JPH02199836A - Formation of extremely thin oxide film - Google Patents

Formation of extremely thin oxide film

Info

Publication number
JPH02199836A
JPH02199836A JP1913189A JP1913189A JPH02199836A JP H02199836 A JPH02199836 A JP H02199836A JP 1913189 A JP1913189 A JP 1913189A JP 1913189 A JP1913189 A JP 1913189A JP H02199836 A JPH02199836 A JP H02199836A
Authority
JP
Japan
Prior art keywords
oxide film
film
thin oxide
interface
extremely thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1913189A
Other languages
Japanese (ja)
Inventor
Akihiko Ishitani
石谷 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1913189A priority Critical patent/JPH02199836A/en
Publication of JPH02199836A publication Critical patent/JPH02199836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an extremely thin oxide film whose interface and film quality are good by a method wherein extreame ultraviolet rays which can be absorbed by SiO2 are applied, a volume of a thermal oxide film is contracted, its density is enhanced and its film thickness is reduced. CONSTITUTION:After a pretreatment, a thermal oxidation operation is executed in a dry acid atmosphere; an oxide film whose film quality and interface are uniform is formed on a whole substrate. Then, a steam oxidation operation in executed in succession; a characteristic of an interface and a film thickness of an extremely thin oxide film are decided approximately by this steam oxidation operation. Then, this substrate is irradiated with an excimer laser beam; its film thickness is reduced; its density is enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 薄い酸化膜は超LSIのゲート酸化膜や容量酸化膜とし
て用いられ、LSIの構成要素であるトランジスタセル
において重要な役割を担っている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) Thin oxide films are used as gate oxide films and capacitor oxide films in very large scale integrated circuits (LSIs), and play an important role in transistor cells, which are the constituent elements of LSIs.

(従来の技術) 酸化膜形成のためには、減圧気相成長法、スパッタ法、
蒸着法、イオンビームデポジション法、熱酸化法など様
々な方法が開発されている。
(Prior art) In order to form an oxide film, low pressure vapor deposition method, sputtering method,
Various methods have been developed, including vapor deposition, ion beam deposition, and thermal oxidation.

これらの方法のうち、超LSIで用いられている薄い酸
化膜形成のためには、熱酸化法が最適であるとされてい
る。
Among these methods, the thermal oxidation method is said to be optimal for forming a thin oxide film used in VLSI.

熱酸化法が薄い酸化膜の形成方法として用いられている
理由は、形成される酸化膜とシリコンとの界面の特性が
最も良いこと、形成される酸化膜自体の性質が優れてい
ること、膜厚の制御が比較的容易であることの三点であ
る。熱酸化法を除く他の方法はいずれも気相から5i0
2をシリコン表面に供給し、堆積させることを基本とし
ている。このとき酸化膜とシリコンとの界面は、シリコ
ンの表面であったところに形成される。従って、原子の
結合様式が異なる酸化膜とシリコンとの界面には多くの
ダングリングボンドが残されることになる。また、酸化
膜の構造はシリコンを中心として正四面体の頂点に酸素
原子が配位し、頂点結合の自由度によってポリタイプが
形成される。酸素原子がシリコン結1品内部に拡散する
ことによって酸化膜が成長し、ポリタイプの形成に自由
度の比較的少ない熱酸化法に比べ、5i02が堆積して
いく方法では空間的な自由度が大きいことによるポリタ
イブの出現を避けることができない。更に、薄い酸化膜
制御のためには非常にゆっくりとした酸化膜の成長速度
であることが必要である。熱酸化法では、酸化膜厚制御
に適する非常に遅い成長速度を実現でき、しかも厚さの
一様性が良い。
The reason why thermal oxidation is used as a method for forming thin oxide films is that the interface between the oxide film and silicon has the best properties, the oxide film itself has excellent properties, and The three points are that the thickness can be controlled relatively easily. All other methods except the thermal oxidation method produce 5i0 from the gas phase.
The basic method is to supply and deposit 2 onto the silicon surface. At this time, the interface between the oxide film and the silicon is formed on the surface of the silicon. Therefore, many dangling bonds are left at the interface between the oxide film and silicon, which have different atomic bonding styles. Further, the structure of the oxide film is such that oxygen atoms are coordinated at the vertices of a regular tetrahedron centered on silicon, and a polytype is formed depending on the degree of freedom of the apex bonds. An oxide film grows by the diffusion of oxygen atoms into a single silicon product, and compared to thermal oxidation, which has relatively little freedom in forming polytypes, the method in which 5i02 is deposited has less freedom in space. The appearance of polytypes due to large size cannot be avoided. Furthermore, in order to control the thin oxide film, it is necessary that the oxide film growth rate be very slow. The thermal oxidation method can achieve a very slow growth rate suitable for controlling oxide film thickness, and also provides good thickness uniformity.

