JPS63218702A - Production of highly water-absorbing polymer - Google Patents

Production of highly water-absorbing polymer

Info

Publication number
JPS63218702A
JPS63218702A JP5147087A JP5147087A JPS63218702A JP S63218702 A JPS63218702 A JP S63218702A JP 5147087 A JP5147087 A JP 5147087A JP 5147087 A JP5147087 A JP 5147087A JP S63218702 A JPS63218702 A JP S63218702A
Authority
JP
Japan
Prior art keywords
water
reaction
polymer
reaction tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5147087A
Other languages
Japanese (ja)
Inventor
Masukame Ishii
石井 萬寿亀
Sada Matsui
松井 貞
Naoki Katada
片田 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP5147087A priority Critical patent/JPS63218702A/en
Publication of JPS63218702A publication Critical patent/JPS63218702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To produce a highly water-absorbing polymer in high production efficiency, preventing the deposition of polymer particles in a reactor, by continuously carrying out polymerization reaction, control of water-content and crosslinking steps in individual reactors. CONSTITUTION:The objective highly water-absorbing polymer can be produced by continuously carrying out the following stage using one or more reactors for each stop. (1) A step to produce a slurry containing polymer phase by dissolving a water-soluble vinyl monomer (e.g. acrylic acid and itaconic acid) and a water-soluble polymerization initiator (e.g. potassium persulfate and sodium persulfate) in water, suspending the obtained aqueous solution in a hydrocarbon (e.g. n-pentane and cyclohexane) and subjecting the dispersion to suspension polymerization. (2) A step to remove water in the polymer phase of the slurry together with the hydrocarbon from the system. (3) A step to add a water-soluble crosslinking agent to the slurry containing the polymer phase and carry out crosslinking reaction in the polymer phase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸水性能に優れた高吸水性ポリマーの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a super absorbent polymer with excellent water absorption performance.

〔従来の技術〕[Conventional technology]

ポリマーを懸濁重合法により製造する場合、塩化ビニル
の重合法等において知られている様に、懸濁粒子の粒子
径のコントロール、及び1合反応器での懸濁粒子等の付
着防止対策が極めて重要であり、粒子径コントロールは
特開昭51−56888号公報及び特開昭57−205
402号公報に開示された様な手法により、また付着防
止は特開昭56−163103号公報に開示された様な
手法により行われている。しかし、生産性向上の面から
は、上記公報に開示されている分級による粒子径コント
ロールは有効でなく、また、懸濁粒子等の付着防止対策
としては、対象とするポリマーが生理ナプキン、紙オム
ツなど衛生材料に使用されるものである場合には、人体
への安全性の面から従来提案されている付着防止剤を使
用する上記公報に記載の方法は、問題がある。
When producing polymers by suspension polymerization, it is necessary to control the particle size of suspended particles and to prevent them from adhering to the reactor, as is known in the polymerization of vinyl chloride. Particle size control is extremely important, and particle size control is described in JP-A-51-56888 and JP-A-57-205.
Adhesion prevention is carried out by a method such as that disclosed in Japanese Patent Application Laid-Open No. 163103/1983. However, from the perspective of improving productivity, the particle size control by classification disclosed in the above publication is not effective, and as a measure to prevent the adhesion of suspended particles, etc., the target polymer is When used in sanitary materials such as the above, the method described in the above-mentioned publication using a conventionally proposed anti-adhesion agent has a problem from the viewpoint of safety for the human body.

而して、高吸水性ポリマーは、従来より回分操作下で製
造されており、この場合、重合反応器を繰り返し使用す
るに従い、その器壁、攪拌軸の気液の界面近傍及びパン
フルへの懸濁粒子等の付着が多くなり、その結果重合反
応器内の流動状態が変化し懸濁粒子の粒径分布が変化し
たり、またその為に、粒子が2次凝集を生じるなどの不
都合を生じる。即ち、高吸水性ポリマーは、その粒子状
!!!(平均粒子径、粒径分布、2次凝集量)の変化に
より、吸収量、吸収速度及び溶解性などの吸収性能が大
きく左右され、性能の著しい低下を来たすのである。
Superabsorbent polymers have conventionally been produced under batch operations, and in this case, as the polymerization reactor is used repeatedly, the walls of the reactor, the vicinity of the gas-liquid interface of the stirring shaft, and the suspension in the panfur are damaged. The adhesion of turbid particles, etc. increases, and as a result, the flow state inside the polymerization reactor changes, the particle size distribution of suspended particles changes, and this causes problems such as secondary agglomeration of particles. . In other words, super absorbent polymers are in the form of particles! ! ! Changes in (average particle size, particle size distribution, amount of secondary agglomeration) greatly affect absorption performance such as absorption amount, absorption rate, and solubility, resulting in a significant decrease in performance.

