JP3642590B2 - Method for purifying acrylonitrile - Google Patents
Method for purifying acrylonitrile Download PDFInfo
- Publication number
- JP3642590B2 JP3642590B2 JP30199794A JP30199794A JP3642590B2 JP 3642590 B2 JP3642590 B2 JP 3642590B2 JP 30199794 A JP30199794 A JP 30199794A JP 30199794 A JP30199794 A JP 30199794A JP 3642590 B2 JP3642590 B2 JP 3642590B2
- Authority
- JP
- Japan
- Prior art keywords
- acrylonitrile
- resin
- water
- acrylamide
- oxazole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【産業上の利用分野】
本発明はアクリロニトリルを銅系触媒の存在下、水と接触水和してアクリルアミドを製造する方法に関する。更に詳しくは、アクリロニトリル中のオキサゾールなどの有害な塩基性不純物を、強酸性カチオン交換樹脂と接触させ除去した後、アクリルアミドの原料とする方法の改良に関する。
【0002】
【従来の技術】
アクリロニトリルと強酸性カチオン交換樹脂とを接触させ、オキサゾールなどの塩基性不純物を除去した後、アクリルアミドの原料とする技術は良く知られている。
例えば、特公昭57−26264号、特公昭61−35171号公報では、オキサゾールを除去することで水和反応の触媒の寿命が延びる、としている。特開昭55−13281号、特開昭63−118305号公報では、アクリロニトリルをカチオン交換樹脂で処理して、オキサゾール濃度を25ppm 以下とすることで、得られるアクリルアミドのモノマー水溶液の安定性が向上する、あるいはそれを重合しポリマーとした時の、水溶性や水溶液の粘度が向上する、と記載されている。
【0003】
アクリロニトリルと強酸性カチオン交換樹脂との接触方法も、様々な方法が開示されている。米国特許第3541131号や特公昭52−17827号公報では、乾燥させた樹脂を水中で湿潤、膨潤させ、水を充填したカラムに該樹脂を落下させることで充填し、排水した後、アクリロニトリルを下降流でカラム内の樹脂と接触させた所、樹脂量の240容量倍に相当する6リットルのアクリロニトリルまでオキサゾールは検出されなかった。また、オキサゾールを吸着した樹脂は、水で洗うことでオキサゾールを脱着させ再生することが可能で、洗浄水の温度が高いほど少量の水で再生出来る。
【0004】
特公昭61−35171号公報では、架橋度7%以下の強酸性カチオン交換樹脂を用いることで、アクリロニトリルの重合が防止可能としている。また、樹脂中の水分は予め樹脂と水分を接触させることで3重量%以上とすることが望ましく、且つアクリロニトリル中の水分は0.3重量%以上、特に1〜3重量%以上とすることが望ましい、としている。実施に当たっては、水を張ったカラムに低架橋度の樹脂を1リットル充填し、そこにアクリロニトリルを下降流で導入し、15日間順調に運転された。
【0005】
米国特許第4237303号では、樹脂中の水分は通常は約50重量%であるが、小さいほどオキサゾールの吸着容量が増大するので、脱水することで40%以下、最も好ましくは15%以下とするのがよい、としている。アクリロニトリル中の水分も低いほど好ましく、1%以下好ましくは0.1%以下がよい。樹脂の乾燥方法として、高温の乾燥窒素を流す他、オキサゾール50ppm 以下、含水率3000ppm 以下のアクリロニトリルと樹脂とを接触させ、樹脂中の水分を除く方法が開示されている。
【0006】
【発明が解決しようとする課題】
本発明者等の知見したところによれば、水で湿潤した含水樹脂とアクリロニトリルを接触させると、激しく気泡が生じる。米国特許第3541131号や特公昭52−17827号公報あるいは特公昭61−35171号公報に記載の方法、即ち含水樹脂に下降流でアクリロニトリルを接触せしめると、生じる気泡によって樹脂層内に空間が生じたり、樹脂表面に微細な気泡が付着し、アクリロニトリルと樹脂との接触効率が悪化するためか、オキサゾールが速やかにリークしてくる。
【0007】
樹脂を乾燥させて用いると、上記の気泡発生は防止でき、早期のオキサゾールリークも防止できる。樹脂の乾燥方法として、高温の乾燥気体と接触させる方法は、乾燥気体を下降流で流すと樹脂層の流通抵抗が非常に大きく実用的ではない。上昇流で流すと樹脂の流動により破砕が著しい。また、出口の排気ガス中には通常アクリロニトリルをかなり含み、それの除害設備が必要となる、あるいは気体の乾燥設備、送風機、圧縮機などの設備が必要となり、設備投資が大きく、この点でも問題である。
【0008】
樹脂の乾燥法として、アクリロニトリルを接触させる方法は、乾燥気体を用いる方法と比べ簡便であり、優れている。問題は、前述の通り含水樹脂とアクリロニトリルが接触すると、激しく気泡が生じ、それを残したままアクリロニトリルの通液を継続すると、オキサゾールは速やかにリークすることである。
【0009】
また、強酸性カチオン交換樹脂とオキサゾールを接触させた後、水和反応に供すると、本発明者等の知見したところによるとアクリルアミドの品質はかえって悪化する。その理由は明確ではないがオキサゾールは除去されるものの、アルデヒド類などが増大しており、それらが悪影響を及ぼしているものと考えれる。
【0010】
【課題を解決するための手段】
本発明者等は、かかる問題について鋭意検討し、樹脂の乾燥をアクリロニトリルの所定量を上昇流で流通して行い、しかる後に精製運転を下降流でで行えば、オキサゾールの吸着容量は実用上十分なレベルに増大し、出口のオキサゾール濃度を十分に低減できることを見い出した。更に強酸性カチオン交換樹脂塔を出たアクリロニトリルを、1、2級アミノ基を有する樹脂及び/または活性炭と接触させてから、水和反応に供すると得られるアクリルアミドの品質は非常に向上するという知見を見い出し、本発明を完成させたものである。
【0011】
