymer
CN107497374A (en) A kind of cyclohexane oxidation device and its application method
JPS62104815A (en) Suspension polymerization of fluoroethylene and apparatus therefor
CN217940135U (en) Pyran preparation is with main, vice reactor continuity reaction transformation device
JPH08337604A (en) Production of vinyl chloride polymer
CN115521235B (en) Synthesis method of heptenone
JP3139883B2 (en) Continuous polymerization equipment
EP0452748B1 (en) Process for polymerizing a monomer
CN115268538B (en) Synchronous PID control device and method for water temperature and flow
JPH08100004A (en) Production of vinyl chloride polymer
JP2875408B2 (en) Method for recovering unreacted monomer during production of vinyl polymer
WO2024029069A1 (en) Production system
CN1235102C (en) Uncoupling control system for non-stable tandem course of chemical ring opening
JPS61216001A (en) Batch control system
JPS6167488A (en) Preparation of immobilized microorganism
JPH08169906A (en) Production of vinyl chloride polymer
JPH08193102A (en) Production of vinyl chloride polymer
SU967545A1 (en) Method of controlling operation of soda regeneration boiler unit
JPS5939342A (en) Reaction apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term