そこで、従来より、品質の一定した高吸水性ポリマーを
得る為に、重合槽内の付着物除去の為の掃除を頻繁に強
い、られているのが現状であり、その為生産効率上及び
労働衛生上多大な不利を生じている。
Therefore, in order to obtain highly water-absorbent polymers of consistent quality, the polymerization tank has been forced to be frequently cleaned to remove deposits, which has led to problems in production efficiency and labor. This causes great sanitary disadvantages.

従って、本発明の目的は、上述の問題点を解決し、吸収
性能に優れた高吸収性ポリマーを生産効率良く製造でき
る方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and provide a method for producing a superabsorbent polymer having excellent absorption performance with high production efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは種々検討した結果、下記の方法によれば、
ポリマー粒子(!Qfi粒子)が反応槽内に付着する惧
れ等の問題を排除できるため、吸収性能に優れた高吸水
性ポリマーを生産効率良(製造することができることを
見出し、本発明に到達した。
As a result of various studies by the present inventors, according to the following method,
We have discovered that it is possible to efficiently produce superabsorbent polymers with excellent absorption performance by eliminating problems such as the risk of polymer particles (!Qfi particles) adhering to the inside of the reaction tank, leading to the present invention. did.

水溶性ビニル系モノマーおよび水溶性重合開始剤を熔解
した水溶液を、炭化水素に分散させて懸濁重合し重合体
相を含むスラリーを得る第1工程と、 第1工程で得られたスラリーの重合体相中の水分を炭化
水素とともに系外に除去し水分コントロールを行わせる
第2工程と、 第2工程で得られた重合体相を含むスラリーに水溶性架
橋剤を添加し、重合体相中で架橋反応を行わせる第3工
程とを具備し、 上記の各工程をそれぞれ1個以上の反応槽を使用して連
続的に行うことを特徴とする高吸水性ポリマーの製造方
法。
A first step of obtaining a slurry containing a polymer phase by dispersing an aqueous solution of a water-soluble vinyl monomer and a water-soluble polymerization initiator in a hydrocarbon and carrying out suspension polymerization, and polymerization of the slurry obtained in the first step. A second step in which water in the combined phase is removed from the system along with hydrocarbons to control the water content; and a water-soluble crosslinking agent is added to the slurry containing the polymer phase obtained in the second step, and the water in the polymer phase is removed. A method for producing a superabsorbent polymer, comprising: a third step in which a crosslinking reaction is carried out, and each of the above steps is carried out continuously using one or more reaction vessels.

本発明の高吸水性ポリマーの製造方法によれば、主とし
て次の如き作用効果が奏され、その結果先の目的が達成
される。
According to the method for producing a superabsorbent polymer of the present invention, the following effects are mainly achieved, and as a result, the above object is achieved.

第1工程、第2工程及び第3工程を、それぞれ1個以上
の反応槽を使用して連続的に行うことにより、各反応槽
における液面の移動を実質的になくし、液面が降下する
時に系内の懸濁粒子(ポリマー粒子)等が反応槽の内面
等に付着し、その後ジャケットからの加熱により付着し
たポリマー粒子中の分散剤が粘着性をおびて来て付着が
強固になる弊害を回避できる。高吸水性ポリマーの製造
に際しては、吸水性能を向上させる為に水分をコントロ
ールし架橋剤にて架橋させねばならず、従って、従来法
によれば、水分コントロール時には重合系内より多量の
水を抜く為に反応槽の液面は下降する事になるのである
By performing the first, second, and third steps continuously using one or more reaction vessels, the movement of the liquid level in each reaction vessel is substantially eliminated, and the liquid level drops. Sometimes, suspended particles (polymer particles) in the system adhere to the inner surface of the reaction tank, etc., and then heating from the jacket causes the dispersant in the adhered polymer particles to become sticky, causing the adhesion to become stronger. can be avoided. When manufacturing superabsorbent polymers, in order to improve water absorption performance, it is necessary to control the water content and crosslink it with a crosslinking agent. Therefore, according to the conventional method, when controlling the water content, a large amount of water is removed from the polymerization system. Therefore, the liquid level in the reaction tank will fall.

第1工程(重合工程)、第2工程(水分コントロール工
程)及び第3工程(架橋工程)において、それぞれに通
した大きさの反応槽を用いることができるため、粒子径
のコントロールを容易に行うことができる。即ち、各反
応槽での液滴の分散は羽根の回転エネルギーにより生じ
るが、槽が大きければ大きいほどエネルギーの分布が広
がり粒子の分布も広くなり、従って、重合工程では出来
るだけ小さな反応器を用いる方が粒径分布を狭められ、
粒子径をコントロールし易くなることが判った。従って
、本発明によれば、重合反応槽を小さくして粒子径をコ
ントロールできる。
In the first step (polymerization step), second step (moisture control step), and third step (crosslinking step), reaction vessels of the same size can be used for each step, making it easy to control the particle size. be able to. That is, the dispersion of droplets in each reaction tank is caused by the rotational energy of the blades, and the larger the tank, the wider the energy distribution and the wider the particle distribution. Therefore, the smallest possible reactor is used in the polymerization process. The particle size distribution is narrower,
It was found that it became easier to control the particle size. Therefore, according to the present invention, the particle size can be controlled by reducing the size of the polymerization reaction tank.