(発明が解決しようとする問題点) しかしながら、超々LSIにおける数十オングストロー
ムから百オングストローム程度の極薄酸化膜を造ること
は、従来の熱酸化法によっても非常に困難である。極薄
酸化膜程度の厚さになると、形成温度が低いことにも起
因して、熱酸化前に存在するいわゆる自然酸化膜の存在
を無視できなくなる。界面の特性は酸化条件よりもむし
ろ前処理条件に依存するようになる。また、薄い酸化膜
形成よりも更に厚さの制御性を良くするために酸化温度
を下げると、界面が荒れたり密度が低下(膜質が低下)
したりする。本発明は、このような熱酸化法による極薄
酸化膜形成上の問題点を解決し、良質な界面、膜質を有
する極薄酸化膜を形成する方法を提供するものである。
(Problems to be Solved by the Invention) However, it is extremely difficult to create an ultra-thin oxide film of several tens of angstroms to a hundred angstroms in ultra-super LSI even by conventional thermal oxidation methods. When the thickness is on the order of an extremely thin oxide film, the presence of a so-called natural oxide film that exists before thermal oxidation cannot be ignored, partly due to the low formation temperature. The properties of the interface become dependent on the pretreatment conditions rather than the oxidation conditions. Furthermore, if the oxidation temperature is lowered to better control the thickness than when forming a thin oxide film, the interface becomes rough and the density decreases (film quality deteriorates).
I do things. The present invention solves the problems in forming an ultra-thin oxide film by such a thermal oxidation method and provides a method for forming an ultra-thin oxide film having good interface and film quality.

(問題を解決するための手段) Si02が吸収するような極紫外光を照射し、熱酸化膜
の体積を収縮させて密度を向上させるとともに、膜厚を
減少させて必要な膜厚の極薄酸化膜を得る。
(Means to solve the problem) Irradiate extreme ultraviolet light that Si02 absorbs to shrink the volume of the thermal oxide film to improve its density, and reduce the film thickness to make it as thin as necessary. Obtain an oxide film.

(作用) Si02組成を有する熱酸化膜中には、局所的に多くの
ポリタイプを含んでいる。トリジマイトから石英、コニ
サイトに至る系列は、全てSi○2正四面体を構造単位
とし、頂点連結で構成されている。
(Function) The thermal oxide film having the Si02 composition locally contains many polytypes. The series from tridymite to quartz to conisite all have Si2 tetrahedrons as their structural units, and are constructed by connecting vertices.

