JPH0220026A - Field effect type semiconductor device - Google Patents

Field effect type semiconductor device

Info

Publication number
JPH0220026A
JPH0220026A JP17019788A JP17019788A JPH0220026A JP H0220026 A JPH0220026 A JP H0220026A JP 17019788 A JP17019788 A JP 17019788A JP 17019788 A JP17019788 A JP 17019788A JP H0220026 A JPH0220026 A JP H0220026A
Authority
JP
Japan
Prior art keywords
electrode
gate
drain electrode
active region
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17019788A
Other languages
Japanese (ja)
Inventor
Shigeru Yanagawa
茂 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17019788A priority Critical patent/JPH0220026A/en
Publication of JPH0220026A publication Critical patent/JPH0220026A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To facilitate an increase in the width of a gate, and to easily obtain a high gain and a high output by forming a source electrode of a viahole structure oppositely to the open end of a pectinated toothlike drain electrode, forming a gate electrode on an active region between the source electrode and a drain electrode open end, and providing a gate electrode so formed in a U shape as to surround the drain electrode. CONSTITUTION:A second source electrode 10 having a viahole 20 is formed partly on an active region 12 oppositely to the open end of a drain electrode 104, and U-shaped gate electrodes 12, 25 are respectively formed between first source electrode 103, the source 10 and the electrode 104. Further, a gate electrode connecting conductor 35 is so provided as to connect the electrodes 15, 25 therebetween. The width lga of the part 25 of the gate electrode newly becomes an operating region to enhance an output. Further, since the distance from a gate power supply point to the open end of the electrode 15 is the same as that of a conventional case, its gain is not reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電界効果型半導体装置に係り、特に、マイク
ロ波、ミリ波帯で用いられる電力用電界効果型半導体装
置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a field-effect semiconductor device, and particularly to a power-use field-effect semiconductor device used in microwave and millimeter wave bands. .

(従来の技術) マイクロ波通信システム、レーダシステム等の電力増幅
用素子としては、現在、砒化ガリウム(GaAs)を材
料とした電界効果型トランジスタ(以後、 GaAs 
FETと略記する)が主流となっている。
(Prior Art) Field-effect transistors made of gallium arsenide (GaAs) (hereinafter referred to as GaAs) are currently used as power amplifying elements for microwave communication systems, radar systems, etc.
(abbreviated as FET) is the mainstream.

第2図に電力用GaAs FETの概略を上面図で示し
Figure 2 shows a schematic top view of a power GaAs FET.

これによって説明する。This will be explained.

半絶縁性GaAs基板(101)にイオン注入法により
チャネルとなる活性領域(102) (点線の枠内)が
形成されており、該活性領域内にオーミック電極である
ソース電極(103)及びドレイン電極(104)とシ
ョットキあるいはpn接合のゲート電極(105)が、
所望の出力で決まる数だけ一方向に多数個配列された゛
構造となっている。複数のドレイン電極(104)及び
ゲート電極(+05)はそれぞれ、活性領域外の半絶縁
性GaAs基板(101)上に形成されたドレイン電極
接続導体部(114) 、及びゲート電極接続導体部(
its)で電気的に接続され、それぞれの電極は櫛の歯
状になっている。又、前記両導体部((114)。
An active region (102) (inside the dotted line) that becomes a channel is formed in a semi-insulating GaAs substrate (101) by ion implantation, and a source electrode (103) and a drain electrode, which are ohmic electrodes, are formed in the active region. (104) and the Schottky or pn junction gate electrode (105),
It has a structure in which a large number of them are arranged in one direction, the number determined by the desired output. The plurality of drain electrodes (104) and gate electrodes (+05) are formed by a drain electrode connecting conductor part (114) and a gate electrode connecting conductor part (114) formed on the semi-insulating GaAs substrate (101) outside the active region, respectively.
ITS), and each electrode has a comb-teeth shape. Further, both the conductor portions ((114).

(115))は、外部回路と電気的に接続するためのボ
ンディングワイヤを固着する場所としても用いられる。
(115)) is also used as a place for fixing bonding wires for electrical connection to an external circuit.