即ち、本発明のアクリロニトリルの精製方法は、カラムに充填された含水強酸性カチオン交換樹脂に対し、2〜50容量倍のアクリロニトリルを上昇流で流通接触せしめた後、次に被精製原料のアクリロニトリルを下降流により流通接触させ、流通後のアクリロニトリル中のオキサゾール濃度を2ppm 以下とし、さらに1級および/または2級アミノ基を有する樹脂、および/または活性炭と接触させることを特徴とするものである。本発明の方法により精製したアクリロニトリルを原料とすることにより、高品質のアクリルアミドが製造可能となる。
【0012】
本発明で用いられるアクリロニトリルは、プロピレンのアンモオキシデーション法によって製造されたものである。該アクリロニトリル中には、種々の不純物を含んでいるが、オキサゾール、ピリミジンなどの塩基性不純物も含み、とりわけオキサゾールは、それを含有するアクリロニトリルからアクリルアミドを製造すると、その触媒活性を損なったり(特公昭57−26264号公報)、アクリルアミド水溶液の安定性や、アクリルアミドポリマーの水溶性が悪化する(特開昭55−13281号公報)ことが知られている。
【0013】
本発明で用いられる強酸性カチオン交換樹脂とは、ポリスチレンを基材とするスルホン酸型で遊離酸型(H型)の樹脂であればよく、ゲル型あるいはマクロポーラス型などの形態や、架橋度即ちジビニルベンゼンの含有量などに特に制限はない。具体的には、レバチットS−100(商品名、バイエル社製)、ダイヤイオンSK1B(商品名、三菱化成社製)、ダウエックスHCR−W2(商品名、ダウケミカル社製)等のゲル型樹脂、レバチットSP112(商品名、バイエル社製)、ダイヤイオンPK208(商品名、三菱化成社製)、ダウエックスMSC−1(商品名、ダウケミカル社製)等のマクロポーラス型樹脂が挙げられる。
本発明では、樹脂を塩酸等の酸水溶液と接触させH型とした後、十分水洗して残存する酸分を除く。その状態では、樹脂は通常約50%の水分を含む。本発明では、樹脂はカラムに充填し、固定床としてアクリロニトリルと接触せしめるが、含水状態でカラムに充填された樹脂は、先ず塔底部から導入されたアクリロニトリルと接触し、脱水、脱気泡が達成される。アクリロニトリルの流量は、SVが0.1〜100程度、好ましくは1〜20であり、樹脂量に対し2〜50容量倍流す。2容量倍以下では脱水、脱気泡の効果が不十分であり、50容量倍以上は脱水、脱気泡の上からは不要である。
使用するアクリロニトリル中のオキサゾールは少ないほど好ましいが、50ppm 以下更に好ましくは20ppm 以下がよい。水分も少ないほど脱水効率はよいが、3%以下好ましくは1%以下がよい。
【0014】
樹脂層を経て塔頂から出てきたアクリロニトリルは、オキサゾールは低減しているが、含水率は高い。脱水工程に用いるアクリロニトリルは、元の粗原料タンクに戻すことが望ましい。樹脂層の水分とアクリロニトリルが接触すると、激しく気泡が発生するが、アクリロニトリルを上昇流で且つ前記した条件で流通することにより、脱水と脱気泡が同時に達成される。
【0015】
脱水運転の後、アクリロニトリルを下降流で流通し精製運転を行う。この様な工程を経ることで、強酸性カチオン交換樹脂等のオキサゾールなどの貫流交換容量は実用的に十分なレベルに増大する。
【0016】
強酸性カチオン交換樹脂塔を出たアクリロニトリルは、例えばオキサゾールは1ppm 以下にまで低減しているが、アルデヒド類などの不純物はかえって増大する。その結果、このまま接触水和反応の原料に供し、アクリルアミドを製造するとかえって品質の悪化を招く、よって強酸性カチオン交換樹脂での処理の後、1級及び/または2級アミノ基を有する樹脂、及び/または活性炭と接触させるとアルデヒド類などは低減し、その結果高品質なアクリルアミドの製造が可能となる。
【0017】
1級および/または2級アミノ基を有する樹脂を使用する場合、その具体例としては、ダイヤイオンWA−20(商品名、三菱化成社製)等のポーラス型樹脂、あるいは、レバチットOC1059(商品名、バイエル社製)等のゲル型樹脂が挙げられ、何れも好ましい結果を与える。使用に当たっては、十分に水洗する事が好ましい。
【0018】
活性炭を使用する場合、用いる活性炭は特に種類は問わないが、例えばカルゴンCPG(商品名、カルゴン社製)の様なコールベース活性炭、あるいは、白鷺LHc(商品名、武田薬品工業社製)の様なヤシガラベース活性炭等を用いることが出来る。使用前に十分水洗して用いる。
【0019】
強酸性カチオン交換樹脂のオキサゾールの貫流交換容量は通常0.1〜0.2モル/リットル−樹脂程度であり、そのあたりから徐々にリークがはじまる。アクリルアミド原料の場合、本発明者等の知見によれば、2ppm を越えると顕著にアクリルアミドの品質が悪化する。1.5〜2ppm に達したら通液を止め、再生操作を行う。
【0020】
再生は、塔に滞留するアクリロニトリルを抜き出した後、水で洗浄することでオキサゾールが脱着し達成される。この時、再生に使用する水温は高いほど水洗所要量が少なくなることは、良く知られている。好ましくは50℃以上、更に好ましくは80℃程度がよい。
【0021】
再生終了後は、水を抜き出した後、含水状態でカラムに充填された樹脂は、前述したとおり塔底部から導入されたアクリロニトリルと接触し、脱水、脱気泡が達成される。
【0022】
本発明では、この様に精製処理したアクリロニトリルを用いて、接触水和反応を行いアクリルアミドを製造する。接触水和反応に用いられる触媒としては、種々の金属含有触媒が知られているが、とりわけ金属銅系触媒が活性、選択性、経済性の面から優れている。具体的な例としては、
(A)銅線、銅粉等の形の銅と銅イオンとの組み合わせ
(B)銅化合物を還元剤で還元して得られるもの(還元銅)
(C)銅化合物を熱などにより分解して得られるもの(分解銅)
(D)ラネー合金をアルカリなどで展開して得られるもの(ラネー銅)
これら銅系触媒は通常用いられる担体に担持されていても差し支えないし、銅以外の金属、例えばクロム、モリブデン、バナジウム、チタン、パラジウムなどを含んでいても差し支えない。触媒は使用前及び使用後を通じて酸素及び酸素含有ガスとの接触をさけることが望ましい。その理由は酸素が触媒としての活性を損ない、エチレンシアンヒドリンなどの副生成物を増加させるからである。
【0023】
本発明のアクリロニトリルの水和反応は上記した銅系触媒の存在下に次のようにして行われる。反応の形式は液相中の懸濁床または固定床の触媒床で、流通式または回分式で行われる。
【0024】
水和反応に供されるアクリロニトリルと水の重量比は、実質的に任意であるが、好ましくは、60:40〜5:95であり、さらに好ましくは、50:50〜10:90の範囲である。また、アクリロニトリルの反応率は、好ましくは10〜98%であり、更に好ましくは、30〜95%の範囲である。アクリロニトリルと水との水和反応における反応温度は、好ましくは50〜200℃、さらに好ましくは、70〜150℃の範囲である。