更に、本発明の好ましい実施態様によれば、重合槽から
水分コントロール槽(脱水槽)、水分コントロール槽か
ら架橋槽へのポリマー懸濁液(スラリー)の移送を工夫
することにより、即ち、各反応槽のスラリーを、反応液
の深さの40〜90%の深さの箇所の反応槽側部から抜
出して次の反応槽に送ることにより、濃度の均一なまた
は一定なスラリーを次の反応槽に送ることができるため
、前記目的を一層充分に達成できる。
Furthermore, according to a preferred embodiment of the present invention, by devising the transfer of the polymer suspension (slurry) from the polymerization tank to the moisture control tank (dehydration tank) and from the moisture control tank to the crosslinking tank, that is, each reaction By extracting the slurry in the tank from the side of the reaction tank at a depth of 40 to 90% of the depth of the reaction liquid and sending it to the next reaction tank, the slurry with a uniform or constant concentration is transferred to the next reaction tank. Therefore, the above objective can be more fully achieved.

従来より、固液系、中でも固体と液体の比重差の大きい
系では、オーバーフロー型式での連続操作は困雌である
とされていた。そこで本発明者らは、本発明における固
液系の攪拌状態に着目し、前述の液移送方法が、本発明
の目的を達成する上でより好ましいことを知見した。つ
まり比重差の大きい固液系では攪拌強度を強くしても全
体が均一にならず上下方向に固体粒子濃度の分布が生じ
、本発明の場合もオーバーフローラインが気相部をつく
るため、オーバーフローによりスラリーを抜き出そうと
すると、濃度の均一な一定のスラリーを抜き出し難く且
つオーバーフローによる移送路(移送管)に懸濁粒子の
付着を生じ易い、そこで、本発明者らは、抜出しノズル
の径をスラリーが抜ける程度に小さくするか、またはそ
れと同等の絞り部を設ける事により、スラリー抜き出し
の流体抵抗を上げ槽内の液面を抜き出しノズル口より上
方に位置(液面の50〜90%の深さの位置)する様に
バランスをとる事で、抜き出しラインの気相部をなくし
、抜き出し移送路(パイプ)を閉塞する事な(移送出来
、しかも、その抜出し口が液面より下がっている為に濃
度の均一なまた一定なスラリーを次の槽へ移送する事が
出来るようにした。
Conventionally, it has been thought that continuous operation in an overflow type system is difficult in solid-liquid systems, especially in systems where the difference in specific gravity between solid and liquid is large. Therefore, the present inventors focused on the stirring state of the solid-liquid system in the present invention, and found that the above-mentioned liquid transfer method is more preferable in achieving the object of the present invention. In other words, in a solid-liquid system with a large difference in specific gravity, even if the stirring intensity is increased, the solid particle concentration will not become uniform throughout, resulting in a distribution of solid particle concentration in the vertical direction.In the case of the present invention, the overflow line creates a gas phase, so the overflow When trying to extract slurry, it is difficult to extract a constant slurry with a uniform concentration, and suspended particles tend to adhere to the transfer path (transfer pipe) due to overflow. By making the size small enough to allow the slurry to escape, or by providing an equivalent constriction part, the fluid resistance for extracting the slurry can be increased. By keeping the balance so that the extraction line is in the position of This makes it possible to transfer slurry with uniform and constant concentration to the next tank.

本発明で用いられる水溶性ビニル糸上ツマ−としては、
アクリル酸、メタアクリル酸、イタコン酸、マンイン酸
、およびそれらのアルカリ金属塩が挙げられるが、本発
明の方法は、特にアクリル酸の全量或いは部分中和物、
例えばアクリル酸をカセイソーダで全量或いは部分的に
中和したアクリル酸ソーダの懸濁重合に通している。こ
れらのモノマーは、モノマー濃度が15%〜飽和の水溶
液として用いられる。
The water-soluble vinyl thread pick used in the present invention includes:
Examples include acrylic acid, methacrylic acid, itaconic acid, manic acid, and their alkali metal salts, and the method of the present invention is particularly suitable for using acrylic acid in its entirety or partially neutralized form,
For example, acrylic acid is subjected to suspension polymerization of sodium acrylate completely or partially neutralized with caustic soda. These monomers are used as an aqueous solution having a monomer concentration of 15% to saturation.

本発明で用いられる水溶性重合開始剤としては、過硫酸
カリウム、過硫酸ナトリウム等の過硫酸塩や、その他の
水溶性の開始剤が挙げられる。
Examples of the water-soluble polymerization initiator used in the present invention include persulfates such as potassium persulfate and sodium persulfate, and other water-soluble initiators.

