JPH02199025A - Bi-based oxide superconductor - Google Patents

Bi-based oxide superconductor

Info

Publication number
JPH02199025A
JPH02199025A JP1018995A JP1899589A JPH02199025A JP H02199025 A JPH02199025 A JP H02199025A JP 1018995 A JP1018995 A JP 1018995A JP 1899589 A JP1899589 A JP 1899589A JP H02199025 A JPH02199025 A JP H02199025A
Authority
JP
Japan
Prior art keywords
fluoride
based oxide
oxide superconductor
superconductor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1018995A
Other languages
Japanese (ja)
Other versions
JPH07115874B2 (en
Inventor
Shigeo Horiuchi
繁雄 堀内
Koji Nozaki
浩司 野崎
Kaoru Shoda
正田 薫
Yoshio Matsui
良夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP1018995A priority Critical patent/JPH07115874B2/en
Publication of JPH02199025A publication Critical patent/JPH02199025A/en
Publication of JPH07115874B2 publication Critical patent/JPH07115874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title Bi-Sr-Ca-Cu-O-based superconductor with reduced baking temperature without causing decrease in its superconductivity critical temperature by adding a fluoride to the raw material. CONSTITUTION:Bi2O3, SrCO3, CaCO3, CuO and a fluoride (e.g. CaF2) are weighed so as to be 1:1:1:2 in the molar ratio Bi:Sr:Ca:Cu, mixed and ground. The amount of the fluoride to be added is pref. such as to be ca. (20:1)-(1:1) in the molar ratio based on the raw material component such as Bi, Sr or Ca. Thence, the resulting powder is calcined at 800-850 deg.C, baked at 830-880 deg.C, and further heat treated in air or oxygen gas stream to obtain the objective fluorine-incorporated bismuth-based oxide superconductor. Thus, a superconductor predominant in 110K-class high-temperature phase can be produced at baking temperatures lower than those conventionally used.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、Bi系酸化物超電導体に関するものである
。さらに詳しくはこの発明は、より低温度での焼成を可
能とする、110に級の高温相を主体とするBi系酸化
物超電導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a Bi-based oxide superconductor. More specifically, the present invention relates to a Bi-based oxide superconductor mainly consisting of a 110-grade high temperature phase, which allows firing at lower temperatures.

(従来の技術とその課題) 近年、酸化物高温超電導体の開発は、La、Y等の希土
類元素系酸化物からBi系あるいはT、l!系の酸化物
の登場によって、臨界温度(Tc)が100に級以上の
レベルのものにその対象が移ってきている。
(Conventional technology and its problems) In recent years, the development of oxide high temperature superconductors has progressed from rare earth element-based oxides such as La and Y to Bi-based or T, l! With the advent of oxides in the oxide system, the focus has shifted to those with critical temperatures (Tc) of 100 or higher.

特にBi系の、B 5−3r−Ca−Cu −0χid
cの超電導体は、Y系に比べて臨界温度(Tc)が高く
、しかもT1が毒性の強いのに比べて取扱いが安全であ
ることや、その組織構造上の特徴から全世界的に注目さ
れているものである。
Especially Bi-based, B 5-3r-Ca-Cu -0χid
C superconductors have attracted worldwide attention because they have a higher critical temperature (Tc) than Y-based superconductors, are safer to handle than T1, which is more toxic, and because of their structural characteristics. It is something that

しかしながら、このBL系酸化物超電導体については、
これまでに提案されている焼結方法によって製造する場
合には、870℃以上という高温度の焼成を必要とし、
しかも、80にレベルに臨界温度を有する低温層と10
0にレベルに臨界温度を有する高温相との混相状態にあ
ることが避けられなかった。
However, regarding this BL-based oxide superconductor,
When manufacturing using the sintering method proposed so far, high temperature firing of 870°C or higher is required.
Moreover, a low temperature layer with a critical temperature at the level of 80 and 10
A mixed phase state with a high temperature phase having a critical temperature at the level of 0 is inevitable.

この混相状態を解消して、’l’c=IQOK級の高温
和のB1−8r−Ca−Cu−Oxideを主なるもの
として得ようとする工夫も種々行われてきてはいる。た
とえば、このBS系酸化物にPb<鉛)を添加する方法
などがすでに提案されている。
Various efforts have been made to eliminate this mixed phase state and obtain B1-8r-Ca-Cu-Oxide with a high sum of 'l'c=IQOK class as the main component. For example, a method of adding Pb<lead to this BS-based oxide has already been proposed.