さらに、ソース電極(103)は第3図(第2図のA−
A線に沿う概略の断面図)に示した様に、GaAs基板
(101)にエツチング等によって形成した貫通孔(1
06)に蒸着、メツキ等によって金属(例えば金)層を
固着したいわゆるバイアホール(113)により、 G
aAs基板裏面の接地電極(107)と電気的に接続さ
れている。
Furthermore, the source electrode (103) is shown in FIG.
As shown in the schematic cross-sectional view along line A), a through hole (101) is formed in the GaAs substrate (101) by etching,
G
It is electrically connected to the ground electrode (107) on the back surface of the aAs substrate.

バイアホール構造はソース電極周辺に発生する寄生イン
ピーダンス成分を非常に小さくできるため、トランジス
タの電力利得を大きく出来特ににU帯以上のマイクロ波
及びミリ波帯で動作する電力GaAs FIETの高性
能化を図る上で有利な構造である。
The via-hole structure can greatly reduce the parasitic impedance component generated around the source electrode, which can increase the power gain of the transistor, and is particularly useful for improving the performance of power GaAs FIETs that operate in the microwave and millimeter wave bands above the U band. This is an advantageous structure for achieving this goal.

(発明が解決しようとする課題) ところで、以上のFETで高利得化を図る際、考慮しな
ければならない重要な点が2つある。
(Problems to be Solved by the Invention) By the way, there are two important points that must be taken into consideration when attempting to increase the gain with the above FET.

第一の点はゲートフィンガ方向のゲート抵抗等によるマ
イクロ波の減衰を小さく抑えるためにゲートフィンガ長
(CRgf)(第2図))に対する制限があることであ
る。例えば30GHzlFFETでは1通常Qにf#8
0μ■以下で設計されており1周波数が高くなればなる
程、フィンガ長は短かくする必要がある。
The first point is that there is a limit on the gate finger length (CRgf (FIG. 2)) in order to keep microwave attenuation due to gate resistance in the gate finger direction small. For example, in a 30GHzlFFET, 1 normal Q and f#8
It is designed to be 0μ or less, and the higher the frequency, the shorter the finger length needs to be.

第二の点は複数の動作領域(ソース・ドレイン間領域)
間の位相差をできるだけ小さくし、均一動作をさせるこ
とでありそのためにはゲートフィンガに垂直な方向の活
性領域の幅((12t)(第2図))を動作周波数の実
効波長(λart)  に比べて、十分小さくする必要
がある。通常、目安としては、実効波長の1/8程度以
下である。
The second point is multiple operating regions (area between source and drain)
The goal is to minimize the phase difference between the gate fingers and ensure uniform operation. To achieve this, the width of the active region in the direction perpendicular to the gate finger ((12t) (Figure 2)) should be set to the effective wavelength of the operating frequency (λart). It needs to be sufficiently small in comparison. Usually, as a guideline, it is about 1/8 or less of the effective wavelength.

例えば、周波数300)Izに対しては λerr/8
L:500μmであり1周波数が高くなればなる程小さ
くする必要がある。
For example, for frequency 300)Iz, λerr/8
L: 500 μm, and the higher the frequency, the smaller it needs to be.

一方、高出力を得るには動作領域(その大きさを表わす
指標としてゲート幅=ゲートフィンガ長Xゲート電極数
が用いられる)を出来るだけ大きくする必要があるが、
ゲートフィンガ長及び活性領域の幅(12t)に対して
は、前記制限があり、しかも、ソース電極の幅((Q、
)(第2図))は、パイ7ホールを安定かつ均一に形成
するために少くとも50μm程度とる必要があることか
ら、配列されるゲート電極数にも制限がある。このため
、特に、Ku帯以上の超高周波数で動作する本構造のF
ETででは所要のゲート幅を確保するのが難しくなり、
従って高出力を得るのが困難になるという問題点があっ
た。
On the other hand, in order to obtain high output, it is necessary to make the operating region (gate width = gate finger length x number of gate electrodes is used as an index to express its size) as large as possible.
The gate finger length and the active region width (12t) are subject to the above limitations, and the source electrode width ((Q,
) (FIG. 2)) requires a thickness of at least about 50 μm in order to form Pi7 holes stably and uniformly, so there is a limit to the number of gate electrodes arranged. For this reason, in particular, the F of this structure operates at ultra-high frequencies above the Ku band.
With ET, it becomes difficult to secure the required gate width,
Therefore, there was a problem in that it was difficult to obtain high output.