本発明で用いられる水溶性架橋剤としては、通常、分子
中に2個以上のエポキシ基を存する水溶性架橋剤が用い
られ、エチレングリコールジグリシジルエーテル、ポリ
エチレングリコールジグリシジルエーテル、ソルビトー
ルポリグリシジルエーテルなどのポリグリシジルエーテ
ルが通している。
As the water-soluble cross-linking agent used in the present invention, a water-soluble cross-linking agent having two or more epoxy groups in the molecule is usually used, such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, sorbitol polyglycidyl ether, etc. Polyglycidyl ether is passed through.

本発明における第1工程、即ち懸濁重合は、重合熱を効
率良く除去するために、上記のモノマー水溶液を、分散
剤を溶解した分散媒へ滴下させて重合させる方法を採用
するのが好ましい。
In the first step of the present invention, that is, suspension polymerization, in order to efficiently remove polymerization heat, it is preferable to adopt a method in which the above-mentioned monomer aqueous solution is dropped into a dispersion medium in which a dispersant is dissolved and polymerized.

上記分散媒としては、常温液体の脂肪族、脂環族の炭化
水素が用いられ、脂肪族としてはn−ペンタン、n−ヘ
キサン等、脂環族としてはシクロペンクン、シクロヘキ
サン、ソチルシクロヘキサン等が挙げられる。また、上
記分散剤としては、エチルセルロース等が用いられる。
As the above-mentioned dispersion medium, aliphatic and alicyclic hydrocarbons which are liquid at room temperature are used. Examples of the aliphatic group include n-pentane and n-hexane, and examples of the alicyclic group include cyclopenkune, cyclohexane, and sotylcyclohexane. It will be done. Further, as the dispersant, ethyl cellulose or the like is used.

また、第1工程(N合工程)は、水相(モノマー水溶液
)と油相(炭化水素〉との割合が、1:5〜1:2とな
るように実施するのが好ましく、上記第2工程(水分コ
ントロール工程)は、水分含量50%〜85%のものを
、水分含量15%〜50%にするように実施するのが好
ましい。
Further, the first step (N combination step) is preferably carried out so that the ratio of the aqueous phase (monomer aqueous solution) to the oil phase (hydrocarbon> is 1:5 to 1:2, and the second The step (moisture control step) is preferably carried out so that the moisture content is 15% to 50% from 50% to 85%.

次に、本発明の高吸水性ポリマーの製造方法をその好ま
しい実施態様について図面を参照し乍ら詳述する。
Next, preferred embodiments of the method for producing a superabsorbent polymer of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の実施に用いられる懸濁重合装置の概
要を示すフローシートで、1は開始剤熔解槽、2はモノ
マー調製槽、3はラインミキサー等の連続式混合機、4
は分散剤熔解槽、5.6及び7はそれぞれ第1、第2及
び第3反応槽、8は架橋反応槽、9は各反応槽の側部に
設けたポリマー懸濁液移送管(スラリー移送管)である
FIG. 1 is a flow sheet showing an overview of the suspension polymerization apparatus used in carrying out the present invention, in which 1 is an initiator melting tank, 2 is a monomer preparation tank, 3 is a continuous mixer such as a line mixer, and 4
5.6 and 7 are the first, second and third reaction tanks, respectively, 8 is a crosslinking reaction tank, and 9 is a polymer suspension transfer pipe (slurry transfer) installed on the side of each reaction tank. tube).

而して、本発明の実施に際しては、先ず、開始剤溶解槽
1及びモノマー調整槽2において、それぞれ開始剤及び
モノマーを水に熔解して所定濃度に調整して置き、分散
剤溶解槽4には、分散剤を所定濃度に溶解した炭化水素
(分散媒)を収容して置く、尚、上記の七ツマー濃度及
び開始剤濃度は、ラインミキサー等の連続式混合ta3
で混合された後のモノマー水溶液における濃度がそれぞ
れ15%〜飽和、及び0.1%〜飽和となるように調整
する。また、第1、第2及び第3反応槽5.6及び7に
は、予め上記の炭化水素を収容して置き、第1反応槽5
には更に分散剤も上記分散剤溶解槽4におけると同じ濃
度で溶解して置く。
Therefore, when carrying out the present invention, first, the initiator and monomer are dissolved in water and adjusted to a predetermined concentration in the initiator dissolving tank 1 and the monomer adjusting tank 2, respectively, and then the initiator and the monomer are dissolved in the dispersing agent dissolving tank 4. contains a hydrocarbon (dispersion medium) in which a dispersant is dissolved at a predetermined concentration. Note that the above concentrations of 7-mer and initiator are obtained by continuous mixing using a line mixer, etc.
The concentrations in the aqueous monomer solution after mixing are adjusted to 15% to saturation and 0.1% to saturation, respectively. In addition, the first, second, and third reaction tanks 5, 6, and 7 are filled with the above-mentioned hydrocarbons in advance, and the first reaction tank 5.
In addition, a dispersant is also dissolved at the same concentration as in the dispersant dissolving tank 4.