【0025】
反応器内は、上記した温度と組成における蒸気圧、または、それに窒素等の不活性ガスを加えた圧力に保たれるが、その圧力は通常、常圧〜10気圧である。反応器に供給される触媒、アクリロニトリル、水、などに含まれる溶存酸素は触媒の活性を損ない、エチレンシアンヒドリン等の副生成物を増加させるので反応器に供給するまえに十分除去することが望ましく、また同じ理由から反応器内は酸素を含まない雰囲気に保つ事が望ましい。なお水和反応後反応器から取り出される反応液は、主として未反応アクリロニトリル、未反応水およびアクリルアミドからなり、さらにエチレンシアンヒドリン等の副生成物と銅を含む。
【0026】
上記の反応で得られた反応液は、必要ならば通常の蒸発または蒸留操作に付して濃縮されたアクリルアミド水溶液を得ると共に、未反応アクリロニトリルと水を留出回収する。これらの回収物は新規反応原料として、再使用することが出来る。反応液を濃縮したアクリルアミド水溶液は、ついでカチオン交換樹脂処理、キレート樹脂処理、アニオン交換樹脂処理、空気または酸素ガス処理、活性炭処理の様な各種の精製方法により精製される。
【0027】
【実施例】
以下実施例により本発明を更に具体的に説明する。
【0028】
実施例1
〔アクリロニトリル精製用樹脂のカラム充填〕
常法に従い、希塩酸で処理してH型とし、十分水洗した強酸性カチオン交換樹脂レバチットS−100(商品名、バイエル社製)1リットルを、内径70mm、長さ400mmのSUS-304 製カラムに充填した。1級および/または2級アミン基を有する樹脂ダイヤイオンWA−20(商品名、三菱化成社製)1リットルを水洗したのち、内径70mm、長さ400mmのSUS-304 製カラムに充填した。活性炭カルゴンCPG(商品名、カルゴン社製)1リットルを水洗した後、同様に内径70mm、長さ400mmのSUS-304 製カラムに充填した。
【0029】
〔強酸性カチオン交換樹脂のアクリロニトリルによる脱水〕
オキサゾール15ppm 、水分0.5%を含有するアクリロニトリルを塔底より導入し、流速3リットル/Hrで2時間通液した。塔頂から出た液はアクリロニトリル原料槽(容量180リットル)に戻した。
【0030】
〔アクリロニトリルの精製〕
前記のアクリロニトリルを全て下降流で、第1塔のレバチットS−100、第2塔のダイヤイオンWA−20、第3塔のカルゴンCPGの順に、流速4リットル/Hrで通液した。この状態でオキサゾールは0.5ppm 以下を維持したが11日を経過して1ppm 以上となり、12.5日目に2ppm 以上となったので、通液をストップした。
【0031】
〔アクリルアミドの製造〕
上記の方法で得られたオキサゾール濃度0.5ppm 以下の精製アクリロニトリルを用い、以下のように銅系触媒の存在下で水和反応させることにより、アクリルアミドを得た。
【0032】
(水和反応の触媒)
80メッシュ以下のラネー銅合金を常法によりカセイソーダを用いて展開し、洗浄して、ラネー銅触媒を製造した。製造中およびその後の取扱いに際して、空気等の酸素含有ガスとの接触を避けた。
【0033】
(接触水和反応)
SUS 製で撹拌機と触媒分離器を内蔵した、約2リットルの反応器に上記の触媒を400g仕込み、これに予め、窒素ガスを用いて溶存酸素を除いたアクリロニトリルと水を各々600g/Hr、900g/Hrの速度で供給し、120℃で反応させた。反応液は、触媒と共に撹拌されて懸濁液となり、ついで触媒分離器を通って触媒を殆ど含まない液として反応器から取り出される。この反応を3日間続けた。
【0034】
(濃縮)
得られた反応液を回分式の減圧濃縮にかけ、未反応アクリロニトリルの全量と未反応水の一部を留去して濃度約50%のアクリルアミド水溶液を得た。アクリルアミド水溶液は、銅を含有していた。
【0035】
(脱銅処理)
常法により希塩酸で前処理してH型とした強酸性カチオン交換樹脂レバチットSP−112(商品名、バイエル社製)150ミリリットルをガラス製カラムに充填し、これに前述の濃縮処理で得られたアクリルアミド水溶液を900ミリリットル/Hrで通液した。得られた液の銅含有量は0.01ppm 以下、pHは3.5〜4.0であった。
【0036】
(pH調整)
脱銅処理の間、カセイソーダを連続的に添加して処理液のpHを約6.5に調整した。
【0037】
〔アクリルアミドポリマーの製造〕
上記の方法で得られた、アクリルアミド水溶液を以下の方法で重合し、アクリルアミドポリマーを得た。アクリルアミド水溶液に水を加えて濃度20重量%とし、この500gを1リットルのポリエチレン容器に入れ、18℃に保ちながら、窒素を通じて液中の溶存酸素を除き、直ちに、発泡スチロール製の保温用ブロックのなかに入れた。
【0038】
ついでこれに、200×10-6mpm (アクリルアミドに対するモル比)の4,4−アゾビス(4−シアノバレリアン酸ナトリウム)、200×10-6mpm のジメチルアミノプロピオニトリルおよび80×10-6mpm の過硫酸アンモニウムを各々小量の水に溶解して、この順序に素早く注入した。これらの試薬には、予め窒素ガスを通じておき、また、注入およびその前後には上記ポリエチレン容器にも少量の窒素ガスを通じておくなどして酸素ガスの混入を防止した。試薬を注入して、数分間の誘導期の後、ポリエチレン容器の内部の温度が上昇するのが認められたので窒素ガスの供給をとめた。約100分後に温度が約70℃の頂点に達してから、ポリエチレン容器を保温用ブロックから取りだし、て97℃の水に2時間浸漬し、ついで冷水に浸漬して冷却した。
【0039】
このようにして得られたアクリルアミドポリマーの含水ゲルを小塊にわけ、肉挽器ですりつぶし、100℃の熱風で2時間乾燥し、高速回転刃粉砕器で粉砕して乾燥粉末状のアクリルアミドポリマーを得た。更にこれを篩にかけ、32〜42メッシュのものを分取し、以後の試験に供するポリマーサンプルとした。ポリマーサンプルの水分を125℃、1夜の熱風乾燥による減量として求めたところ、何れのポリマーサンプルについても約10重量%であった。
【0040】
〔アクリルアミドポリマーの試験法〕
上記の方法で得られたポリマーサンプルの水溶性、標準粘度の測定を次の方法で行った。
【0041】
(水溶性)