本発明は上記問題点に鑑みてなされたもので、ゲート幅
を大きくし易くなり、従って高利得で高出力が得やすく
なる。
The present invention has been made in view of the above problems, and it becomes easier to increase the gate width, thereby making it easier to obtain high gain and high output.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この目的を達成するために、本発明では櫛の歯状のドレ
イン電極の開放端に対向してバイアホール構造のソース
電極を形成し、該ソース電極とドレイン電極開放端間の
活性領域上にもゲート電極を形成して、ドレイン電極を
囲む様にコの字状に形成されたゲート電極を備えた特徴
を有するものである。すなわち1本発明のFETは、半
絶縁性の半導体基板の裏面に形成された接地電極と、前
記半導体基板の表面に形成されたチャネルとなる活性領
域上に複数個で一方向に配列されたオーム性の矩形のド
レイン電極と、このドレイン電極同士を活性領域外の前
記半導体基板上にて櫛の歯状にかつ上記ドレイン電極の
開放端を活性領域端よりも内側になるように接続するド
レイン電極接続導体部と、前記ドレイン電極の両側に前
記半導体基板裏面の接地電極とバイアホールにより電気
的に接続して形成された第1のソース電極と、前記ドレ
イン電極開放端側の活性領域上に少くとも一部が形成さ
れバイアホールによって前記接地電極と電気的に接続し
て形成された第2のソース電極と、前記第1および第2
のソース電極とドレイン電極間にこのドレイン電極を囲
むように形成されたコの字状のゲート電極と、前記ゲー
ト電極同士を接続するゲート電極接続導体部とを具備し
てなる。
(Means for Solving the Problems) In order to achieve this object, in the present invention, a source electrode having a via hole structure is formed opposite to the open end of a comb-toothed drain electrode, and the source electrode and the drain electrode The device is characterized in that a gate electrode is also formed on the active region between the open ends, and the gate electrode is formed in a U-shape so as to surround the drain electrode. In other words, the FET of the present invention includes a ground electrode formed on the back surface of a semi-insulating semiconductor substrate, and a plurality of ohms arranged in one direction on an active region forming a channel formed on the surface of the semiconductor substrate. a rectangular drain electrode, and a drain electrode connecting the drain electrodes to each other in a comb tooth shape on the semiconductor substrate outside the active region, with the open end of the drain electrode being inside the active region edge. a first source electrode formed on both sides of the drain electrode to be electrically connected to the ground electrode on the back surface of the semiconductor substrate through a via hole; a second source electrode electrically connected to the ground electrode through a via hole;
A U-shaped gate electrode is formed between a source electrode and a drain electrode so as to surround the drain electrode, and a gate electrode connecting conductor portion connects the gate electrodes.

(作 用) 本構造では、従来、単にゲート電極同士を接続するため
の導体として用いた部分がゲート電極となるため、利得
を低下させずに、ゲート幅をより大きくすることができ
、より高出力なGaAs FETを実現できる。
(Function) In this structure, the part that was conventionally used as a conductor to simply connect gate electrodes becomes the gate electrode, so the gate width can be made larger without reducing the gain, resulting in higher A GaAs FET with high output power can be realized.

(実施例) 以下1本発明の一実施例のFETにつき第1図を参照し
て説明する。なお、説明において従来と変わらない部分
については、図面に従来と同じ符号をつけて示し説明を
省略する。
(Embodiment) An FET according to an embodiment of the present invention will be described below with reference to FIG. In addition, in the description, parts that are the same as in the prior art are indicated by the same reference numerals as in the prior art in the drawings, and the description thereof will be omitted.