次いで、七ツマー水溶液と開始剤水溶液とをラインミキ
サー等の連続式混合機3に送り、ここで両者を混合した
後、開始剤を含んだモノマー水溶液を第1反応槽5に送
り、第1反応槽5中の炭化水素に滴下しl’J重合反応
を行わせる。第一反応槽5における反応は、モノマーの
m含率が50%から95%の範囲にコントロールされる
Next, the seven-mer aqueous solution and the initiator aqueous solution are sent to a continuous mixer 3 such as a line mixer, where they are mixed, and then the monomer aqueous solution containing the initiator is sent to the first reaction tank 5 to perform the first reaction. It is added dropwise to the hydrocarbon in tank 5 to carry out the l'J polymerization reaction. The reaction in the first reaction tank 5 is controlled so that the monomer m content is in the range of 50% to 95%.

次いで、第1反応槽5で得られるモノマー相を含むスラ
リーは、第2反応槽6、更に第3反応槽へそれぞれ移送
管9を経て送られる。移送管9は、第1反応槽5及び第
2反応槽6からのポリマー懸濁液を、均一な濃度でそれ
ぞれ第2反応槽6及び第3反応槽7に移送させるために
、反応液の深さの40〜90%の深さの箇所の各反応槽
の側部に設けである。第2反応槽6及び第3反応槽7に
おいて、移送されたポリマーは、含水率を15〜50%
にコントロールされ、次いで、ポリマー相を含むスラリ
ーは、上記移送管9と同様に設けられた移送管9から次
の架橋反応槽8に移送される。
Next, the slurry containing the monomer phase obtained in the first reaction tank 5 is sent to the second reaction tank 6 and further to the third reaction tank via transfer pipes 9, respectively. The transfer pipe 9 is connected to the depth of the reaction liquid in order to transfer the polymer suspension from the first reaction tank 5 and the second reaction tank 6 to the second reaction tank 6 and the third reaction tank 7, respectively, at a uniform concentration. It is provided on the side of each reaction tank at a depth of 40 to 90% of the depth. In the second reaction tank 6 and the third reaction tank 7, the transferred polymer has a water content of 15 to 50%.
The slurry containing the polymer phase is then transferred to the next crosslinking reaction tank 8 from a transfer tube 9 provided similarly to the transfer tube 9 described above.

上記第2反応槽6及び第3反応槽7における水分コント
ロールは、それぞれ反応槽の頂部に設けた親水機構10
により行われる。このような脱水機構10は、前記の第
1反応槽5及び架橋反応槽8にも設けてあり、それらの
反応槽でも必要に応じ脱水できる。
The water content in the second reaction tank 6 and the third reaction tank 7 is controlled by a hydrophilic mechanism 10 provided at the top of each reaction tank.
This is done by Such a dehydration mechanism 10 is also provided in the first reaction tank 5 and the crosslinking reaction tank 8, and dehydration can be performed in these reaction tanks as well, if necessary.

架橋反応槽8では、第3反応槽7からのスラリーに、架
橋剤濃度0.1〜100%の架橋剤水溶液(水溶性架橋
剤のみの場合を含む)を槽1)から添加供給し、架橋反
応を行わせる。
In the crosslinking reaction tank 8, an aqueous crosslinking agent solution (including the case of only a water-soluble crosslinking agent) having a crosslinking agent concentration of 0.1 to 100% is added and supplied from the tank 1 to the slurry from the third reaction tank 7, and crosslinking is carried out. Let the reaction take place.

上述の如り、重合反応、水分コントロール及び架橋反応
を継続し適宜反応条件等をコントロールすることにより
、目的とする高吸水性ポリマーを得ることができる。
As described above, the desired superabsorbent polymer can be obtained by continuing the polymerization reaction, moisture control, and crosslinking reaction and controlling the reaction conditions as appropriate.

尚、第1図には、第1、第2及び第3反応槽、並びに架
橋反応槽を具備した系を示したが、反応槽の数は、本発
明の各工程に少なくとも1つあれば良く、必要に応じ増
やすことができる。また、第2工程で用いられる反応槽
において、第1工程の重合反応を並行して行うこともで
きる。この他、各反応槽間を連結する移送管の代りに、
各反応槽の底部にバルブを設け、このバルブの開度の調
整により上記移送管と同様な機能を付与することもでき
る。
Although FIG. 1 shows a system equipped with first, second, and third reaction vessels and a crosslinking reaction vessel, the number of reaction vessels may be at least one for each step of the present invention. , can be increased as needed. Moreover, in the reaction tank used in the second step, the polymerization reaction in the first step can be carried out in parallel. In addition, instead of a transfer pipe connecting each reaction tank,
It is also possible to provide a valve at the bottom of each reaction tank and provide the same function as the transfer pipe described above by adjusting the opening degree of this valve.