水溶性は、1リットルビーカーに水600ミリリットルを入れ、定められた形状の撹拌羽根で撹拌しながらポリマーサンプル0.66g(純分0.6g)を添加し、400rpm で2時間撹拌を行い、得られた溶液を150メッシュの金網で濾過し、不溶解分の多少と濾過性から、水溶性を判断した。即ち、完溶のものを◎、完溶に近いものを○、不溶解分があるが、それを濾別する事ができるものを△、濾液の通過が遅く、不溶解分の濾過が事実上出来ないものを×とした。
【0042】
(標準粘度)
なお、上記の水溶性試験により得られる濾液は、水溶性の良好な場合は、濃度0.1%のポリマー水溶液であるが、これに1モル濃度相当の塩化ナトリウムを加え、BL型粘度計でBLアダプターを用いて25℃、ローター回転数60rpm で粘度を測定した(標準粘度)。このような方法で得られる標準粘度は分子量に相関のある値として慣用されるので、本実施例でも併用した。なお、標準粘度と分子量の関係は、5.5cps で約1500万、6.0cps で約1700万とされている。
【0043】
(ポリマーの測定結果)
このような方法で、評価した結果を第1表に示したが、得られたポリマーの水溶性は◎、標準粘度6.0cps と、良好な品質であった。
【0044】
比較例1
実施例1のアクリロニトリル精製操作で、通液11〜13日目に採取したオキサゾール濃度2.5ppm の精製アクリロニトリルを用いて、実施例1と同様にアクリルアミドを製造した。次いで、実施例1と同様に重合し得られたポリマーの物性を評価した。結果を第1表に示した。
【0045】
比較例2
実施例1と同様に第1塔にレバチットS−100第2塔にダイヤイオンWA−20、第3塔にカルゴンCPGをそれぞれ十分水洗した後充填した。次いで、第1塔に塔底から上昇流でアクリロニトリルを4リツトル/時で通液し、塔頂から出た液はそのまま第2塔、第3塔に下降流で通液した。結果、通液開始4日目には精製アクリロニトリル中のオキサゾール濃度は2ppm 以上となった。
【0046】
比較例3
実施例1と同様に第1塔にレバチットS−100、第2塔にダイヤイオンWA−20、第3塔にカルゴンCPGをそれぞれ十分水洗した後充填した。次いで、第1塔に塔頂から下降流でアクリロニトリルを4リットル/時で通液し、塔底から出た液はそのまま第2塔、第3塔に下降流で通液した。結果、通液開始半日目には精製アクリロニトリル中のオキサゾール濃度は2ppm 以上となった。
【0047】
実施例2
第1塔にレバチットS−100、第2塔にカルゴンCPGを充填し、ダイヤイオンWA−20を用いなかった以外は、実施例1と同様に操作しアクリロニトリルの精製を行なった結果、オキサゾールは0.5ppm 以下を維持したが、11日を経過して1ppm 以上となり、12.5日目に2ppm を以上となったので、通液をストップした。
上記の精製アクリロニトリルを用いてアクリルアミドの製造およびアクリルアミドポリマーの製造と評価を実施例1と同様に行った。ポリマーの評価結果を表1に示す。
【0048】
実施例3
〔アクリロニトリルの精製〕
第1塔にレバチットS−100、第2塔にダイヤイオンWA−20を充填し、カルゴンCPGを用いなかった以外は、実施例1と同様に操作しアクリロニトリルの精製を行なった結果、オキサゾールのリーク挙動は、実施例1、2と全く同様であった。
上記の精製アクリロニトリルを用いて、アクリルアミドの製造およびアクリルアミドポリマーの製造と評価を実施例1と同様に行った。ポリマーの評価結果を表1に示す。
【0049】
【表1】
【0050】
【発明の効果】
本発明の方法によれば、アクリロニトリル中のオキサゾールを強酸性カチオン交換樹脂に吸着除去するにおいて、その吸着容量を増大することが出来、さらに強酸性カチオン交換樹脂と1級、2級アミノ基を有する樹脂、活性炭を組み合わせ処理することで、その他アルデヒド類等の不純物をも除去することが出来て、アクリルアミド製造原料として極めて優れたアクリロトリルを容易に得ることが出来る。[0001]
[Industrial application fields]
The present invention relates to a process for producing acrylamide by catalytically hydrating acrylonitrile with water in the presence of a copper-based catalyst. More specifically, the present invention relates to an improvement in a method of using acrylamide as a raw material for acrylamide after removing harmful basic impurities such as oxazole in acrylonitrile by contacting with a strongly acidic cation exchange resin.
[0002]
[Prior art]
A technique for making acrylamide a raw material after contacting acrylonitrile with a strongly acidic cation exchange resin to remove basic impurities such as oxazole is well known.
For example, in Japanese Patent Publication Nos. 57-26264 and 61-35171, the life of the catalyst for the hydration reaction is extended by removing oxazole. In JP-A-55-13281 and JP-A-63-118305, by treating acrylonitrile with a cation exchange resin so that the oxazole concentration is 25 ppm or less, the stability of the resulting monomer aqueous solution of acrylamide is improved. Or, it is described that water solubility and viscosity of an aqueous solution are improved when it is polymerized into a polymer.