しかしながら、このPb添加の方法は、Pbの比率の制
御が難しく、しかもTcの改善効果も必ずしも充分でな
いという欠点があった。また、焼成の温度をより低くす
る可能性もなかった。
However, this method of adding Pb has the disadvantage that it is difficult to control the Pb ratio, and the effect of improving Tc is not necessarily sufficient. There was also no possibility of lowering the firing temperature.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、これまでのBi系酸化物超電導体の欠点を改善し
、焼成温度をより低くする可・油性を有し、しかも11
0に級の高温相を主体とする超電導体を再現性よく提供
することを目的としている。
This invention was made in view of the above circumstances, and it improves the drawbacks of conventional Bi-based oxide superconductors, has a property of being oily and oleaginous that lowers the firing temperature, and has an 11
The purpose of this research is to provide a superconductor mainly consisting of a 0-grade high-temperature phase with good reproducibility.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、Bi、
Sr、Caおよび銅の酸素化合物に弗化物を添加して熱
処理してなることを特徴とするBi系酸化物超電導体を
提供する。
(Means for Solving the Problems) The present invention solves the above problems by providing Bi,
A Bi-based oxide superconductor is provided, which is formed by adding fluoride to an oxygen compound of Sr, Ca, and copper and heat-treating the mixture.

より評しくは、この発明は、Bi、Sr、Ca。More specifically, this invention uses Bi, Sr, and Ca.

および銅の酸素化合物、たとえば酸化物、炭#!i塩、
硝酸塩、その他の酸素との化合物に、弗化物、たとえば
アルカリ金属弗化物、アルカリ土類金属弗化物、鉛弗化
物等を添加して、高温熱処理してなるB1系超電導体を
提供する。
and oxygen compounds of copper, such as oxides, charcoal #! i salt,
A B1-based superconductor is provided by adding a fluoride such as an alkali metal fluoride, an alkaline earth metal fluoride, a lead fluoride, etc. to a nitrate or other compound with oxygen and heat-treating the mixture at a high temperature.

この場合の熱処理には、従来と同様の仮焼−焼成、さら
に必要に応じてのアニール処理が含まれる。この熱処理
は、その組成構成によって変動はあるが、−数的には、
800〜850℃での仮焼、830〜880℃での焼成
とすることができ、いずれの場合にも、従来の焼成温度
よりは低い温度とすることができる。
The heat treatment in this case includes calcination and firing as in the conventional method, and further annealing treatment as necessary. Although this heat treatment varies depending on its composition, numerically,
Calcination can be performed at 800 to 850°C and firing can be performed at 830 to 880°C, and in either case, the firing temperature can be lower than the conventional firing temperature.

酸化物の成分組成については、原料成分ベースで、Bi
 :Sr:Ca:Cuについては、1:1:1:2を基
準として採用することができる。また弗化物の添加量は
、Bi、Sr、またはCaの原料成分に対して、モル比
で、20:1〜1:1程度とすることができる。
Regarding the component composition of the oxide, Bi
:Sr:Ca:Cu can be adopted on the basis of 1:1:1:2. Further, the amount of fluoride added can be about 20:1 to 1:1 in molar ratio to the raw material components of Bi, Sr, or Ca.

また、熱処理は、空気または酸素の気流中で行うのが好
ましく、この場合、焼成についてはオープン系、または
クローズ系のいずれでもよい。
Further, the heat treatment is preferably performed in a stream of air or oxygen, and in this case, the firing may be performed in either an open system or a closed system.

数的にはオープン系とするのが好ましい。In terms of numbers, it is preferable to use an open system.

この発明の弗化物の添加によるBi系酸化物においては
、より低い焼成温度において、110 K級の高温相を
主体とする超電導体が得られる。弗素が、B電導体の構
造に有意な作用を及ぼしている。
In the Bi-based oxide of the present invention added with fluoride, a superconductor mainly consisting of a high temperature phase of 110 K class can be obtained at a lower firing temperature. Fluorine has a significant effect on the structure of the B conductor.

以下、実施例を示してさらに詳しくこの発明について説
明する。もちろん、この発明は以下の実施例によって限
定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples. Of course, the invention is not limited to the following examples.

実施例1 原料として、Bi* Os 、5rCOx 、CuOお
よびCaF2を3i :Sr:Ca:Cu=l :1:
1:2となるように調整しな、またC acOs : 
Ca F i = 9 : 1としな。
Example 1 As raw materials, Bi*Os, 5rCOx, CuO and CaF2 were used as 3i:Sr:Ca:Cu=l:1:
Adjust so that the ratio is 1:2, and CacOs:
CaF i = 9:1.

この原料を粉砕、混合し、仮焼しな、その後、ディスク
状(16−φX l rm )に成形して焼成した。
The raw materials were pulverized, mixed, and calcined, then formed into a disk shape (16-φX rm ) and fired.

この時の条件は以下の通りとしな。The conditions at this time are as follows.