〔実施例〕〔Example〕

実施例1 第1図に示す装置において、第一反応槽5及び架橋反応
槽8として、内径160mmで容積21のものを、また
第2の反応IW6及び第3の反応槽7として、内126
0mmで容積121のものをそれぞれ用い次の如くして
懸濁重合反応を行わせた。
Example 1 In the apparatus shown in FIG. 1, the first reaction tank 5 and the crosslinking reaction tank 8 have an inner diameter of 160 mm and a capacity of 21 mm, and the second reaction tank IW 6 and the third reaction tank 7 have an inner diameter of 126 mm.
Suspension polymerization reaction was carried out in the following manner using 0 mm and 121 volumes.

開始剤熔解槽1には、4.3%濃度の過硫酸カリウム水
溶液を収容し、モノマー調整槽2には、80%アクリル
酸水溶液を30%カセイソーダ水溶液で75molχ中
和した、アクリル酸及びアクリル酸ソーダの混合モノマ
ー水溶液を収容し、分散剤溶解槽4には、分散剤として
エチルセルロースを温度60℃で熔解させたエチルセル
ロース濃度0.4%のシクロヘキサン溶液を収容した。
The initiator melting tank 1 contains a potassium persulfate aqueous solution with a concentration of 4.3%, and the monomer adjustment tank 2 contains acrylic acid and acrylic acid prepared by neutralizing an 80% acrylic acid aqueous solution with a 30% caustic soda aqueous solution in an amount of 75 molχ. A mixed monomer aqueous solution of soda was stored, and the dispersant dissolving tank 4 contained a cyclohexane solution having an ethyl cellulose concentration of 0.4%, which was prepared by melting ethyl cellulose at a temperature of 60° C. as a dispersant.

また、予め、第1、第2及び第3の反応槽5.6及び7
に、それぞれシクロヘキサンを1250g、1kg及び
1kg収容して置き、更に第1の反応槽5のシクロヘキ
サンにはエチルセルロース5.0gを熔解し75℃に保
持した。
In addition, in advance, the first, second and third reaction tanks 5.6 and 7
1,250 g, 1 kg, and 1 kg of cyclohexane were respectively stored in the reactors, and 5.0 g of ethyl cellulose was dissolved in the cyclohexane in the first reaction tank 5 and maintained at 75°C.

次いで、開始剤熔解槽1及びモノマー調整槽2から、そ
れぞれ1).89 g/win及び0.348g/mi
nの速度でアクリル酸中和物及び開始剤水溶液を流出さ
せ、それらをミキサー3で混合してから第1反応槽5に
供給し反応を開始した。反応開始後90分経過後、アク
リル酸中和物及び開始剤水溶液の該量を28.3 g 
/+in及び0−8 g/sinに上げ、それと同時に
、分散剤溶解槽4からエチルセルロースを溶解したシク
ロヘキサンを42.3 g /l1inで供給し、連V
t操作に切り換えた。
Next, from the initiator melting tank 1 and the monomer adjustment tank 2, 1). 89 g/win and 0.348 g/mi
The neutralized acrylic acid and the aqueous initiator solution were flowed out at a rate of n, mixed with the mixer 3, and then supplied to the first reaction tank 5 to start the reaction. After 90 minutes from the start of the reaction, 28.3 g of the acrylic acid neutralized product and the initiator aqueous solution were added.
/+in and 0-8 g/sin, and at the same time, 42.3 g/l1in of cyclohexane in which ethyl cellulose was dissolved was supplied from the dispersant dissolving tank 4, and the continuous V
Switched to t operation.

第2反応槽6及び第3反応槽7では脱水量を七ツマーフ
ィードにより、適時コントロールし、第3反応槽7の出
口で平均的脱水量にし、架橋反応槽8では、架橋剤濃度
4.85wt%の水溶液を0.1) cc/Mで滴下し
、8の出口から得られたものを、80℃下記減圧乾燥で
乾燥させ、吸水ポリマー(本発明品1)を得た。
In the second reaction tank 6 and the third reaction tank 7, the amount of dehydration is controlled at a suitable time using a seven-pressure feed, and the amount of dehydration is adjusted to an average amount at the outlet of the third reaction tank 7. In the crosslinking reaction tank 8, the crosslinking agent concentration is 4.85w. % aqueous solution was added dropwise at a rate of 0.1) cc/M, and the product obtained from the outlet of No. 8 was dried under reduced pressure at 80° C. to obtain a water-absorbing polymer (Product 1 of the present invention).

比較例1 実施例1で用いた第1反応槽と同型の単一の反応器を用
い、該反応器に、1200gのシクロヘキサンに5gの
エチルセルロースを熔解して収容し、これを75℃に保
持した。一方、510gの80%アクリル酸水溶液を5
60gの30%カセイソーダ水?g液で中和したモノマ
ーを、30gの水に過硫酸カリウム1.6gを熔解した
開始剤水溶液と混合した。
Comparative Example 1 A single reactor of the same type as the first reaction tank used in Example 1 was used, and 5 g of ethyl cellulose dissolved in 1200 g of cyclohexane was stored in the reactor, and this was maintained at 75 ° C. . On the other hand, add 510 g of 80% acrylic acid aqueous solution to 5
60g of 30% caustic soda water? The monomer neutralized with liquid g was mixed with an aqueous initiator solution prepared by dissolving 1.6 g of potassium persulfate in 30 g of water.