[0003]
Various methods for contacting acrylonitrile with a strongly acidic cation exchange resin have been disclosed. In US Pat. No. 3,541,131 and Japanese Examined Patent Publication No. 52-17827, a dried resin is wetted and swollen in water, dropped into a column filled with water, filled and drained, and then acrylonitrile is lowered. Oxazole was not detected up to 6 liters of acrylonitrile corresponding to 240 times the volume of the resin when contacted with the resin in the column by flow. The resin adsorbed with oxazole can be regenerated by desorbing oxazole by washing with water, and the resin can be regenerated with a smaller amount of water as the temperature of the washing water is higher.
[0004]
In Japanese Examined Patent Publication No. 61-35171, polymerization of acrylonitrile can be prevented by using a strongly acidic cation exchange resin having a crosslinking degree of 7% or less. Further, the moisture in the resin is preferably 3% by weight or more by previously bringing the resin into contact with moisture, and the moisture in the acrylonitrile is preferably 0.3% by weight or more, particularly 1 to 3% by weight or more. It is desirable. In practice, 1 liter of low cross-linking resin was filled in a column filled with water, acrylonitrile was introduced into the column in a downward flow, and the operation was smoothly performed for 15 days.
[0005]
In U.S. Pat. No. 4,237,303, the water content in the resin is usually about 50% by weight, but the smaller the amount, the greater the adsorption capacity of oxazole. Therefore, dehydration makes it 40% or less, most preferably 15% or less. Is good. The lower the water content in acrylonitrile, the more preferable and 1% or less, preferably 0.1% or less. As a method for drying the resin, there is disclosed a method of removing water in the resin by flowing high-temperature dry nitrogen and contacting acrylonitrile having a oxazole of 50 ppm or less and a water content of 3000 ppm or less with the resin.
[0006]
[Problems to be solved by the invention]
According to the knowledge of the present inventors, when the hydrated resin and the hydrated resin wetted with water are brought into contact with each other, air bubbles are generated vigorously. When the method described in US Pat. No. 3,541,131, Japanese Patent Publication No. Sho 52-17827 or Japanese Patent Publication No. Sho 61-35171, that is, when acrylonitrile is brought into contact with the water-containing resin in a downward flow, a space is generated in the resin layer due to the generated bubbles. Oxazole leaks rapidly because fine bubbles adhere to the resin surface and the contact efficiency between acrylonitrile and the resin deteriorates.
[0007]
When the resin is used after being dried, the above-mentioned bubble generation can be prevented and early oxazole leakage can also be prevented. As a method for drying a resin, a method of contacting with a high-temperature drying gas is not practical when the drying gas is caused to flow in a downward flow because the flow resistance of the resin layer is very large. When flowing in an upward flow, crushing is significant due to resin flow. In addition, the exhaust gas at the outlet usually contains a considerable amount of acrylonitrile, which requires a detoxification facility, or requires facilities such as a gas drying facility, a blower, and a compressor. It is a problem.
[0008]
As a resin drying method, the method of contacting acrylonitrile is simpler and better than the method of using a dry gas. The problem is that, as described above, when the water-containing resin and acrylonitrile come into contact with each other, air bubbles are generated vigorously, and oxazole leaks quickly if acrylonitrile is passed through while leaving it.
[0009]
Further, when the strong acid cation exchange resin and oxazole are brought into contact with each other and then subjected to a hydration reaction, according to the findings of the present inventors, the quality of acrylamide is rather deteriorated. Although the reason is not clear, although oxazole is removed, aldehydes and the like are increasing, and it is considered that they have an adverse effect.
[0010]
[Means for Solving the Problems]
The present inventors diligently studied such a problem, and if the resin is dried by circulating a predetermined amount of acrylonitrile in an upward flow and then the purification operation is performed in a downward flow, the adsorption capacity of oxazole is practically sufficient. It has been found that the oxazole concentration at the outlet can be sufficiently reduced. Furthermore, the knowledge that acrylamide obtained from the strongly acidic cation exchange resin tower is brought into contact with a resin having primary and secondary amino groups and / or activated carbon and then subjected to a hydration reaction greatly improves the quality of acrylamide obtained. And the present invention has been completed.
[0011]
That is, according to the method for purifying acrylonitrile of the present invention, 2 to 50 volume times of acrylonitrile is flow-contacted in an upward flow to the hydrous strongly acidic cation exchange resin packed in the column, and then the acrylonitrile as the material to be purified is added. It is characterized in that it is brought into flow contact by a downward flow, the concentration of oxazole in the acrylonitrile after flow is set to 2 ppm or less, and further contacted with a resin having primary and / or secondary amino groups and / or activated carbon. By using acrylonitrile purified by the method of the present invention as a raw material, high-quality acrylamide can be produced.
[0012]
Acrylonitrile used in the present invention is produced by an ammoxidation method of propylene. The acrylonitrile contains various impurities, but also contains basic impurities such as oxazole and pyrimidine. In particular, when acrylamide is produced from acrylonitrile containing the acrylonitrile, the catalytic activity is impaired (Japanese Patent Publication Akira). 57-26264), the stability of aqueous acrylamide solutions and the water-solubility of acrylamide polymers are known to deteriorate (Japanese Patent Application Laid-Open No. 55-13281).
[0013]
The strongly acidic cation exchange resin used in the present invention may be a sulfonic acid type and free acid type (H type) resin based on polystyrene, such as a gel type or macroporous type, and a crosslinking degree. That is, the content of divinylbenzene is not particularly limited. Specifically, gel type resins such as Levacit S-100 (trade name, manufactured by Bayer), Diaion SK1B (trade name, manufactured by Mitsubishi Kasei), Dowex HCR-W2 (trade name, manufactured by Dow Chemical) And Macroporous resin such as Levacit SP112 (trade name, manufactured by Bayer), Diaion PK208 (trade name, manufactured by Mitsubishi Kasei), and Dowex MSC-1 (trade name, manufactured by Dow Chemical).