その連結様式によって30%以上も密度が変化し、密度
では0.7以上も異なる。熱酸化膜の性質はこれらポリ
タイプの平均的な性質となり、密度が低いトリジマイト
の割合が多くなれば膜質が低下することになる。従って
、熱酸化膜の膜質を向上させるためにはコニサイトの割
合を多くすることが必要である。このようなポリタイプ
の相変化を生じさせるためには、圧縮応力の下でシリコ
ンと酸素の結合を切ればよい。その結果として、熱酸化
膜は主にコニサイトから成るようになり、膜質が向上す
る。
The density changes by more than 30% depending on the connection mode, and the density varies by more than 0.7. The properties of the thermal oxide film are average properties of these polytypes, and as the proportion of low-density tridymite increases, the film quality will deteriorate. Therefore, in order to improve the film quality of the thermal oxide film, it is necessary to increase the proportion of conisite. In order to generate such a polytype phase change, the bonds between silicon and oxygen can be broken under compressive stress. As a result, the thermal oxide film mainly consists of conisite, and the film quality is improved.

シリコンと酸素との結合を切るためには、極紫外光を照
射する。石英の吸収端は約8eVであるが、ポリタイプ
にたいしては約5eV程度から吸収が始まる。このよう
な紫外光は、熱酸化膜中に電子とホールとを発生させ、
ホールはシリコン原子と酸素原子との結合が切れた状態
に対応する。圧縮応力を生じさせるためには、表面から
の蒸発作用を利用する。熱酸化膜の表面は、シリコン原
子と酸素原子からなる四員環、六員環、人員環、十員環
から成っている。これらのうち、最も安定なのは人員環
である。極紫外光によって、不安定な構造にあるシリコ
ン原子と酸素原子との結合が切れると、表面は人員環に
なろうとし、余分のシリコンと酸素をSiOあるいはo
2として放出する。このことを利用すれば、圧縮応力を
生じさせることができるとともに、オングストロームオ
ーダーの膜厚制御が可能である。
To break the bond between silicon and oxygen, extreme ultraviolet light is irradiated. The absorption edge of quartz is about 8 eV, but absorption starts at about 5 eV for polytype. Such ultraviolet light generates electrons and holes in the thermal oxide film,
A hole corresponds to a state in which the bond between a silicon atom and an oxygen atom is broken. Evaporation from the surface is used to generate compressive stress. The surface of the thermal oxide film consists of four-membered rings, six-membered rings, human rings, and ten-membered rings made of silicon atoms and oxygen atoms. Of these, the most stable is the personnel circle. When the bonds between silicon atoms and oxygen atoms in an unstable structure are broken by extreme ultraviolet light, the surface tends to form a human ring, and the excess silicon and oxygen are converted into SiO or O
Release as 2. By utilizing this fact, it is possible to generate compressive stress and to control the film thickness on the order of angstroms.

(実施例) シリコン(100)基板を用いた場合について述べる。(Example) A case using a silicon (100) substrate will be described.

前処理として塩酸ブランソン洗浄を行なった。アンモニ
アブランソンでもフッ酸処理でも同様である。本発明に
よる極薄酸化膜の形成方法は前処理条件に依存しないの
で、不純物の混入さえ防げていればよい。前処理後、ま
ずドライ酸素雰囲気中で酸化し、基板全体に−様な膜質
および界面の酸化膜を形成する。酸化温度は850°C
1酸化時間は10分であった。ゲート酸化の時点では既
にほとんどの不純物分布が設定されているので、酸化温
度できるだけ低い方が望ましい。単に低いだけではなく
、同時に時間も短くなければならない。
Hydrochloric acid Branson washing was performed as pretreatment. The same applies to ammonia Branson treatment and hydrofluoric acid treatment. Since the method for forming an ultra-thin oxide film according to the present invention does not depend on pretreatment conditions, it is sufficient to prevent contamination of impurities. After pretreatment, the substrate is first oxidized in a dry oxygen atmosphere to form an oxide film with similar film quality and interface over the entire substrate. Oxidation temperature is 850°C
One oxidation time was 10 minutes. Since most of the impurity distribution has already been set at the time of gate oxidation, it is desirable that the oxidation temperature be as low as possible. Not only must it be low, but it must also be short.