次いで、上記の反応器中のシクロヘキサンに上記の七ツ
マー水溶液を滴下し重合反応を行わせた。
Next, the above aqueous sevenmer solution was added dropwise to the cyclohexane in the reactor to carry out a polymerization reaction.

滴下後60分保持し重合を完結させた後ポリマー中の水
分を25%にコントロールし、これにポリエチレングリ
コールジグリシジルエーテル0.5gを水5gに溶かし
たものを加え、1時間後架橋反応を行わせ、得られたも
のを、実施例1と同様にして乾燥させ、吸水ポリマー(
比較品1)を得た。
After dropping for 60 minutes to complete polymerization, the water content in the polymer was controlled to 25%, a solution of 0.5 g of polyethylene glycol diglycidyl ether dissolved in 5 g of water was added, and after 1 hour a crosslinking reaction was carried out. The obtained product was dried in the same manner as in Example 1, and the water-absorbing polymer (
A comparative product 1) was obtained.

上述の如くして得た本発明品1及び比較品1について、
それぞれの吸水性能を調べたところ、下記表−1に示す
結果を得た。
Regarding the present invention product 1 and comparative product 1 obtained as described above,
When the water absorption performance of each was investigated, the results shown in Table 1 below were obtained.

表−1 〔発明の効果〕 本発明の高吸水性ポリマーの懸濁重合法によれば、ポリ
マー粒子(!!濁精粒子が反応槽内に付着する惧れ等の
問題を排除できるため、吸収性能に優れた高吸水性ポリ
マーを生産効率良く製造することができる。
Table 1 [Effects of the Invention] According to the suspension polymerization method for superabsorbent polymers of the present invention, it is possible to eliminate problems such as the possibility that polymer particles (!! turbid particles) may adhere to the reaction tank. Super absorbent polymers with excellent performance can be manufactured with high production efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の高吸水性ポリマーの懸濁重合法で実
施に用いられる懸濁重合装置の概略を示すフローシート
である。 l・・開始剤溶解槽 2・・モノマー調製槽 3・・連続式混合機(ミキサー) 4・・分散剤熔解槽 5・・第1反応槽 6・・第2反応槽 7・・第3反応槽 8・・架橋反応槽 9・・移送管 10・・脱水機構
FIG. 1 is a flow sheet schematically showing a suspension polymerization apparatus used in the suspension polymerization method for superabsorbent polymers of the present invention. l... Initiator dissolving tank 2... Monomer preparation tank 3... Continuous mixer (mixer) 4... Dispersant dissolving tank 5... First reaction tank 6... Second reaction tank 7... Third reaction Tank 8...Crosslinking reaction tank 9...Transfer pipe 10...Dehydration mechanism

Claims (2)

【特許請求の範囲】[Claims] (1)水溶性ビニル系モノマーおよび水溶性重合開始剤
を溶解した水溶液を、炭化水素に分散させて懸濁重合し
、ポリマー相を含むスラリーを得る第1工程と、 第1工程で得られたスラリーのポリマー相中の水分を炭
化水素とともに系外に除去する第2工程と、 第2工程で得られたポリマー相を含むスラリーに水溶性
架橋剤を添加し、ポリマー相中で架橋反応を行わせる第
3工程とを具備し、 上記の各工程を、それぞれ1個以上の反応槽を使用して
連続的に行うことを特徴とする高吸水性ポリマーの製造
方法。
(1) A first step in which an aqueous solution containing a water-soluble vinyl monomer and a water-soluble polymerization initiator is dispersed in a hydrocarbon and subjected to suspension polymerization to obtain a slurry containing a polymer phase; A second step in which water in the polymer phase of the slurry is removed from the system along with hydrocarbons, and a water-soluble crosslinking agent is added to the slurry containing the polymer phase obtained in the second step, and a crosslinking reaction is performed in the polymer phase. A method for producing a superabsorbent polymer, characterized in that each of the above steps is performed continuously using one or more reaction vessels.
(2)各反応槽のスラリーを、反応液の深さの40〜9
0%の深さの箇所の反応槽側部から抜出して次の反応槽
に送る特許請求の範囲第(1)項記載の高吸水性ポリマ
ーの製造方法。
(2) Add the slurry in each reaction tank to a depth of 40 to 9
The method for producing a superabsorbent polymer according to claim 1, wherein the superabsorbent polymer is extracted from the side of the reaction tank at a depth of 0% and sent to the next reaction tank.
JP5147087A 1987-03-06 1987-03-06 Production of highly water-absorbing polymer Pending JPS63218702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5147087A JPS63218702A (en) 1987-03-06 1987-03-06 Production of highly water-absorbing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5147087A JPS63218702A (en) 1987-03-06 1987-03-06 Production of highly water-absorbing polymer