In the present invention, the resin is brought into H-type by contacting with an aqueous acid solution such as hydrochloric acid and then sufficiently washed with water to remove the remaining acid content. In that state, the resin usually contains about 50% moisture. In the present invention, the resin is packed in a column and brought into contact with acrylonitrile as a fixed bed. However, the resin charged in the column in a hydrous state first comes into contact with acrylonitrile introduced from the bottom of the column, and dehydration and degassing are achieved. The As for the flow rate of acrylonitrile, SV is about 0.1 to 100, preferably 1 to 20, and the flow rate is 2 to 50 times the amount of resin. If it is 2 times or less, the effect of dehydration and defoaming is insufficient, and if it is 50 times or more, it is unnecessary from above dehydration and degassing.
The smaller the amount of oxazole in the acrylonitrile used, the better, but it is preferably 50 ppm or less, more preferably 20 ppm or less. The lower the moisture, the better the dehydration efficiency, but 3% or less, preferably 1% or less.
[0014]
Acrylonitrile emerging from the top of the tower through the resin layer has reduced oxazole, but has a high water content. It is desirable that acrylonitrile used in the dehydration process is returned to the original raw material tank. When water in the resin layer and acrylonitrile come into contact with each other, violent bubbles are generated, but dehydration and defoaming can be achieved simultaneously by circulating acrylonitrile in the upward flow and under the above-described conditions.
[0015]
After the dehydration operation, acrylonitrile is circulated in a downward flow and the purification operation is performed. Through such a process, the once-through exchange capacity of oxazole such as a strongly acidic cation exchange resin is increased to a practically sufficient level.
[0016]
Acrylonitrile exiting the strongly acidic cation exchange resin tower, for example, has oxazole reduced to 1 ppm or less, but impurities such as aldehydes are increased. As a result, the raw material of the catalytic hydration reaction is used as it is to produce acrylamide, which in turn causes a deterioration of the quality. Therefore, after treatment with a strongly acidic cation exchange resin, a resin having primary and / or secondary amino groups, and When contacted with activated carbon, aldehydes and the like are reduced, and as a result, high-quality acrylamide can be produced.
[0017]
When a resin having a primary and / or secondary amino group is used, specific examples thereof include a porous resin such as Diaion WA-20 (trade name, manufactured by Mitsubishi Kasei Co., Ltd.), or Levacit OC1059 (trade name). , Manufactured by Bayer Co., Ltd.) and the like, all of which give favorable results. In use, it is preferable to sufficiently wash with water.
[0018]
When activated carbon is used, the type of activated carbon to be used is not particularly limited. For example, call-based activated carbon such as Calgon CPG (trade name, manufactured by Calgon) or Shirakaba LHc (trade name, manufactured by Takeda Pharmaceutical Company Limited) Coconut shell base activated carbon or the like can be used. Rinse thoroughly before use.
[0019]
The once-through exchange capacity of oxazole of a strongly acidic cation exchange resin is usually about 0.1 to 0.2 mol / liter-resin, and leakage gradually begins from that point. In the case of an acrylamide raw material, according to the knowledge of the present inventors, the quality of acrylamide is significantly deteriorated when it exceeds 2 ppm. When 1.5 to 2 ppm is reached, stop the flow and regenerate.
[0020]
Regeneration is achieved by extracting acrylonitrile remaining in the column and then washing with water to desorb oxazole. At this time, it is well known that the required water washing amount decreases as the water temperature used for regeneration increases. Preferably it is 50 degreeC or more, More preferably, about 80 degreeC is good.
[0021]
After completion of the regeneration, after the water is extracted, the resin filled in the column in a water-containing state comes into contact with acrylonitrile introduced from the bottom of the tower as described above, and dehydration and degassing are achieved.
[0022]
In the present invention, acrylamide is produced by performing a catalytic hydration reaction using acrylonitrile thus purified. As the catalyst used in the catalytic hydration reaction, various metal-containing catalysts are known, and metal copper catalysts are particularly excellent in terms of activity, selectivity and economy. As a specific example,
(A) Combination of copper and copper ions in the form of copper wire, copper powder, etc. (B) Obtained by reducing a copper compound with a reducing agent (reduced copper)
(C) Products obtained by decomposing copper compounds with heat (decomposed copper)
(D) Products obtained by developing Raney alloy with alkali (Raney copper)
These copper catalysts may be supported on a commonly used carrier, and may contain metals other than copper, such as chromium, molybdenum, vanadium, titanium, palladium, and the like. It is desirable for the catalyst to avoid contact with oxygen and oxygen-containing gases before and after use. This is because oxygen impairs the activity as a catalyst and increases by-products such as ethylene cyanohydrin.
[0023]
The hydration reaction of acrylonitrile of the present invention is performed as follows in the presence of the copper-based catalyst. The reaction mode is a suspension bed in a liquid phase or a fixed bed catalyst bed, which is carried out in a flow or batch mode.
[0024]
The weight ratio of acrylonitrile and water used for the hydration reaction is substantially arbitrary, but is preferably 60:40 to 5:95, and more preferably in the range of 50:50 to 10:90. is there. Moreover, the reaction rate of acrylonitrile becomes like this. Preferably it is 10-98%, More preferably, it is the range of 30-95%. The reaction temperature in the hydration reaction between acrylonitrile and water is preferably 50 to 200 ° C, more preferably 70 to 150 ° C.
[0025]
The inside of the reactor is maintained at a vapor pressure at the above-described temperature and composition, or a pressure obtained by adding an inert gas such as nitrogen thereto, and the pressure is usually atmospheric pressure to 10 atm. Dissolved oxygen contained in the catalyst, acrylonitrile, water, etc. supplied to the reactor impairs the activity of the catalyst and increases byproducts such as ethylene cyanohydrin, so it can be removed sufficiently before being supplied to the reactor. Desirably, and for the same reason, it is desirable to keep the atmosphere in the reactor free of oxygen. The reaction liquid taken out from the reactor after the hydration reaction is mainly composed of unreacted acrylonitrile, unreacted water and acrylamide, and further contains by-products such as ethylene cyanohydrin and copper.