そして、極薄酸化膜の膜質はこのドライ酸化条件でほぼ
決まる。次に、連続してスティーム酸化を行なった。酸
化温度は800°C1酸化時間は1分、雰囲気はH2O
:02=2:1とした。雰囲気は内部燃焼方式とした。
The quality of the ultra-thin oxide film is almost determined by these dry oxidation conditions. Next, steam oxidation was performed continuously. Oxidation temperature: 800°C, oxidation time: 1 minute, atmosphere: H2O
:02=2:1. The atmosphere was an internal combustion type.

極薄酸化膜の界面の特性と膜厚はこのスティーム酸化で
ほぼ決まる。
The characteristics and thickness of the interface of the ultra-thin oxide film are largely determined by this steam oxidation.

このようにして形成した熱酸化膜の厚さは、エリプソメ
ータでの測定によれば、約150オンダストロームで、
密度は2.4であった。この基板に対して第1図に示す
ような配置でエキシマレーザ−光を照射した。光源はK
rFとArFであった。照射条件はKrFの場合繰り返
し90H2、パルス幅12nsec、光強度2.6W/
cm2、ArFの場合繰り返し90H2、パルス幅10
nsec、光強度1.0W/cm2であった。照射時間
は15分間、基板温度は室温から500°Cの範囲で変
えた。
The thickness of the thermal oxide film thus formed was approximately 150 Å, as measured by an ellipsometer.
The density was 2.4. This substrate was irradiated with excimer laser light in the arrangement shown in FIG. The light source is K
They were rF and ArF. In the case of KrF, the irradiation conditions were: repetition rate 90H2, pulse width 12nsec, light intensity 2.6W/
cm2, for ArF, repeat 90H2, pulse width 10
nsec, and the light intensity was 1.0 W/cm2. The irradiation time was 15 minutes, and the substrate temperature was varied between room temperature and 500°C.

雰囲気はアルゴンあるいは酸素とした。このようなエキ
シマレーザ−光照射の結果、KrFの場合は膜厚が約1
00オングストローム、密度は2.8となった。
The atmosphere was argon or oxygen. As a result of such excimer laser light irradiation, in the case of KrF, the film thickness is approximately 1
00 angstroms, and the density was 2.8.

また、ArFの場合は膜厚が約80オングストローム、
密度は2.85となった。ArFエキシマレーザ−の場
合、KrFエキシマレーザ−よりも光強度は低いが、波
長が短いので有効にポリタイプの相変化、蒸発反応が生
じたと考えられる。基板温度が低い場合には雰囲気によ
る極薄酸化膜の膜質、膜厚の変化はなかった。しかし、
400°C程度以上ではアルゴン雰囲気の場合は膜厚の
減少はより激しくなり、酸素雰囲気の場合には膜厚の減
少は抑制された。また、膜質も基板温度が低いほど優れ
ていた。
In addition, in the case of ArF, the film thickness is about 80 angstroms,
The density was 2.85. In the case of ArF excimer laser, the light intensity is lower than that of KrF excimer laser, but since the wavelength is shorter, it is considered that polytype phase change and evaporation reaction occur effectively. When the substrate temperature was low, there was no change in the quality or thickness of the ultra-thin oxide film due to the atmosphere. but,
At temperatures above about 400° C., the decrease in film thickness became more severe in the case of an argon atmosphere, and the decrease in the film thickness was suppressed in the case of an oxygen atmosphere. Furthermore, the film quality was also better as the substrate temperature was lower.

以上の実施例においては(100)のSi基板を用いた
が、本発明は(111)、(iio)など他の面方位の
Si基板に用いても効果が得られる。
In the above embodiments, a (100) Si substrate was used, but the present invention can also be effectively applied to Si substrates with other plane orientations such as (111) and (IIO).

(発明の効果) 以上述べたように、本発明による極薄酸化膜の形成方法
によれば、熱酸化法を用いて、酸化温度が高い場合と同
様の界面特性、膜質の良い非常に薄い酸化膜を形成する
ことができるので、超LSIにおけるゲート酸化膜の形
成技術に適用することができる。
(Effects of the Invention) As described above, according to the method for forming an ultra-thin oxide film according to the present invention, a thermal oxidation method is used to form a very thin oxide film with the same interface properties and good film quality as those obtained when the oxidation temperature is high. Since it is possible to form a film, it can be applied to a technology for forming gate oxide films in VLSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による極紫外光照射極薄酸化膜形成方法
の実施例を示す概略図である。 1、エキシマレーザ− 2、熱酸化膜を形成したシリコン基板 3、基板ホルダー 4、基板ホルダー駆動装置
FIG. 1 is a schematic diagram showing an embodiment of the method for forming an ultra-thin oxide film by irradiating extreme ultraviolet light according to the present invention. 1. Excimer laser 2. Silicon substrate 3 with thermal oxide film formed, substrate holder 4, substrate holder driving device

Claims (1)

【特許請求の範囲】[Claims] 熱酸化法によって形成した酸化膜に、極紫外光を照射す
ることによって酸化膜の膜厚を減少させ、かつ密度を増
大させることを特徴とする極薄酸化膜の形成方法
A method for forming an ultra-thin oxide film, characterized by reducing the thickness of the oxide film and increasing its density by irradiating the oxide film formed by a thermal oxidation method with extreme ultraviolet light.
JP1913189A 1989-01-27 1989-01-27 Formation of extremely thin oxide film Pending JPH02199836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1913189A JPH02199836A (en) 1989-01-27 1989-01-27 Formation of extremely thin oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1913189A JPH02199836A (en) 1989-01-27 1989-01-27 Formation of extremely thin oxide film

Publications (1)

Publication Number Publication Date
JPH02199836A true JPH02199836A (en) 1990-08-08

Family

ID=11990913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1913189A Pending JPH02199836A (en) 1989-01-27 1989-01-27 Formation of extremely thin oxide film

Country Status (1)

Country Link
JP (1) JPH02199836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994218A (en) * 1996-09-30 1999-11-30 Kabushiki Kaisha Toshiba Method of forming electrical connections for a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994218A (en) * 1996-09-30 1999-11-30 Kabushiki Kaisha Toshiba Method of forming electrical connections for a semiconductor device

Similar Documents

Publication Publication Date Title
JPS59208743A (en) Manufacture of semiconductor device
JPH01187814A (en) Manufacture of thin film semiconductor device
JPH02213118A (en) Manafacture of sicmask supporting member for radiation lithography mask
JP4214250B2 (en) Method and apparatus for producing silicon nanocrystal structure
JPS5982732A (en) Manufacture for semiconductor device
JPH02199836A (en) Formation of extremely thin oxide film
TW423047B (en) Method for manufacturing a semiconductor device
JPS6230314A (en) Manufacture of crystalline semiconductor thin film
JPH04111362A (en) Thin-film transistor and its manufacture
JP3387047B2 (en) Solid selective growth method
JPS59208065A (en) Depositing method of metal by laser
JPH02202022A (en) Manufacture of semiconductor device
JPS62166527A (en) Formation of silicon oxide film
JPH02307221A (en) Growing method for cvd film
JP2550998B2 (en) Method for forming single crystal silicon film
JPH0758712B2 (en) Wiring formation method
JPH02281614A (en) Manufacture of polycrystalline silicon thin film
JPS6193630A (en) Manufacture of silicon dioxide film
JPH03250621A (en) Manufacture of semiconductor film
JPH04332130A (en) Manufacture of semiconductor element
JPS61156723A (en) Manufacture of semiconductor device
JPH0388322A (en) Heat treating method
JPH05267281A (en) Method for forming silicon oxide layer
JPH03120716A (en) Method for forming crystal and crystal
JPH0114313B2 (en)