Publications (1)

Publication Number Publication Date
JPS63218702A true JPS63218702A (en) 1988-09-12

Family

ID=12887831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5147087A Pending JPS63218702A (en) 1987-03-06 1987-03-06 Production of highly water-absorbing polymer

Country Status (1)

Country Link
JP (1) JPS63218702A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422909A (en) * 1987-07-16 1989-01-25 Nippon Synthetic Chem Ind Production of polymer having high water absorption
WO2008068208A1 (en) * 2006-12-06 2008-06-12 Basf Se Method for preparing water-absorbing polymer particles by suspension polymerization
WO2008084031A2 (en) * 2007-01-11 2008-07-17 Basf Se Method for producing water-absorbing polymer particles by suspension polymerisation
JP2016124901A (en) * 2014-12-26 2016-07-11 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water-absorbing resin
EP3473655A1 (en) 2013-10-30 2019-04-24 Basf Se Method for producing water-absorbent polymer particles by suspension polymerisation
US10682435B2 (en) 2015-02-27 2020-06-16 Basf Se Method for producing water-absorbing polymer particles by suspension polymerization
US11203005B2 (en) 2014-12-04 2021-12-21 Basf Se Method for producing water-absorbing polymer particles by suspension polymerization

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422909A (en) * 1987-07-16 1989-01-25 Nippon Synthetic Chem Ind Production of polymer having high water absorption
JP2010511759A (en) * 2006-12-06 2010-04-15 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles by suspension polymerization
WO2008068208A1 (en) * 2006-12-06 2008-06-12 Basf Se Method for preparing water-absorbing polymer particles by suspension polymerization
US8084556B2 (en) 2006-12-06 2011-12-27 Basf Se Method for preparing water-absorbing polymer particles by suspension polymerization
WO2008084031A3 (en) * 2007-01-11 2008-08-28 Basf Se Method for producing water-absorbing polymer particles by suspension polymerisation
JP2010515796A (en) * 2007-01-11 2010-05-13 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles by suspension polymerization
WO2008084031A2 (en) * 2007-01-11 2008-07-17 Basf Se Method for producing water-absorbing polymer particles by suspension polymerisation
US8148479B2 (en) 2007-01-11 2012-04-03 Basf Se Method for producing water-absorbing polymer particles by suspension polymerisation
EP3473655A1 (en) 2013-10-30 2019-04-24 Basf Se Method for producing water-absorbent polymer particles by suspension polymerisation
US11591424B2 (en) 2013-10-30 2023-02-28 Basf Se Method for producing water-absorbing polymer particles by suspension polymerization
US11203005B2 (en) 2014-12-04 2021-12-21 Basf Se Method for producing water-absorbing polymer particles by suspension polymerization
JP2016124901A (en) * 2014-12-26 2016-07-11 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water-absorbing resin
US10682435B2 (en) 2015-02-27 2020-06-16 Basf Se Method for producing water-absorbing polymer particles by suspension polymerization

Similar Documents

Publication Publication Date Title
US2934530A (en) Suspension polymerization
US3922255A (en) Method of producing uniform polymer beads
CA2272863C (en) Method for the production of a polymer dispersion by radical aqueous emulsion polymerization with a continuously produced aqueous monomer emulsion
KR970009231B1 (en) Process for the preparation of water-absorptive resin
GB1580747A (en) Process and apparatus for the production of vinyl chloride polymers
US10974223B2 (en) Method for producing water absorbent resin
AU2014298551B2 (en) Reverse-phase polymerisation process
JP5992417B2 (en) Method for producing polyvinyl chloride (PVC) resin
CN105612186A (en) Reverse-phase polymerisation process
EP0271922B1 (en) Process for suspension polymerization
BRPI0713455A2 (en) process for preparing an aqueous polymer dispersion, aqueous polymer dispersion, and use of an aqueous polymer dispersion
JPS63218702A (en) Production of highly water-absorbing polymer
JPH041001B2 (en)
US6117939A (en) Free radical miniemulsion polymerization with low shear and heat exchanger
JP4839835B2 (en) Reversed phase suspension polymerization apparatus and polymer production method
US4327004A (en) Aqueous dispersions of plastics in which the average diameter of the dispersion particles is in the range from about 50 to 500 nm, and a process for their preparation
CN107207637A (en) It is related to the reversed-phase polymerization method of microfluidic device
EP0051945B1 (en) Improved suspension process for the polymerization of vinyl chloride monomer
JP2013227377A (en) Method for producing water absorbing resin
TWI439471B (en) Continuous process for the production of vinyl chloride (co)polymers
RU2548001C1 (en) Method of producing anti-agglomerator for synthetic rubber
JPH0264106A (en) Production of water-absorbing resin
CN105440193B (en) Suspension polymerisation prepares drag reduction agent for oil product through pipelines
CN106554451A (en) A kind of Archon production technology
JPH06206929A (en) Production of water absorbing resin