[0026]
If necessary, the reaction solution obtained by the above reaction is subjected to a normal evaporation or distillation operation to obtain a concentrated aqueous acrylamide solution, and unreacted acrylonitrile and water are recovered by distillation. These recovered materials can be reused as new reaction raw materials. The aqueous acrylamide solution obtained by concentrating the reaction solution is then purified by various purification methods such as cation exchange resin treatment, chelate resin treatment, anion exchange resin treatment, air or oxygen gas treatment, and activated carbon treatment.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0028]
Example 1
[Column packing of acrylonitrile purification resin]
In accordance with a conventional method, 1 liter of strongly acidic cation exchange resin Levacit S-100 (trade name, manufactured by Bayer), which was treated with dilute hydrochloric acid to form H and washed thoroughly with water, was placed on a SUS-304 column with an inner diameter of 70 mm and a length of 400 mm. Filled. One liter of resin Diaion WA-20 (trade name, manufactured by Mitsubishi Kasei Co., Ltd.) having primary and / or secondary amine groups was washed with water and then packed into a SUS-304 column having an inner diameter of 70 mm and a length of 400 mm. One liter of activated carbon Calgon CPG (trade name, manufactured by Calgon) was washed with water and then packed into a SUS-304 column having an inner diameter of 70 mm and a length of 400 mm.
[0029]
[Dehydration of strongly acidic cation exchange resin with acrylonitrile]
Acrylonitrile containing 15 ppm of oxazole and 0.5% of water was introduced from the bottom of the column and allowed to flow for 2 hours at a flow rate of 3 liters / hr. The liquid discharged from the top of the column was returned to the acrylonitrile raw material tank (capacity 180 liters).
[0030]
[Purification of Acrylonitrile]
All of the acrylonitrile was flowed downward at a flow rate of 4 liters / hr in the order of Levacit S-100 in the first column, Diaion WA-20 in the second column, and Calgon CPG in the third column. In this state, oxazole was maintained at 0.5 ppm or less, but after 11 days, it became 1 ppm or more, and on 12.5 days, it became 2 ppm or more.
[0031]
[Production of acrylamide]
Acrylamide was obtained by using the purified acrylonitrile having a concentration of 0.5 ppm or less obtained by the above method and performing a hydration reaction in the presence of a copper catalyst as follows.
[0032]
(Hydration catalyst)
A Raney copper alloy having a mesh size of 80 mesh or less was developed using a caustic soda using a conventional method and washed to produce a Raney copper catalyst. During production and subsequent handling, contact with oxygen-containing gases such as air was avoided.
[0033]
(Contact hydration reaction)
400 g of the above catalyst is charged in a reactor of about 2 liters, made of SUS and equipped with a stirrer and a catalyst separator, and 600 g / Hr of acrylonitrile and water, each of which is preliminarily free of dissolved oxygen using nitrogen gas, It was supplied at a rate of 900 g / Hr and reacted at 120 ° C. The reaction liquid is stirred together with the catalyst to form a suspension, and then passed through the catalyst separator and taken out from the reactor as a liquid containing almost no catalyst. This reaction was continued for 3 days.
[0034]
(concentrated)
The obtained reaction solution was subjected to batch-type vacuum concentration, and the whole amount of unreacted acrylonitrile and a part of unreacted water were distilled off to obtain an aqueous acrylamide solution having a concentration of about 50%. The aqueous acrylamide solution contained copper.
[0035]
(Copper removal treatment)
A glass column was filled with 150 ml of a strongly acidic cation exchange resin Levacit SP-112 (trade name, manufactured by Bayer), which was pretreated with dilute hydrochloric acid according to a conventional method, and obtained by the above-described concentration treatment. An aqueous acrylamide solution was passed at 900 ml / Hr. The resulting solution had a copper content of 0.01 ppm or less and a pH of 3.5 to 4.0.
[0036]
(PH adjustment)
During the copper removal treatment, caustic soda was continuously added to adjust the pH of the treatment solution to about 6.5.
[0037]
[Production of acrylamide polymer]
The aqueous acrylamide solution obtained by the above method was polymerized by the following method to obtain an acrylamide polymer. Water is added to the acrylamide aqueous solution to a concentration of 20% by weight, 500 g of this is put into a 1 liter polyethylene container, and the dissolved oxygen in the liquid is removed through nitrogen while keeping the temperature at 18 ° C. Immediately in the heat insulation block made of polystyrene foam. Put in.
[0038]
This was followed by 200 × 10 −6 mpm (molar ratio to acrylamide) of 4,4-azobis (sodium 4-cyanovalerate), 200 × 10 −6 mpm of dimethylaminopropionitrile and 80 × 10 −6 mpm. Of ammonium persulfate were each dissolved in a small amount of water and quickly injected into this sequence. Nitrogen gas was passed through these reagents in advance, and a small amount of nitrogen gas was also passed through the polyethylene container before and after injection to prevent contamination of oxygen gas. After injecting the reagent and after an induction period of several minutes, the temperature inside the polyethylene container was observed to rise, so the supply of nitrogen gas was stopped. After about 100 minutes, when the temperature reached the top of about 70 ° C., the polyethylene container was taken out of the heat insulating block, immersed in water at 97 ° C. for 2 hours, and then immersed in cold water for cooling.
[0039]
The water-containing acrylamide polymer gel thus obtained is divided into small chunks, crushed with a meat grinder, dried with hot air at 100 ° C. for 2 hours, and pulverized with a high-speed rotary blade pulverizer to form a dry powdered acrylamide polymer. Obtained. Further, this was sieved to obtain a polymer sample for use in the subsequent tests. When the moisture content of the polymer sample was determined as a weight loss by drying with hot air overnight at 125 ° C., it was about 10% by weight for any polymer sample.
[0040]
[Testing method for acrylamide polymer]
The water solubility and standard viscosity of the polymer sample obtained by the above method were measured by the following method.
[0041]
(Water soluble)
Water solubility is obtained by placing 600 ml of water in a 1 liter beaker, adding 0.66 g of polymer sample (0.6 g of pure content) while stirring with a stirring blade of a predetermined shape, and stirring at 400 rpm for 2 hours. The resulting solution was filtered through a 150 mesh wire mesh, and water solubility was judged from the amount of insoluble matter and filterability. That is, ◎ is completely dissolved, ◯ is close to completely dissolved, there is an insoluble matter, △ is what can be filtered, △, the passage of the filtrate is slow, the insoluble matter is effectively filtered The thing which cannot be made was set as x.