第1図でトレイン電極(104)の開放端に対向して、
バイアホール(20)を備えた第2のソース電極(lO
)がその一部を活性領域(12)上に設けられており、
前記第1のソース電極(103)及び前記第2のソース
電極(10)とドレイン電極(104)の間にコの字状
のゲート電極(15,25)が設けられている。さらに
、該ゲート電極(15,25)同士を接続するためのゲ
ート電極接続導体部(35)が設けられている。
Opposed to the open end of the train electrode (104) in FIG.
A second source electrode (lO
) is partially provided on the active region (12),
A U-shaped gate electrode (15, 25) is provided between the first source electrode (103) and the second source electrode (10) and the drain electrode (104). Further, a gate electrode connecting conductor portion (35) is provided for connecting the gate electrodes (15, 25) to each other.

上記構造により、ゲート電極の一部(25)の幅(h、
)の部分が新たに動作領域となり高出力化を図ることが
できる。しかも、ゲート給電点(最も近いゲート電極接
続導体部(35)のゲート電極(15゜25)端)から
ゲート電極(15)の開放端までの距離は従来の場合と
同じであるから、利得の低下は生じない。例えば、30
GIIzf200m11級FETではn、、 H40μ
ya、 Qにf″:80μmで、ゲート電極数は10本
であるので、従来の構造のFET (第2図)に対して
ゲート幅をn、lIX 5 :200μI大きくするこ
とができ、ゲート幅が約25%増大するので、出力を約
1dB大きくできる。
With the above structure, the width (h,
) becomes a new operating region, and high output can be achieved. Moreover, since the distance from the gate feed point (the gate electrode (15°25) end of the gate electrode connecting conductor (35) closest to the gate electrode) to the open end of the gate electrode (15) is the same as in the conventional case, the gain is No decline occurs. For example, 30
GIIzf200m11 class FET is n,, H40μ
ya, Q and f'': 80 μm, and the number of gate electrodes is 10, so the gate width can be increased by n, lIX 5: 200 μI compared to the conventional FET structure (Fig. 2), and the gate width increases by about 25%, so the output can be increased by about 1 dB.

なお、ゲート電極接続導体部(35)同士をさらに接続
する導体を形成しても良く、この様にするとボンディン
グワイヤを用いて外部回路と接続する際、ボンディング
ワイヤを固着し易くなり有利である。又、本実施例では
GaAs FETについて説明したが、他の半導体材料
例えばSL、 InP等を用いたFETについても適用
できることは言うまでもない。
Note that a conductor may be formed to further connect the gate electrode connecting conductor portions (35) to each other, and this is advantageous because it becomes easier to fix the bonding wire when connecting to an external circuit using the bonding wire. Further, in this embodiment, a GaAs FET has been described, but it goes without saying that the present invention can also be applied to FETs using other semiconductor materials such as SL, InP, etc.

さらに本FETがその一部として形成されているモノリ
シック集積回路(MMIC)にも本発明は適用できる。
Furthermore, the present invention can also be applied to a monolithic integrated circuit (MMIC) in which the present FET is formed as a part.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に1本発明によると、活性領域を有効に利
用できるために、集積化を図ることができ、特に超高周
波帯で、高利得、高出力の電界効果型半導体装置を得る
ことができる。
As described above, according to the present invention, since the active region can be used effectively, integration can be achieved, and a field-effect semiconductor device with high gain and high output can be obtained, especially in the ultra-high frequency band. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかるGaAs FETの
上面図、第2図は従来例のGaAs FETの上面図、
第3図は第2図のAA線に沿う断面図である。 10−−−−−−−−−−−−−−−−一部2のソース
電極20、113−−−−−−−−−−−−バイアホー
ル12.102    −−−一括性領域15、25.
105−−−−−−−−ゲート電極35、115−−−
−    ゲート電極接続導体部103−−−−−  
     ソース電極104     −     ド
レイン電極114−−−−−−−−−−−−−−−−−
ドレイン電極接続導体部代理人 弁理士 大 胡 典 
夫 第 第 図 図 第 図
FIG. 1 is a top view of a GaAs FET according to an embodiment of the present invention, FIG. 2 is a top view of a conventional GaAs FET,
FIG. 3 is a sectional view taken along line AA in FIG. 2. 10--------------- Source electrode 20 of part 2, 113----- Via hole 12.102 --- Bulk region 15 , 25.
105------ Gate electrode 35, 115---
- Gate electrode connection conductor part 103---
Source electrode 104 - drain electrode 114 --------------------
Drain Electrode Connection Conductor Department Agent Patent Attorney Norihiro Ogo
Husband diagram diagram diagram

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性の半導体基板の裏面に形成された接地電極と、
前記半導体基板の表面に形成されたチャネルとなる活性
領域上に複数個で一方向に配列されたオーム性の矩形の
ドレイン電極と、このドレイン電極同士を活性領域外の
前記半導体基板上にて櫛の歯状にかつ上記ドレイン電極
の開放端を活性領域端よりも内側になるように接続する
ドレイン電極接続導体部と、前記ドレイン電極の両側に
前記半導体基板裏面の接地電極とバイアホールにより電
気的に接続して形成された第1のソース電極と、前記ド
レイン電極開放端側の活性領域上に少くとも一部が形成
されバイアホールによって前記接地電極と電気的に接続
して形成された第2のソース電極と、前記第1および第
2のソース電極とドレイン電極間にこのドレイン電極を
囲むように形成されたコの字状のゲート電極と、前記ゲ
ート電極同士を接続するゲート電極接続導体部とを具備
した電界効果型半導体装置。
A ground electrode formed on the back surface of a semi-insulating semiconductor substrate,
A plurality of ohmic rectangular drain electrodes are arranged in one direction on an active region forming a channel formed on the surface of the semiconductor substrate, and the drain electrodes are combed together on the semiconductor substrate outside the active region. A drain electrode connecting conductor part connects the open end of the drain electrode in the shape of a tooth so as to be inside the edge of the active region, and a ground electrode on the back surface of the semiconductor substrate and via holes are provided on both sides of the drain electrode for electrical connection. a first source electrode formed connected to the ground electrode; and a second source electrode formed at least partially on the active region on the open end side of the drain electrode and electrically connected to the ground electrode through a via hole. a U-shaped gate electrode formed between the first and second source electrodes and the drain electrode so as to surround the drain electrode, and a gate electrode connecting conductor portion that connects the gate electrodes. A field effect semiconductor device comprising:
JP17019788A 1988-07-08 1988-07-08 Field effect type semiconductor device Pending JPH0220026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17019788A JPH0220026A (en) 1988-07-08 1988-07-08 Field effect type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17019788A JPH0220026A (en) 1988-07-08 1988-07-08 Field effect type semiconductor device

Publications (1)

Publication Number Publication Date
JPH0220026A true JPH0220026A (en) 1990-01-23

Family

ID=15900471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17019788A Pending JPH0220026A (en) 1988-07-08 1988-07-08 Field effect type semiconductor device

Country Status (1)

Country Link
JP (1) JPH0220026A (en)

Similar Documents

Publication Publication Date Title
US7476918B2 (en) Semiconductor integrated circuit device and vehicle-mounted radar system using the same
US4587541A (en) Monolithic coplanar waveguide travelling wave transistor amplifier
US6867115B2 (en) Compound semiconductor device
TWI485837B (en) A high frequency circuit having a multi-chip module structure
US4298879A (en) Field effect transistor
Saunier et al. High-efficiency millimeter-wave GaAs/GaAlAs power HEMT's
US4549197A (en) Common-gate GaAs FET design for monolithic microwave integrated circuits
US4551904A (en) Opposed gate-source transistor
EP0494625A1 (en) Semiconductor device for improving high-frequency characteristics and avoiding chip cracking
JP3189691B2 (en) High frequency semiconductor devices
US5177452A (en) Stabilized circuit of high output power transistor for microwave and milliwave
US4951099A (en) Opposed gate-source transistor
JP2554672B2 (en) Field effect type semiconductor device
JP2010245351A (en) Semiconductor device
JPH0220026A (en) Field effect type semiconductor device
US4104673A (en) Field effect pentode transistor
JP2001093914A (en) Semiconductor active element and semiconductor integrated circuit
US6100554A (en) High-frequency semiconductor device
JPS60200547A (en) Semiconductor device
US5889297A (en) High frequency semiconductor device with slots
JP2504503B2 (en) Semiconductor element
JP2737874B2 (en) Semiconductor line converter
JP2868939B2 (en) Microwave amplifier
JPS6255722B2 (en)
JP3203366B2 (en) Field effect transistor