仮焼温度   830℃ 焼成温度   860℃X60時間 雰囲気    空気オープン系 得られた焼成物について直流4端子法により抵抗率の温
度依存性を評価し、また、粉末X線回折、電子線回折に
よって構造分析を行った。
Calcination temperature: 830°C Firing temperature: 860°C x 60 hours Atmosphere: Air open system The temperature dependence of resistivity of the obtained fired product was evaluated using the DC 4-probe method, and the structure was analyzed using powder X-ray diffraction and electron beam diffraction. went.

焼成物の酸化物の抵抗率は、第1図に示したように10
8Kにおいて0となり、Tc=110にの高温相からな
る超電導体であることが確認された。
The resistivity of the oxide of the fired product is 10 as shown in Figure 1.
It became 0 at 8K, confirming that it is a superconductor consisting of a high temperature phase with Tc=110.

このもののX線回折の結果を示したものが第2図である
。この第2図より、(243)型のg4造が主体となっ
ていることがわかる。
FIG. 2 shows the results of X-ray diffraction of this material. From this Figure 2, it can be seen that (243) type g4 construction is the main type.

比較例1 比較のために、焼成温度を、従来と同様の874℃の温
度とし、20時間の焼成を行った。
Comparative Example 1 For comparison, the firing temperature was set to 874° C., which is the same as the conventional method, and firing was performed for 20 hours.

この時のものは、第3図に示したようなX41回折を示
し、110に級のTcは示さず、80に級Tcのものし
か得られていないことが確認された。
It was confirmed that the sample at this time showed X41 diffraction as shown in FIG. 3, did not show Tc of 110, and only Tc of 80 was obtained.

この結果からも明らかなように、弗化物を添加したこの
発明の場合には、より低い焼成温度において、より高い
Tcを示すものであることがわかる。
As is clear from these results, it can be seen that in the case of the present invention in which fluoride is added, a higher Tc is exhibited at a lower firing temperature.

実施例2 焼成時間を20時間としたほかは、実施例1と同様にし
て酸化物組成物を得た。
Example 2 An oxide composition was obtained in the same manner as in Example 1, except that the firing time was 20 hours.

このものも、Tc=110にの超電導体であることが確
認された。ただ、第4図に示したように、X線回折の結
果からは、第2図の60時間の焼成のものに比べr(2
32)型の構造の比がやや高いことがわかる。
This material was also confirmed to be a superconductor with Tc=110. However, as shown in Figure 4, the results of X-ray diffraction indicate that r(2
32) It can be seen that the ratio of the type structure is somewhat high.

実施例 3 Sr:Ca:Cu=1 : 1 :1.8の組成と、B
 i 2 0.=0.95 P b F 2   =O,Q5 の比率となるように実施例と同様に原料調整し、840
℃X12時間の仮焼と、840℃×4Q時間の焼成を行
った。
Example 3 Composition of Sr:Ca:Cu=1:1:1.8 and B
i 2 0. The raw materials were adjusted in the same manner as in the example so that the ratio was 0.95 P b F 2 =O, Q5, and 840
Calcination at 840°C for 12 hours and firing at 840°C for 4Q hours were performed.

その結果、T c (on)=114 k 、 T c
 (end) =80にの酸化物超電導体を得た。
As a result, T c (on)=114 k , T c
An oxide superconductor of (end) =80 was obtained.

実施例 4 Bi :Ca:Cu=1 : 1 :1.8 、および
5rCO,=0.9 KF  =0.1 の組成の原料から、実施例1と同様にして、830℃×
12時間の仮焼、86G ’CX 70 時間f) m
成によって、T c (On)= 117 k 、 T
 c (end) =85にの酸化物超電導体を得た。
Example 4 From raw materials having the compositions Bi:Ca:Cu=1:1:1.8 and 5rCO,=0.9 KF=0.1, the same procedure as in Example 1 was carried out at 830°C×
12 hours calcination, 86G 'CX 70 hours f) m
According to the configuration, T c (On) = 117 k , T
An oxide superconductor with c (end) =85 was obtained.

この結果から、弗化物の添加によって、より低い温度で
の焼成による、より高いTcの実現可能性が示された。
This result showed the possibility of achieving higher Tc by calcination at lower temperature with the addition of fluoride.

(発明の効果) 以上詳しく説明した通り、この発明により従来よりも低
い焼成温度による、高温相を主体とする弗素添加酸化物
B1系超電導体が提供される。
(Effects of the Invention) As explained in detail above, the present invention provides a fluorine-added oxide B1-based superconductor mainly consisting of a high-temperature phase, which is fired at a lower firing temperature than conventional ones.

この発明によって、今後のBi系超電導体の新しい可能
性も提示される。
This invention also presents new possibilities for future Bi-based superconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の抵抗率変化を示した抵
抗率と温度の相関図である。第2図はこの実施例につい
てのX線回折図である。 第3図は、比較例について示したX線回折図である。 第4図は、この発明の別の例について示したX線回折図
である。 71図 温度(K)
FIG. 1 is a diagram showing the relationship between resistivity and temperature, showing changes in resistivity in an embodiment of the present invention. FIG. 2 is an X-ray diffraction diagram for this example. FIG. 3 is an X-ray diffraction diagram shown for a comparative example. FIG. 4 is an X-ray diffraction diagram showing another example of the present invention. Figure 71 Temperature (K)

Claims (7)

【特許請求の範囲】[Claims] (1)Bi,Sr,Caおよび銅の酸素化合物に弗化物
を添加して熱処理してなることを特徴とするBi系酸化
物超電導体。
(1) A Bi-based oxide superconductor, which is formed by adding fluoride to an oxygen compound of Bi, Sr, Ca, and copper and heat-treating the mixture.
(2)弗化物が金属弗化物である請求項(1)記載のB
i系酸化物超電導体。
(2) B according to claim (1), wherein the fluoride is a metal fluoride
i-based oxide superconductor.
(3)800〜850℃で仮焼後、830〜880℃で
焼成してなる請求項(1)記載のBi系酸化物超電導体
(3) The Bi-based oxide superconductor according to claim (1), which is calcined at 800-850°C and then fired at 830-880°C.
(4)仮焼、焼成の後にアニール処理してなる請求項(
1)記載のBi系酸化物超電導体。
(4) A claim in which the product is annealed after calcination and firing (
1) Bi-based oxide superconductor as described.
(5)空気中または酸素気流中で熱処理してなる請求項
(1)記載のBi系酸化物超電導体。
(5) The Bi-based oxide superconductor according to claim (1), which is heat-treated in air or in an oxygen stream.
(6)Bi,Sr,Ca,Cu,酸素および弗素を含有
する組成物からなるBi系酸化物超電導体。
(6) A Bi-based oxide superconductor consisting of a composition containing Bi, Sr, Ca, Cu, oxygen, and fluorine.
(7)Bi,Sr,Ca,Cu,酸素および弗素ととも
に、アルカリ金属,Ba,またはPbを含有する組成物
からなるBi系酸化物超電導体。
(7) A Bi-based oxide superconductor consisting of a composition containing Bi, Sr, Ca, Cu, oxygen, and fluorine, as well as an alkali metal, Ba, or Pb.
JP1018995A 1989-01-28 1989-01-28 Method for manufacturing Bi-based oxide superconductor Expired - Lifetime JPH07115874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018995A JPH07115874B2 (en) 1989-01-28 1989-01-28 Method for manufacturing Bi-based oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018995A JPH07115874B2 (en) 1989-01-28 1989-01-28 Method for manufacturing Bi-based oxide superconductor

Publications (2)

Publication Number Publication Date
JPH02199025A true JPH02199025A (en) 1990-08-07
JPH07115874B2 JPH07115874B2 (en) 1995-12-13

Family

ID=11987145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018995A Expired - Lifetime JPH07115874B2 (en) 1989-01-28 1989-01-28 Method for manufacturing Bi-based oxide superconductor

Country Status (1)

Country Link
JP (1) JPH07115874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703651B2 (en) 2012-07-06 2014-04-22 Dale Richard Harshman Layered ionic superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188464A (en) * 1989-01-13 1990-07-24 Matsushita Electric Ind Co Ltd Porcelain composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188464A (en) * 1989-01-13 1990-07-24 Matsushita Electric Ind Co Ltd Porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703651B2 (en) 2012-07-06 2014-04-22 Dale Richard Harshman Layered ionic superconductor

Also Published As

Publication number Publication date
JPH07115874B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
Dorris et al. Synthesis of highly pure bismuth-2223 by a two-powder process
US5409888A (en) Process for producing a high-temperature superconductor and also shaped bodies composed thereof
US5145831A (en) High-tc oxide superconductor and method for producing the same
EP0351844A2 (en) Method of manufacturing bismuth type oxide superconductor
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JPH02199025A (en) Bi-based oxide superconductor
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH0574531B2 (en)
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JP2630397B2 (en) Superconductor manufacturing method
JPH01176220A (en) Oxide superconductor
JP2590242B2 (en) Manufacturing method of oxide superconductor
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JPH01219023A (en) Production of thin superconductor film
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
JPH0248456A (en) Superconducting ceramics
JPH0563413B2 (en)
JPH01212225A (en) Oxide superconducting material
JPH0574232A (en) Degradation preventing method for oxide superconductor
JPH0578198A (en) Production of bi-based superconductor single crystal
JPH01290530A (en) Multiple oxides superconducting material and production thereof
Alyokhina et al. Stabilization of the high temperature phase in Bi-Ca-Sr-Cu-O system
JPH01313326A (en) Superconductor and production thereof
JPH0437605A (en) Oxide superconducting material and its production
JPH05166425A (en) Manufacture of superconductive oxide conductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term