[0042]
(Standard viscosity)
The filtrate obtained by the above water-solubility test is an aqueous polymer solution having a concentration of 0.1% when water solubility is good. To this, sodium chloride corresponding to 1 molar concentration is added, and a BL type viscometer is used. Viscosity was measured using a BL adapter at 25 ° C. and a rotor rotational speed of 60 rpm (standard viscosity). Since the standard viscosity obtained by such a method is commonly used as a value correlated with the molecular weight, it was also used in this example. The relationship between the standard viscosity and the molecular weight is about 15 million at 5.5 cps and about 17 million at 6.0 cps.
[0043]
(Measurement result of polymer)
The results of evaluation by such a method are shown in Table 1. The water solubility of the obtained polymer was excellent, and the standard viscosity was 6.0 cps.
[0044]
Comparative Example 1
Acrylamide was produced in the same manner as in Example 1 by using purified acrylonitrile having an oxazole concentration of 2.5 ppm collected on the 11th to 13th days of the liquid flow through the acrylonitrile purification operation of Example 1. Subsequently, the physical properties of the polymer obtained by polymerization in the same manner as in Example 1 were evaluated. The results are shown in Table 1.
[0045]
Comparative Example 2
In the same manner as in Example 1, Levacit S-100 was charged in the first column, Diaion WA-20 in the second column, and Calgon CPG in the third column. Next, acrylonitrile was passed through the first tower at a rate of 4 liters / hour ascending from the bottom of the tower, and the liquid exiting from the top of the tower was passed through the second tower and the third tower as a descending stream. As a result, the concentration of oxazole in the purified acrylonitrile was 2 ppm or more on the 4th day from the start of liquid passage.
[0046]
Comparative Example 3
In the same manner as in Example 1, Levatite S-100 was packed in the first column, Diaion WA-20 in the second column, and Calgon CPG in the third column. Next, acrylonitrile was passed through the first tower at a rate of 4 liters / hour from the top of the tower in a downward flow, and the liquid exiting from the bottom of the tower was passed through the second and third towers in a downward flow. As a result, the concentration of oxazole in the purified acrylonitrile was 2 ppm or more on the first half of the passage.
[0047]
Example 2
As a result of purifying acrylonitrile in the same manner as in Example 1 except that Levacit S-100 was packed in the first column, Calgon CPG was charged in the second column, and Diaion WA-20 was not used, oxazole was 0 It was maintained at 5 ppm or less, but after 11 days it became 1 ppm or more, and on 12.5 days it became 2 ppm or more.
Using the above purified acrylonitrile, acrylamide and acrylamide polymer were prepared and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results of the polymers.
[0048]
Example 3
[Purification of Acrylonitrile]
As a result of purifying acrylonitrile in the same manner as in Example 1 except that Levacit S-100 was charged in the first column and DIAION WA-20 was charged in the second column and Calgon CPG was not used, oxazole leak was observed. The behavior was exactly the same as in Examples 1 and 2.
Using the purified acrylonitrile, acrylamide and acrylamide polymer were produced and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results of the polymers.
[0049]
[Table 1]
[0050]
【The invention's effect】
According to the method of the present invention, when oxazole in acrylonitrile is adsorbed and removed to a strongly acidic cation exchange resin, its adsorption capacity can be increased, and further, it has a strongly acidic cation exchange resin and primary and secondary amino groups. By combining the resin and the activated carbon, other impurities such as aldehydes can be removed, and acrylotolyl which is extremely excellent as a raw material for producing acrylamide can be easily obtained.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30199794A JP3642590B2 (en) | 1994-12-06 | 1994-12-06 | Method for purifying acrylonitrile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30199794A JP3642590B2 (en) | 1994-12-06 | 1994-12-06 | Method for purifying acrylonitrile |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08157439A JPH08157439A (en) | 1996-06-18 |
JP3642590B2 true JP3642590B2 (en) | 2005-04-27 |
Family
ID=17903646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30199794A Expired - Lifetime JP3642590B2 (en) | 1994-12-06 | 1994-12-06 | Method for purifying acrylonitrile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3642590B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4970276B2 (en) * | 2005-10-07 | 2012-07-04 | 三井化学株式会社 | Method for producing amide compound |
JP5235091B2 (en) * | 2008-04-07 | 2013-07-10 | オルガノ株式会社 | Method and apparatus for removing aldehyde compound from alcohol-containing liquid |
-
1994
- 1994-12-06 JP JP30199794A patent/JP3642590B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08157439A (en) | 1996-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3955326B2 (en) | A method for improving the productivity of carbonation catalyst solutions by removing corrosive metals | |
US3941837A (en) | Method of treating an aqueous solution of acrylamide | |
US3766088A (en) | Process for the regeneration of catalyst for hydration of nitrile compounds | |
KR0153234B1 (en) | Process for the preparation of acrylamide | |
JP3642590B2 (en) | Method for purifying acrylonitrile | |
US3556727A (en) | Purification of aqueous hydrogen peroxide solutions containing dissolved organic compound by use of nonionic porous resin | |
JPS63118305A (en) | Production of acrylamide polymer | |
US4345101A (en) | Process for purifying an aqueous solution of acrylamide | |
CN1054121C (en) | Process for preparing acrylamide | |
US4108893A (en) | Purification of an aqueous solution of acrylamide | |
JP3908803B2 (en) | Method for producing acrylamide | |
JP3683916B2 (en) | Method for producing acrylamide | |
JP4476367B2 (en) | Purification method of acrylamide aqueous solution | |
RU2720196C1 (en) | Method of cleaning resins | |
CN101980962B (en) | Method for removing halogen from liquid ammonia | |
JP3948845B2 (en) | Treatment method of crude phenol solution | |
JPS6343381B2 (en) | ||
JP3732544B2 (en) | Method for producing acrylamide | |
RU2234488C1 (en) | Method for treatment of propylene oligomer | |
SU1325040A1 (en) | Method of purifying ethylene from carbon oxide | |
CA2159183C (en) | Resin regeneration process | |
JP2007099783A (en) | Method for purifying aqueous solution of acrylamide | |
JPS6023176B2 (en) | Copper removal from nickel and/or cobalt containing solutions | |
JPS63203654A (en) | Production of acrylamide | |
JPH0419904B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100204 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110204 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120204 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120204 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130204 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130204 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |